JPS5935425B2 - heat resistant cast steel - Google Patents

heat resistant cast steel

Info

Publication number
JPS5935425B2
JPS5935425B2 JP9136981A JP9136981A JPS5935425B2 JP S5935425 B2 JPS5935425 B2 JP S5935425B2 JP 9136981 A JP9136981 A JP 9136981A JP 9136981 A JP9136981 A JP 9136981A JP S5935425 B2 JPS5935425 B2 JP S5935425B2
Authority
JP
Japan
Prior art keywords
cast steel
temperature
creep rupture
resistant cast
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9136981A
Other languages
Japanese (ja)
Other versions
JPS57116759A (en
Inventor
純一 杉谷
輝夫 葭本
誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP9136981A priority Critical patent/JPS5935425B2/en
Publication of JPS57116759A publication Critical patent/JPS57116759A/en
Publication of JPS5935425B2 publication Critical patent/JPS5935425B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は耐熱鋳鋼に関する。[Detailed description of the invention] The present invention relates to heat-resistant cast steel.

従来、石油化学工業におけるエチレンクラツキングチ
ューブ材として、NiおよびCrを含有した耐熱鋳鋼で
あるHK40材やHP材(いずれもASTM規格)が用
いられてきた。
Conventionally, HK40 material and HP material (both ASTM standards), which are heat-resistant cast steels containing Ni and Cr, have been used as ethylene cracking tube materials in the petrochemical industry.

近年操業の高温化に伴ない、高温域でのクリープ破断強
度の改善が要求され、この要求に応える材料としてNb
およびWを含むHP材が開発され、実用化されている。
しかしながら、最近操業条件の一そうの苛酷化に伴ない
、上記NbおよびW含有HP材よりも更に高温クリープ
破断強度の高い材料が要請されている。 本発明者等は
、上記要請に鑑み、Cr、Ni、NbおよびWを含む耐
熱鋳鋼を基本成分組成とし、高温特性に対する各種添加
元素の影響について詳細な研究を重ねた結果、Nおよび
Tiを特定量添加することにより、高温度、特に100
0℃を越える温度域における高温クリープ破断強度およ
び耐熱衝撃性などの高温特性を飛躍的に改善し得るとの
知見を得、本発明を完成するに到った。
In recent years, with the rise in operating temperatures, there has been a demand for improved creep rupture strength in high temperature ranges, and Nb is a material that meets this demand.
and HP materials containing W have been developed and put into practical use.
However, as operating conditions have recently become more severe, there has been a demand for materials with even higher high-temperature creep rupture strength than the above-mentioned Nb- and W-containing HP materials. In view of the above request, the present inventors have determined that N and Ti are the basic composition of heat-resistant cast steel containing Cr, Ni, Nb, and W, and as a result of detailed research on the effects of various additive elements on high-temperature properties. By adding a large amount, high temperature, especially 100
The present invention was completed based on the finding that high-temperature properties such as high-temperature creep rupture strength and thermal shock resistance in a temperature range exceeding 0°C can be dramatically improved.

すなわち、本発明は、C約083〜016%(重量予
、以下同じ)、Si約290%以下、Mn約200%以
下、Cr約20〜30%、Ni約30〜40係、Nb約
0.3〜165%、W約Q、5〜3.0%、N約000
4〜0015%、Ti約0204〜0015%、残部実
質的にFeより成る耐熱鋳鋼を提供する。 以下、本発
明鋳鋼の成分限定理由について詳しく説明する。なお、
以下の説明中、1%」はすべて「重量%Jである。 C
は、鋳鋼の鋳造性を良好にするほか、後記Nbとの共存
下に一次炭化物を形成し、クリープ破断強度を高めるの
に必要である。
That is, in the present invention, C is about 083 to 016% (by weight, the same applies hereinafter), Si is about 290% or less, Mn is about 200% or less, Cr is about 20 to 30%, Ni is about 30 to 40%, and Nb is about 0. 3-165%, W approx. Q, 5-3.0%, N approx. 000
Provided is a heat-resistant cast steel comprising approximately 4-0015% Ti, approximately 0204-0015% Ti, and the remainder substantially Fe. The reason for limiting the composition of the cast steel of the present invention will be explained in detail below. In addition,
In the following explanation, "1%" is all "wt% J.C
In addition to improving the castability of cast steel, Ni is necessary to form primary carbides in coexistence with Nb, which will be described later, and to increase creep rupture strength.

このために少くとも約043%を要する。C量の増加と
ともにクリープ破断強度も高くなるが、過度に多くなる
と二次炭化物が過剰に析出し、使用後の靭性低下が著し
くなるほか、溶接性も悪化するので、約096係を上限
きする。 Siは、溶製時の脱酸剤としての役割を有す
るほか、耐浸炭性の改善に有効な元素である。
This requires at least about 0.043%. Creep rupture strength also increases as the amount of C increases, but if it increases excessively, secondary carbides will precipitate excessively, resulting in a significant decrease in toughness after use and deterioration in weldability, so the upper limit should be approximately 096. . Si has a role as a deoxidizing agent during melting and is an element effective in improving carburization resistance.

たゾし、過剰に加えると、溶接性を損なうので、約、2
90%以下とする。 Mnは、上記Siと同様に脱酸剤
として機能するほか、溶鋼中の硫黄(S)を固定、無害
化する元素として有効であるが、あまり多く加えると耐
酸化性が低下するので、約200%を上限とする。
Adding too much will impair weldability, so add approximately 2
90% or less. Mn functions as a deoxidizing agent like the above-mentioned Si, and is also effective as an element that fixes and renders sulfur (S) in molten steel harmless. The upper limit is %.

Crは、後記Niとの共存下に、鋳鋼組織をすーステ
ナイト化し、高温強度や耐酸化性を高める効果を有する
。その効果はCrの増加とともに高められ、特に約10
00℃以上の高温度における強度、耐酸化性を十分なも
のとするには、約20頭以上加えられる。たゾし、あま
り多く加えると、使用後の靭性の低下が著しくなるので
、約30%を上限とする。Niは、上記のように、Cr
と共存して、鋳鋼をオーステナイト組織となし、組織を
安定化し、耐酸化性および高温強度等を高めるのに有効
な元素である。
Cr, in coexistence with Ni, which will be described later, has the effect of making the cast steel structure soustenitic and improving high-temperature strength and oxidation resistance. The effect is enhanced with increasing Cr, especially around 10
In order to obtain sufficient strength and oxidation resistance at high temperatures of 00°C or higher, approximately 20 or more heads are added. However, if too much is added, the toughness after use will be significantly reduced, so the upper limit is set at about 30%. As mentioned above, Ni is Cr
It is an effective element for forming cast steel into an austenitic structure, stabilizing the structure, and increasing oxidation resistance and high-temperature strength.

特に、約1000℃以上の高温域において良好な耐酸化
性および高温強度を発揮させるには、約30%以上の添
加を要する。Niの増加とともに上記両特性は向上する
が、約40%を越えても効果は飽和し、経済的に不利で
あるので、約40%を上限とする。Nbは、クリープ破
断強度および耐浸炭性を高める効果を有する。
In particular, in order to exhibit good oxidation resistance and high temperature strength in a high temperature range of about 1000° C. or higher, it is necessary to add about 30% or more. Both of the above properties improve as the Ni content increases, but the effect is saturated even if it exceeds about 40%, which is economically disadvantageous, so the upper limit is set at about 40%. Nb has the effect of increasing creep rupture strength and carburization resistance.

但し、この効果を得るには、少くとも約0.3%の添加
を要する。一方、過剰に加えると、却ってクリープ破断
強度が低下するので、約15%を上限とする。なお、N
bは通常不司避のTaを含む。TaはNbと同効元素で
あるので、Taを含む場合は、NbとTaの合計量が約
0.3〜1.5%であればよい。Wは、前記Nbとの組
合せにより高温強度の向上に寄与する。
However, to obtain this effect, it is necessary to add at least about 0.3%. On the other hand, if added in excess, the creep rupture strength will decrease, so the upper limit is set at about 15%. In addition, N
b usually contains unavoidable Ta. Since Ta is an element with the same effect as Nb, when Ta is included, the total amount of Nb and Ta should be about 0.3 to 1.5%. W contributes to improving high temperature strength in combination with Nb.

このために約0.5%以上加えられるが、多量に添加す
ると耐酸化性が損なわれるので約3.0%を上限とする
。Nは、固溶窒素の形態でオーステナイト相を安定化並
びに強化するとともに、Tiの窒化物あるいはCととも
に炭窒化物を形成し、該析出物の微細分散により結晶粒
を微細化し、かつその粒成長を阻止して高温強度や熱衝
撃特性の改善に寄与する。
For this purpose, about 0.5% or more is added, but if added in a large amount, oxidation resistance will be impaired, so the upper limit is about 3.0%. N stabilizes and strengthens the austenite phase in the form of solid solution nitrogen, forms carbonitrides with Ti nitrides or C, refines crystal grains by finely dispersing the precipitates, and improves grain growth. This contributes to improving high-temperature strength and thermal shock properties.

この効果を十分に得るためにN量は少くとも約0.04
%であるこさが望ましい。但し、多量に肌えると、窒化
物が過剰に析出し、また該窒化物の相大化を招き、却っ
て耐熱衝撃特性が劣化するので、好ましくは約0.15
%を上限とする。Tiは、前記のように炭化物、炭窒化
物として析出分散し、結晶粒界の強化、耐粒界割れ性の
向上により、高温におけるクリープ破断強度、熱衝撃特
性の顕著な改善をもたらし、更に長時間クリープ破断強
度の大幅な向上に寄与する。このために、約0.04%
以上とするのが好ましい。その添加量の増力口と共にク
リープ破断強度の向上が認められるが、多量に加えると
析出物の粗大化のほか、酸化物系介在物の増加を招き強
度かや\低下するので、好ましくは約0.15%を上限
きする。その他、P,S等の不純物は、この種の鋼に通
常許容される範囲内で存在してもかまわない。次に実施
例を挙げて本発明鋳鋼の高温特性について具体的に説明
する。実施例 高周波溶解炉(大気中)で各種成分の鋳鋼を溶製し、遠
心鋳造により鋳塊(外径136mmX肉厚20mm×長
さ500mm)を製造した。
In order to fully obtain this effect, the amount of N is at least about 0.04
% is desirable. However, if a large amount is applied, nitrides will precipitate excessively, leading to enlargement of the nitrides, which will actually deteriorate the thermal shock resistance, so it is preferably about 0.15
The upper limit is %. As mentioned above, Ti is precipitated and dispersed as carbides and carbonitrides, and by strengthening grain boundaries and improving resistance to intergranular cracking, it brings about significant improvements in creep rupture strength and thermal shock properties at high temperatures. Contributes to a significant improvement in time creep rupture strength. For this, approximately 0.04%
It is preferable to set it as above. An improvement in creep rupture strength is observed as the amount of addition increases, but adding a large amount causes coarsening of precipitates and an increase in oxide inclusions, resulting in a slight decrease in strength, so it is preferably about 0. .15% is the upper limit. In addition, impurities such as P and S may be present within the range normally allowed for this type of steel. Next, the high-temperature properties of the cast steel of the present invention will be specifically explained with reference to Examples. Example Cast steel of various components was melted in a high frequency melting furnace (in the atmosphere), and an ingot (outer diameter 136 mm x wall thickness 20 mm x length 500 mm) was produced by centrifugal casting.

各供試鋼の化学成分組成を第1表に示す。各鋳塊から試
験片を採取し、クリープ破断試,験および耐熱衝撃性試
験を行なった。クリープ破断試験はJISZ2272の
規定に準拠し、かつ(N温度1093荷重1.9kgf
/Mrrt2および(均温度850℃・荷重7.3kg
,fAm2の2通りの条件で行なった。
The chemical composition of each test steel is shown in Table 1. Test pieces were taken from each ingot and subjected to creep rupture tests and thermal shock resistance tests. The creep rupture test was conducted in accordance with the regulations of JIS Z2272, and (N temperature 1093 load 1.9 kgf)
/Mrrt2 and (uniform temperature 850℃・Load 7.3kg
, fAm2.

耐熱衝撃性試験は、第1図に示すような形状・寸法に調
製した試験片(厚さ8關)を用い、これを温度900℃
に加熱して30分間保持したのち水冷する操作を繰返し
、この操作を10回行なうどとlこ試片に発生したクラ
ツクの長さを測定した。耐熱衝撃性は該クラック長さが
5ytmに達したときの繰返し回数にて評価した。試験
結果を第2表に示す。なお、供試材/16.1〜4は、
NおよびTiを前記所定の範囲内で含有する本発明鋼、
All〜16は比較鋼である。比較鋼のうち、Allは
Nb,Wを含むHP材、Al2は、Tiを含まず、また
屑13〜16は、NおよびTiを含むが、その量が本発
明の規定する前記範囲から逸脱するものである。第2表
に示されるように、本発明鋼41〜4は、従来高温クリ
ープ破断強度がすぐれているとされているNbおよびW
含有HP材Allおよびその他の比較鋼にくらべ、すぐ
れた高温クリープ破断強度を備えている。
The thermal shock resistance test uses a test piece (8 inches thick) prepared in the shape and dimensions shown in Figure 1, and is heated to a temperature of 900°C.
The test piece was heated to 100 ml, held for 30 minutes, and then cooled with water. This process was repeated 10 times, and the length of the cracks that appeared on the sample was measured. Thermal shock resistance was evaluated by the number of repetitions when the crack length reached 5 ytm. The test results are shown in Table 2. In addition, sample materials /16.1 to 4 are as follows:
Steel of the present invention containing N and Ti within the predetermined range,
All-16 is comparative steel. Among the comparative steels, All is an HP material containing Nb and W, Al2 does not contain Ti, and scraps 13 to 16 contain N and Ti, but the amount thereof deviates from the range defined by the present invention. It is something. As shown in Table 2, steels 41 to 4 of the present invention contain Nb and W, which are conventionally known to have excellent high-temperature creep rupture strength.
It has superior high-temperature creep rupture strength compared to HP-containing material All and other comparative steels.

各比較鋼のように、N,Tiを欠くか、もしくはその量
に過不足があると、クリープラプチャニデータ面で劣る
。特に、本発明鋼は、850℃などの1000℃以下の
温度域よりも、1093℃などのように1000℃を越
える高温域において、一段とすぐれたクリープ破断特性
を示すことは注目すべきである。また、本発明鋼は、耐
熱衝撃特性Oこついても、NbおよびW含有HP材やそ
の他の比較鋼にくらべすぐれていることが認められる。
Like the comparative steels, if N and Ti are missing or there is an excess or deficiency in their amounts, the creep resistance is inferior. In particular, it is noteworthy that the steel of the present invention exhibits much better creep rupture properties in a high temperature range exceeding 1000°C, such as 1093°C, than in a temperature range below 1000°C, such as 850°C. Furthermore, it is recognized that the steel of the present invention is superior to Nb- and W-containing HP materials and other comparative steels, even if the thermal shock resistance is poor.

以上のように、本発明に係る耐熱鋳鋼は、従来のNbお
よびW含有HP材などよりもすぐれた高温特性、就中高
温クリープ破断強度および耐熱衝撃性を有し、石油化学
工業におけるエチレンクラツキングチューブや改質炉内
のりフオーマチューブとして、あるいは鉄鋼関連設備に
おけるハースロールやラジアントチューブなど、温度1
000℃を越える高温度で使用される各種設備部品の好
適な材刺として供することができる。
As described above, the heat-resistant cast steel according to the present invention has superior high-temperature properties, especially high-temperature creep rupture strength and thermal shock resistance, than conventional Nb- and W-containing HP materials, and is suitable for use in ethylene cracks in the petrochemical industry. Temperature 1
It can be used as a suitable material for various equipment parts used at high temperatures exceeding 000°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐熱衝撃性試験片の形状を示す説明図である。 FIG. 1 is an explanatory diagram showing the shape of a thermal shock resistance test piece.

Claims (1)

【特許請求の範囲】[Claims] 1 C0.3〜0.6%(重量%、以下同じ)、Si2
.0%以下、Mn2.0%以下、Cr20〜30%、N
i30〜4%、Nb0.3〜1.5%、W0.5〜3.
0%、N0.04〜0.15%、Ti0.04〜0.1
5%、残部実質的にFeよりなる耐熱鋳鋼。
1 C0.3-0.6% (weight%, same below), Si2
.. 0% or less, Mn 2.0% or less, Cr 20-30%, N
i30-4%, Nb0.3-1.5%, W0.5-3.
0%, N0.04-0.15%, Ti0.04-0.1
Heat-resistant cast steel consisting of 5% Fe and the remainder substantially Fe.
JP9136981A 1981-06-13 1981-06-13 heat resistant cast steel Expired JPS5935425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9136981A JPS5935425B2 (en) 1981-06-13 1981-06-13 heat resistant cast steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9136981A JPS5935425B2 (en) 1981-06-13 1981-06-13 heat resistant cast steel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP360381A Division JPS596908B2 (en) 1981-01-12 1981-01-12 heat resistant cast steel

Publications (2)

Publication Number Publication Date
JPS57116759A JPS57116759A (en) 1982-07-20
JPS5935425B2 true JPS5935425B2 (en) 1984-08-28

Family

ID=14024457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9136981A Expired JPS5935425B2 (en) 1981-06-13 1981-06-13 heat resistant cast steel

Country Status (1)

Country Link
JP (1) JPS5935425B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148640U (en) * 1986-03-12 1987-09-19

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03240930A (en) * 1990-02-16 1991-10-28 Kubota Corp Heat-resistant alloy excellent in carburizing resistance and weldability
JP5399000B2 (en) * 2008-04-17 2014-01-29 日産自動車株式会社 Heat-resistant cast steel jig material for vacuum carburizing heat treatment
FR3015527A1 (en) * 2013-12-23 2015-06-26 Air Liquide ALLOY WITH STABLE MICROSTRUCTURE FOR REFORMING TUBES

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148640U (en) * 1986-03-12 1987-09-19

Also Published As

Publication number Publication date
JPS57116759A (en) 1982-07-20

Similar Documents

Publication Publication Date Title
JPS6344814B2 (en)
JPS6142781B2 (en)
JPS5935425B2 (en) heat resistant cast steel
JPS5935424B2 (en) heat resistant cast steel
JPS61177352A (en) Heat resistant cast steel having superior elongation characteristic at room temperature
JPH0156138B2 (en)
JPS596910B2 (en) heat resistant cast steel
JPS596908B2 (en) heat resistant cast steel
JPS6046353A (en) Heat resistant steel
JPS596907B2 (en) heat resistant cast steel
JPS596909B2 (en) heat resistant cast steel
JPS5935984B2 (en) heat resistant cast steel
JPS6142779B2 (en)
JPS5935426B2 (en) heat resistant cast steel
JPS5935428B2 (en) heat resistant cast steel
JPS6142782B2 (en)
JPH05230601A (en) Heat resistant cast steel high in creep rupture strength
JPS5935985B2 (en) heat resistant cast steel
JPS5964752A (en) Austenitic steel excellent in weldability and high- temperature strength
JPS5935429B2 (en) heat resistant cast steel
JPS625224B2 (en)
JPS6142780B2 (en)
JPH0135064B2 (en)
JPS6138256B2 (en)
JPS5864361A (en) Heat resistant cast steel