JPH0451753B2 - - Google Patents

Info

Publication number
JPH0451753B2
JPH0451753B2 JP58076996A JP7699683A JPH0451753B2 JP H0451753 B2 JPH0451753 B2 JP H0451753B2 JP 58076996 A JP58076996 A JP 58076996A JP 7699683 A JP7699683 A JP 7699683A JP H0451753 B2 JPH0451753 B2 JP H0451753B2
Authority
JP
Japan
Prior art keywords
argon
gas
argon gas
impure
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58076996A
Other languages
Japanese (ja)
Other versions
JPS59202381A (en
Inventor
Akira Yoshino
Hiromi Kyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Sanso Co Ltd
Original Assignee
Daido Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Sanso Co Ltd filed Critical Daido Sanso Co Ltd
Priority to JP58076996A priority Critical patent/JPS59202381A/en
Publication of JPS59202381A publication Critical patent/JPS59202381A/en
Publication of JPH0451753B2 publication Critical patent/JPH0451753B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/58Argon

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、半導体用単結晶製造炉等の炉雰囲
気ガスとして使用される高純アルゴンガスの使用
後の不純アルゴンを回収する方法に関するもので
ある。 〔従来の技術〕 従来、炉雰囲気ガスとして使用される高純アル
ゴンガスは、通常、液状で貯蔵され、使用に際し
て気化器で大気と熱交換され冷熱を放出し常温ガ
スとなつて使用され、使用後は大気に放出されて
いる。 アルゴンは空気中に0.93%含まれており、沸点
が−185.87℃で、酸素−182.97℃、窒素−195.82
℃の中間にあるため、空気深冷分離の際濃縮され
粗アルゴンとして得られ、さらに酸素、窒素が分
離除去され高純度の精製アルゴンとなる。 〔発明が解決しようとする課題〕 高純度アルゴンは、金属精錬用、熱処理用、溶
接用、電子工業用等に、雰囲気の保護ガスとして
需要が増加している。前記のように、空気中に
0.93%とわずかにしか存在しないアルゴンを、空
気の深冷分離によつて高純度に濃縮精製すること
は高価なものとなるため、高純アルゴンを使用後
に大気中に放出し、新たな高純アルゴンを使用す
るということは極めて不経済なことである。ま
た、上記空気の深冷液化分離は、深冷液化分離装
置を用いて行われるが、深冷液化分離装置に設け
られている膨脹タービンは、高速回転機器である
ことから、高価で、故障しやすく、また専門の運
転員を必要としている。 この発明は、このような事情に鑑みなされたも
ので、使用済の不純アルゴンの回収再利用を安定
に行うアルゴン回収方法の提供をその目的とす
る。 〔課題を解決するための手段〕 上記の目的を達成するため、この発明のアルゴ
ン回収方法は、炉雰囲気ガスに使用後の不純アル
ゴンガスを酸化装置に入れて酸素または空気と反
応させ不純アルゴンガス中に含有される可燃性成
分を二酸化炭素と水に変換した後、冷却器を用い
て冷却し、これを吸着筒に導入して吸着除去し、
ついで吸着除去後のアルゴンガスを高純度液化ア
ルゴンと熱交換させて冷却したのちアルゴン蒸溜
装置に導入し深冷液化分離して高純度化するアル
ゴン回収方法であつて、外部から液体窒素の供給
を受けて貯蔵する液体窒素タンクからアルゴン蒸
溜装置へ液体窒素を寒冷として導入し、アルゴン
蒸溜装置で寒冷としての作用を終え気化生成した
窒素ガスを上記吸着筒に吸着剤の再生ガスとして
導入するとともに、上記冷却器によつて冷却され
た不純アルゴンガスの一部を酸化装置の上流側に
戻して酸化装置に導入される不純アルゴンガスと
混合するという構成をとる。 〔作用〕 すわなち、この発明は、外部から液体窒素の供
給を受けた貯蔵する液体窒素タンクからアルゴン
蒸留装置へ液体窒素を寒冷として導入するため、
高価な膨張タービンを用いる必要がなく、したが
つて、アルゴン蒸留装置系列の設備費を節約で
き、また故障のない安定運転を実現できるように
なる。しかも、冷却器によつて冷却された不純ア
ルゴンガスの一部を酸化装置の上流側に戻して酸
化装置に導入される不純アルゴンガスと混合する
ため、不純アルゴンガス中に含まれる可燃性成分
の燃焼熱による酸化装置の過熱が、上記冷却アル
ゴンガスの冷熱により防止され、酸化装置の故障
の発生や短寿命化が防止されるようになる。 つぎに、この発明を実施例にもとづいて説明す
る。 〔実施例〕 第1図はこの発明の一実施例のフローシートを
示す説明図である。 まず、炉雰囲気ガスに使用後の不純アルゴンガ
スは、圧縮器(図示せず)で所定の圧力(この実
施例では8atg)まで圧縮され回収アルゴン供給管
1より触媒を充填している酸化筒3に導入され
る。酸化筒3に導入される回収アルゴンガスの組
成は後記の第1表の()のとおりである。送入
に際して、酸素供給管2から、投入される回収ア
ルゴンガス中の可燃性成分を完全に燃焼させるに
足る酸素または空気が回収アルゴンガスに混入さ
れる。この実施例では、8.5atg、18.5Nm3/Hの
酸素が供給される。この酸化筒3内で回収アルゴ
ンガス中の可燃性成分が酸素と反応して、二酸化
炭素と水に変換する。酸化筒3で酸化処理された
回収アルゴンガスは、冷却水を冷媒とする一段目
冷却器4を通つて二段目冷却器6に送られる。こ
の場合、一段目冷却器4で冷却された回収アルゴ
ンガスの一部は循環ブロア5で酸化筒3の手前の
供給管1の部分に入り、再度酸化筒3内へ送り込
まれる。このようにして、冷却状態の回収アルゴ
ンが、未冷却の回収アルゴンと混ざつて酸化筒3
内へ入ることにより、アルゴンガス中の可燃性成
分の燃焼により昇温する酸化筒3の過熱が防止さ
れる。また、このようにすることにより、酸化筒
3による酸化が充分に行われるようになり、回収
アルゴンガス供給管1から供給されるガス中に多
量の不純分、特に炭化水素が含まれていてもそれ
らの完全燃焼が実現されるようになる。循環ブロ
ア5の吸い取り部5aを通り越した回収アルゴン
は、さらに冷凍ユニツト7を付設した二段目冷却
器6を通つて冷却され、この冷却の過程で回収ア
ルゴン中の水分の一部が凝縮除去される。このよ
うにして冷却された回収アルゴンガスは、配管8
を通つて水吸着筒9に送入されて水分を除去され
る。水吸着筒9を通過した回収アルゴンガスは、
アルゴン熱交換器10のコンデンサ11に送ら
れ、使用前の高純液化アルゴンガスと熱交換し、
後工程の二酸化炭素除去筒12において二酸化炭
素の吸着が容易になるように−40℃程度の温度に
冷却される。この使用前の高純液化アルゴンは、
高純液化アルゴン貯槽(図示せず)から高純液化
アルゴン供給管15を経て供給され、アルゴン熱
交換器10で回収アルゴンガスと熱交換し、それ
自身は気化して炉雰囲気用ガスとして使用される
よう高純アルゴンガス排出管16より排出され
る。アルゴン熱交換器10で冷却された回収アル
ゴンガスは二酸化炭素除去筒12に送入され二酸
化炭素が吸着除去される。二酸化炭素が吸着除去
された回収アルゴンガスは、再度、前記の熱交換
器10とは別のアルゴンガス熱交換器13のコン
デンサ14に送られて冷却され配管17を経てア
ルゴン蒸留塔18へ送られる。この熱交換器13
には、前記熱交換器10と同じ高純液化アルゴン
貯槽26から高純液化アルゴンが供給され、回収
アルゴンガスと熱交換を終えた高純液化アルゴン
(回収アルゴンガスが低温なため気化せず液状の
まま)は、配管14aを通つて前記熱交換器10
の手前の供給管15の部分から供給管15内へ送
り込まれ、高純液化アルゴン貯槽26の高純液化
アルゴンと合わされる。熱交換器13により冷却
されアルゴン蒸留塔18へ送られる回収アルゴン
ガスの一部はデイボイラ19の熱源として使用さ
れたのちに供給される。アルゴン蒸留塔18のコ
ンデンサ20には、外部からタンクローリで運搬
された液体窒素を貯蔵する液体窒素貯槽21から
液体窒素が送入され、回収アルゴンガスと熱交換
してガス化する。このガス化した液体窒素は、配
管22を経て適宜の時期に水吸着筒9および二酸
化炭素除去筒12に送り込まれ、吸着剤の再生作
用をする。23はガス化した液体窒素を昇温させ
るためのヒータ、24は真空ポンプである。アル
ゴン蒸留塔18に送入された回収アルゴンガス
は、ここで液化精製されつつ不純成分はベントガ
ス放出ライン25より大気中へ放出される。この
放出ガスの組成は窒素:アルゴン=98:2(%)
程度である。そして、このようにして液化精製さ
れた回収液化アルゴンは、液化アルゴン貯槽26
に貯留される。この貯留された回収液化アルゴン
組成の一例は第1表の()のとおりであり、高
度に純化されていることがわかる。
[Industrial Application Field] The present invention relates to a method for recovering impure argon after use of high-purity argon gas used as a furnace atmosphere gas in a semiconductor single crystal production furnace or the like. [Prior Art] Conventionally, high-purity argon gas used as a furnace atmosphere gas is usually stored in liquid form, and when used, it is heat exchanged with the atmosphere in a vaporizer, releases cold heat, becomes room temperature gas, and is used. The rest is released into the atmosphere. Argon is contained in air at 0.93% and has a boiling point of -185.87℃, oxygen -182.97℃, and nitrogen -195.82℃.
Since it is in the middle of ℃, it is concentrated during air cryogenic separation and obtained as crude argon, and oxygen and nitrogen are further separated and removed to obtain highly purified purified argon. [Problems to be Solved by the Invention] Demand for high-purity argon is increasing as a protective gas for atmospheres used in metal refining, heat treatment, welding, electronic industry, and the like. As mentioned above, in the air
It is expensive to concentrate and refine argon, which exists in only a small amount of 0.93%, to a high purity through cryogenic separation of air, so after using high-purity argon, it is released into the atmosphere to create a new high-purity product. Using argon is extremely wasteful. In addition, the cryogenic liquefaction separation of air is performed using a cryogenic liquefaction separator, but the expansion turbine installed in the cryogenic liquefaction separator is a high-speed rotating device, which is expensive and prone to failure. It is easy to operate and requires specialized operators. The present invention was made in view of the above circumstances, and an object thereof is to provide an argon recovery method for stably recovering and reusing used impure argon. [Means for Solving the Problems] In order to achieve the above object, the argon recovery method of the present invention includes impure argon gas after being used as a furnace atmosphere gas, which is put into an oxidizer and reacted with oxygen or air to produce impure argon gas. After converting the combustible components contained therein into carbon dioxide and water, they are cooled using a cooler, and then introduced into an adsorption column where they are adsorbed and removed.
This is an argon recovery method in which the argon gas that has been adsorbed and removed is cooled by heat exchange with high-purity liquefied argon, and then introduced into an argon distillation device to be cryogenically liquefied and separated to achieve high purity. Introducing the liquid nitrogen as cold from the liquid nitrogen tank for receiving and storing it to the argon distillation device, and introducing the nitrogen gas, which has completed its cooling action in the argon distillation device and is vaporized, into the adsorption cylinder as regeneration gas for the adsorbent, A part of the impure argon gas cooled by the cooler is returned to the upstream side of the oxidizer and mixed with the impure argon gas introduced into the oxidizer. [Function] In other words, this invention introduces liquid nitrogen as a cold liquid into an argon distillation apparatus from a liquid nitrogen tank that receives liquid nitrogen from the outside and stores it.
There is no need to use an expensive expansion turbine, so equipment costs for the argon distillation system can be saved, and stable operation without failures can be achieved. Moreover, since a part of the impure argon gas cooled by the cooler is returned to the upstream side of the oxidizer and mixed with the impure argon gas introduced into the oxidizer, combustible components contained in the impure argon gas are removed. Overheating of the oxidizer due to combustion heat is prevented by the cold heat of the cooling argon gas, and failures and shortened life of the oxidizer are prevented. Next, the present invention will be explained based on examples. [Embodiment] FIG. 1 is an explanatory diagram showing a flow sheet of an embodiment of the present invention. First, impure argon gas after being used as a furnace atmosphere gas is compressed to a predetermined pressure (8 atg in this example) by a compressor (not shown), and then passed through a recovered argon supply pipe 1 to an oxidation cylinder 3 filled with a catalyst. will be introduced in The composition of the recovered argon gas introduced into the oxidation cylinder 3 is as shown in parentheses in Table 1 below. At the time of feeding, enough oxygen or air is mixed into the recovered argon gas from the oxygen supply pipe 2 to completely burn the combustible components in the recovered argon gas. In this example, 8.5 atg, 18.5 Nm 3 /H of oxygen is supplied. In this oxidation cylinder 3, combustible components in the recovered argon gas react with oxygen and are converted into carbon dioxide and water. The recovered argon gas oxidized in the oxidation cylinder 3 is sent to the second stage cooler 6 through the first stage cooler 4 which uses cooling water as a refrigerant. In this case, a part of the recovered argon gas cooled by the first-stage cooler 4 enters the supply pipe 1 in front of the oxidation cylinder 3 through the circulation blower 5, and is sent into the oxidation cylinder 3 again. In this way, the cooled recovered argon is mixed with the uncooled recovered argon to the oxidation cylinder 3.
By entering the argon gas inside, overheating of the oxidizing cylinder 3, which increases in temperature due to combustion of combustible components in the argon gas, is prevented. In addition, by doing this, oxidation by the oxidation tube 3 can be carried out sufficiently, even if the gas supplied from the recovered argon gas supply pipe 1 contains a large amount of impurities, especially hydrocarbons. Their complete combustion will now be achieved. The recovered argon that has passed through the suction section 5a of the circulation blower 5 is further cooled through a second stage cooler 6 equipped with a refrigeration unit 7, and during this cooling process, a portion of the moisture in the recovered argon is condensed and removed. Ru. The recovered argon gas cooled in this way is transferred to the pipe 8
The water is sent to the water adsorption column 9 through which water is removed. The recovered argon gas that has passed through the water adsorption column 9 is
It is sent to the condenser 11 of the argon heat exchanger 10 and exchanges heat with high-purity liquefied argon gas before use.
It is cooled to a temperature of about -40°C so that carbon dioxide can be easily adsorbed in the carbon dioxide removal cylinder 12 in the subsequent process. This high-purity liquefied argon before use is
It is supplied from a high-purity liquefied argon storage tank (not shown) through a high-purity liquefied argon supply pipe 15, exchanges heat with recovered argon gas in an argon heat exchanger 10, and is itself vaporized and used as a furnace atmosphere gas. The high-purity argon gas is discharged from the exhaust pipe 16 so that the The recovered argon gas cooled by the argon heat exchanger 10 is sent to the carbon dioxide removal column 12, where carbon dioxide is adsorbed and removed. The recovered argon gas from which carbon dioxide has been adsorbed and removed is again sent to the condenser 14 of the argon gas heat exchanger 13, which is separate from the heat exchanger 10, cooled, and sent to the argon distillation column 18 via the pipe 17. . This heat exchanger 13
High-purity liquefied argon is supplied from the same high-purity liquefied argon storage tank 26 as the heat exchanger 10, and the high-purity liquefied argon that has completed heat exchange with the recovered argon gas (because the recovered argon gas is low temperature, it does not vaporize and becomes liquefied). ) is passed through the pipe 14a to the heat exchanger 10.
It is sent into the supply pipe 15 from the part of the supply pipe 15 in front of the argon, and is combined with high-purity liquefied argon in the high-purity liquefied argon storage tank 26 . A portion of the recovered argon gas cooled by the heat exchanger 13 and sent to the argon distillation column 18 is used as a heat source for the day boiler 19 and then supplied. Liquid nitrogen is fed into the condenser 20 of the argon distillation column 18 from a liquid nitrogen storage tank 21 that stores liquid nitrogen transported by a tank truck from the outside, and is gasified by exchanging heat with recovered argon gas. This gasified liquid nitrogen is sent to the water adsorption column 9 and the carbon dioxide removal column 12 at appropriate times via the piping 22, and acts to regenerate the adsorbent. 23 is a heater for raising the temperature of gasified liquid nitrogen, and 24 is a vacuum pump. The recovered argon gas sent to the argon distillation column 18 is liquefied and purified there, while impurity components are released into the atmosphere through the vent gas release line 25. The composition of this released gas is nitrogen: argon = 98:2 (%)
That's about it. The recovered liquefied argon that has been liquefied and purified in this way is then stored in a liquefied argon storage tank 26.
is stored in An example of the composition of the stored recovered liquefied argon is shown in parentheses in Table 1, and it can be seen that it is highly purified.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明は、炉雰囲気ガスに使
用後のアルゴンガスを大気中に放出することな
く、炉に供給される高純液化アルゴンの冷熱を利
用して液化回収し、さらに循環使用を可能とした
ものであり、半導体用単結晶製造炉、ステンレス
製造炉、チタン製造炉、シリコン製造炉等に広く
利用でき、極めて有効である。すなわち、この発
明は、外部から液体窒素の供給を受けた貯蔵する
液体窒素タンクからアルゴン蒸留装置へ液体窒素
を寒冷として導入するため、高価な膨脹タービン
を用いる必要がなく、したがつて、アルゴン蒸留
装置系列の設備費を節約でき、また故障のない安
定運転を実現できるようになる。しかも、冷却器
によつて冷却された不純アルゴンガスの一部を酸
化装置の上流側に戻し、酸化装置に導入される不
純アルゴンガスと混合するため、不純アルゴンガ
ス中に含まれる可燃性成分の燃焼熱による酸化装
置の過熱が、上記冷却アルゴンガスの冷熱により
防止され、酸化装置の故障の発生や短寿命化が防
止されるようになる。
As described above, the present invention utilizes the cold heat of high-purity liquefied argon supplied to the furnace to liquefy and recover the argon gas after use as a furnace atmosphere gas, without releasing it into the atmosphere, and further enables recycling. It is extremely effective and can be widely used in semiconductor single crystal manufacturing furnaces, stainless steel manufacturing furnaces, titanium manufacturing furnaces, silicon manufacturing furnaces, etc. That is, the present invention introduces liquid nitrogen as a cold liquid into the argon distillation apparatus from a storage liquid nitrogen tank supplied with liquid nitrogen from the outside, so there is no need to use an expensive expansion turbine. Equipment costs for the equipment series can be saved, and stable operation without failures can be realized. Moreover, since a part of the impure argon gas cooled by the cooler is returned to the upstream side of the oxidizer and mixed with the impure argon gas introduced into the oxidizer, combustible components contained in the impure argon gas are removed. Overheating of the oxidizer due to combustion heat is prevented by the cold heat of the cooling argon gas, and failures and shortened life of the oxidizer are prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例をフレーシート化し
て示す説明図である。 1……回収アルゴンガス供給管、2……酸素供
給管、3……酸化筒、4……第1冷却器、5……
循環ブロワ、6……第2冷却筒、7……冷凍ユニ
ツト、8,17,22……配管、9……水吸着
筒、10,13……アルゴン熱交換器、11,1
4,20……コンデンサ、12……二酸化炭素除
去筒、15……液化アルゴンガス供給管、16…
…高純アルゴンガス排出管、18……アルゴン蒸
留塔、19……デイボイラ、21……液化窒素貯
槽、23……再生用N2ヒータ、24……真空ポ
ンプ、25……ベントガス放出ライン、26……
液化アルゴン貯槽。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention in the form of a flysheet. 1... Recovered argon gas supply pipe, 2... Oxygen supply pipe, 3... Oxidation tube, 4... First cooler, 5...
Circulation blower, 6... Second cooling cylinder, 7... Refrigeration unit, 8, 17, 22... Piping, 9... Water adsorption cylinder, 10, 13... Argon heat exchanger, 11, 1
4, 20... Condenser, 12... Carbon dioxide removal cylinder, 15... Liquefied argon gas supply pipe, 16...
... High purity argon gas discharge pipe, 18 ... Argon distillation column, 19 ... Day boiler, 21 ... Liquefied nitrogen storage tank, 23 ... N 2 heater for regeneration, 24 ... Vacuum pump, 25 ... Vent gas discharge line, 26 ……
Liquefied argon storage tank.

Claims (1)

【特許請求の範囲】[Claims] 1 炉雰囲気ガスに使用後の不純アルゴンガスを
酸化装置に入れて酸素または空気と反応させ不純
アルゴンガス中に含有される可燃性成分を二酸化
炭素と水に変換した後、冷却器を用いて冷却し、
これを吸着筒に導入して吸着除去し、ついで吸着
除去後のアルゴンガスを高純度液化アルゴンと熱
交換させて冷却したのちアルゴン蒸溜装置に導入
し深冷液化分離して高純度化するアルゴン回収方
法であつて、外部から液体窒素の供給を受けて貯
蔵する液体窒素タンクからアルゴン蒸溜装置へ液
体窒素を寒冷として導入し、アルゴン蒸溜装置で
寒冷としての作用を終え気化生成した窒素ガスを
上記吸着筒に吸着剤の再生ガスとして導入すると
ともに、上記冷却器によつて冷却された不純アル
ゴンガスの一部を酸化装置の上流側に戻して酸化
装置に導入される不純アルゴンガスと混合するこ
とを特徴とするアルゴン回収方法。
1 Impure argon gas used as furnace atmosphere gas is put into an oxidizer and reacted with oxygen or air to convert flammable components contained in the impure argon gas into carbon dioxide and water, and then cooled using a cooler. death,
The argon gas is introduced into an adsorption column and removed by adsorption, and then the argon gas after adsorption and removal is cooled by heat exchange with high-purity liquefied argon, and then introduced into an argon distillation device where it is cryogenically liquefied and separated for high purity argon recovery. In this method, liquid nitrogen is introduced as cold from a liquid nitrogen tank that receives and stores liquid nitrogen from the outside into an argon distillation device, and the nitrogen gas that is vaporized and produced after its cooling effect in the argon distillation device is adsorbed as described above. In addition to introducing the impure argon gas into the cylinder as regeneration gas for the adsorbent, a part of the impure argon gas cooled by the cooler is returned to the upstream side of the oxidizer and mixed with the impure argon gas introduced into the oxidizer. Characteristic argon recovery method.
JP58076996A 1983-04-30 1983-04-30 Method of recovering argon Granted JPS59202381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58076996A JPS59202381A (en) 1983-04-30 1983-04-30 Method of recovering argon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58076996A JPS59202381A (en) 1983-04-30 1983-04-30 Method of recovering argon

Publications (2)

Publication Number Publication Date
JPS59202381A JPS59202381A (en) 1984-11-16
JPH0451753B2 true JPH0451753B2 (en) 1992-08-19

Family

ID=13621385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58076996A Granted JPS59202381A (en) 1983-04-30 1983-04-30 Method of recovering argon

Country Status (1)

Country Link
JP (1) JPS59202381A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3504368A1 (en) * 1985-02-08 1986-08-14 Hitachi, Ltd., Tokio/Tokyo METHOD AND DEVICE FOR PRODUCING INERT GAS
FR2917489A1 (en) * 2007-06-14 2008-12-19 Air Liquide METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF METHANE RICH FLOW

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243478A (en) * 1975-10-01 1977-04-05 Ibm Sample retainer for spectrophotometer
JPS5254679A (en) * 1975-10-31 1977-05-04 Nippon Oxygen Co Ltd Air separation by liquefaction
JPS5649319A (en) * 1972-07-31 1981-05-02 Lilly Co Eli Animal medicine composition
JPS5674578A (en) * 1979-11-21 1981-06-20 Hitachi Ltd Pretreatment method for adsorption tower unilizing cold of liquefied natural gas
JPS5946473A (en) * 1982-09-10 1984-03-15 共同酸素株式会社 Method of recovering argon for atmosphere in manufacturing furnace for single crystal for semiconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649319A (en) * 1972-07-31 1981-05-02 Lilly Co Eli Animal medicine composition
JPS5243478A (en) * 1975-10-01 1977-04-05 Ibm Sample retainer for spectrophotometer
JPS5254679A (en) * 1975-10-31 1977-05-04 Nippon Oxygen Co Ltd Air separation by liquefaction
JPS5674578A (en) * 1979-11-21 1981-06-20 Hitachi Ltd Pretreatment method for adsorption tower unilizing cold of liquefied natural gas
JPS5946473A (en) * 1982-09-10 1984-03-15 共同酸素株式会社 Method of recovering argon for atmosphere in manufacturing furnace for single crystal for semiconductor

Also Published As

Publication number Publication date
JPS59202381A (en) 1984-11-16

Similar Documents

Publication Publication Date Title
US3596471A (en) Process for recovering a mixture of krypton and xenon from air with argon stripper
JPH1151557A (en) Method and device for generating cryogenic liquefied industrial gas
JP2966999B2 (en) Ultra high purity nitrogen / oxygen production equipment
JPH0735470A (en) Method and device for manufacturing superhigh purity dinitrogen monoxide
JPH09318245A (en) High purity nitrogen manufacturing device and method therefor
US4384876A (en) Process for producing krypton and Xenon
JP2000088455A (en) Method and apparatus for recovering and refining argon
JPH0451753B2 (en)
JPH0412393B2 (en)
US3169845A (en) Method of and apparatus for producing high purity inert gases
CN116332139A (en) Argon recovery device integrating high-purity nitrogen and enhancing efficiency and application method thereof
JPS5939800A (en) Recovery of argon used for atmospheric gas of furnace for producing single crystal for semiconductor
WO2018020091A1 (en) Method and apparatus for scrubbing at cryogenic temperature in order to produce a mixture of hydrogen and nitrogen
JP3364724B2 (en) Method and apparatus for separating high purity argon
JP3328749B2 (en) Method and apparatus for liquefying gas containing low boiling impurities
JP2000180051A (en) Manufacture of ultrahigh purity nitrogen
JP3268193B2 (en) Method for producing shielded argon for welding from furnace exhaust gas
JP2647582B2 (en) How to generate electricity while producing carbon dioxide and inert gas
JP3297935B2 (en) Method and apparatus for separating high purity argon
JP3261137B2 (en) Ammonia recovery unit in gas soft nitriding unit
JPS5946473A (en) Method of recovering argon for atmosphere in manufacturing furnace for single crystal for semiconductor
JP2002274811A (en) Hydrogen preparation process and device used for the same
JP3467178B2 (en) Air separation equipment
JP3295816B2 (en) Ultra-high purity nitrogen production method and equipment
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank