JPS5935429B2 - heat resistant cast steel - Google Patents

heat resistant cast steel

Info

Publication number
JPS5935429B2
JPS5935429B2 JP9137081A JP9137081A JPS5935429B2 JP S5935429 B2 JPS5935429 B2 JP S5935429B2 JP 9137081 A JP9137081 A JP 9137081A JP 9137081 A JP9137081 A JP 9137081A JP S5935429 B2 JPS5935429 B2 JP S5935429B2
Authority
JP
Japan
Prior art keywords
cast steel
creep rupture
strength
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9137081A
Other languages
Japanese (ja)
Other versions
JPS57116763A (en
Inventor
純一 杉谷
輝夫 葭本
誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP9137081A priority Critical patent/JPS5935429B2/en
Publication of JPS57116763A publication Critical patent/JPS57116763A/en
Publication of JPS5935429B2 publication Critical patent/JPS5935429B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 本発明は、耐熱鋳鋼に関する。[Detailed description of the invention] The present invention relates to heat-resistant cast steel.

従来、石油化学工業におけるエチレンクラツキングチ
ューブ材として、NiおよびCrを含有した耐熱鋳鋼で
あるKH40材やHP材(いづれもASTM規格)が用
いられてきた。
BACKGROUND ART Conventionally, KH40 material and HP material (both meet ASTM standards), which are heat-resistant cast steels containing Ni and Cr, have been used as ethylene cracking tube materials in the petrochemical industry.

近年操業の高温化に伴ない、高温域でのクリープ破断強
度の改善が要求され、この要求に応える材料としてNb
およびWを含むHP材が開発され、実用化されている。
しかしながら、最近操業条件の一そうの苛酷化に伴ない
、上記NbおよびW含有HP材よりも更に高温クリープ
破断強度の高い材料が要請されている。 本発明者等は
、上記要請に鑑み、Cr、Ni、NbおよびWを含む耐
熱鋳鋼を基本成分組成とし、高温特性に対する各種添加
元素の影響について詳細な研究を重ねた結果、N、Ti
とともにA7またはBのいずれか一方を特定量複合的に
添加することにより、高温度、詩に1000℃を越える
温度域における高温クリープ破断強度および耐熱衝撃性
などの高温特性を飛躍的に改善し得るとの知見を得て本
発明を完成するに到った。
In recent years, with the rise in operating temperatures, there has been a demand for improved creep rupture strength in high temperature ranges, and Nb is a material that meets this demand.
and HP materials containing W have been developed and put into practical use.
However, as operating conditions have recently become more severe, there has been a demand for materials with even higher high-temperature creep rupture strength than the above-mentioned Nb- and W-containing HP materials. In view of the above request, the present inventors made a heat-resistant cast steel containing Cr, Ni, Nb, and W as a basic composition, and as a result of detailed research on the effects of various additive elements on high-temperature properties, they found that N, Ti,
By adding a specific amount of either A7 or B in combination, it is possible to dramatically improve high-temperature properties such as high-temperature creep rupture strength and thermal shock resistance at high temperatures, particularly in the temperature range exceeding 1000°C. Based on this knowledge, we have completed the present invention.

すなわち、本発明は、C約0.3〜096%(重量予
、以下同じ)、Si約200%以下、Mn約200%以
下、Cr約20〜30%、Ni約30〜40%、Nb約
093〜145%、W約0.5〜390%、N約000
4〜0215%、Ti約0704〜0515%、および
l■約0002〜0807%、B約0.0002〜0.
004%のいづれか一種、残部実質的にFeより成る耐
熱鋳鋼を提供する。
That is, the present invention uses C approximately 0.3 to 096% (by weight, the same applies hereinafter), Si approximately 200% or less, Mn approximately 200% or less, Cr approximately 20 to 30%, Ni approximately 30 to 40%, Nb approximately 093~145%, W approx. 0.5~390%, N approx. 000
4-0215%, Ti about 0704-0515%, and l■ about 0002-0807%, B about 0.0002-0.
The present invention provides a heat-resistant cast steel consisting of any one of 0.004% and the remainder substantially of Fe.

以下、本発明鋳鋼の成分限定理由について詳しく説明
する。
The reason for limiting the composition of the cast steel of the present invention will be explained in detail below.

なお、以下の説明中、1%」はすべて「重量%」である
。 Cは、鋳鋼の鋳造性を良好にするほか、後記Nbと
の共存下に一次炭化物を形成し、クリープ破断強度を高
めるのに必要である。
In addition, in the following description, all "1%" means "weight %." In addition to improving the castability of cast steel, C is necessary to form primary carbides in coexistence with Nb, which will be described later, and to increase creep rupture strength.

このために少くとも約083%を要する。C量の増加と
ともにクリープ破断強度も高くなるが、過度に多くなる
と二次炭化物が過剰に析出し、使用後の靭性低下が著し
くなるほか、溶接性も悪化するので、約0.6楚を上限
とする。 Siは、溶製時の脱酸剤としての役割を有す
るほか、耐浸炭性の改善に有効な元素である。
This requires at least about 0.083%. Creep rupture strength also increases as the amount of C increases, but if the amount is excessive, secondary carbides will precipitate excessively, resulting in a significant decrease in toughness after use and deterioration of weldability, so the upper limit is approximately 0.6 so. shall be. Si has a role as a deoxidizing agent during melting and is an element effective in improving carburization resistance.

たゾし、過剰に加えると、溶接性を損なうので、約29
0%以下とする。Mnは、上記Siと同様に脱酸剤とし
て機能するほか、溶鋼中の硫黄(S}=P固定・無害化
する元素として有効であるが、あまり多く加えると耐酸
化性が低下するので、約2.0%を上限とする。
If added in excess, weldability will be impaired, so add approximately 29
0% or less. Mn functions as a deoxidizing agent like the above-mentioned Si, and is also effective as an element for fixing and rendering harmless sulfur (S}=P in molten steel. However, if too much is added, the oxidation resistance will decrease, so approximately The upper limit is 2.0%.

Crは、後記Niとの共存下に、鋳鋼組織をオーステナ
イト化し、高温強度や耐酸化性を高める効果を有する。
その効果はCrの増加とともに高められ、特に約100
0℃以上の高温度における強度、耐酸化性を十分なもの
とするには、約20%以上加えられる。たゾし、あまり
多く加えると、使用後の靭性の低下が著しくなるので、
約30%を上限とする。Niは、上記のように、Crと
共存して、鋳鋼をオーステナイト組織となし、組織を安
定化し、耐酸化性および高温強度等を高めるのに有効な
元素である。
Cr, in coexistence with Ni described below, has the effect of austenitizing the cast steel structure and improving high-temperature strength and oxidation resistance.
The effect increases with increasing Cr, especially around 100
In order to obtain sufficient strength and oxidation resistance at high temperatures of 0° C. or higher, approximately 20% or more is added. However, if too much is added, the toughness will decrease significantly after use.
The upper limit is approximately 30%. As mentioned above, Ni is an effective element for coexisting with Cr to form an austenitic structure in cast steel, stabilizing the structure, and increasing oxidation resistance, high-temperature strength, and the like.

特に、約1000℃以上の高温域において良好な耐酸化
性および高温強度を発揮させるには、約30%以上の添
加を要する。Niの増加とともに上記両特性は向上する
が、約40%を越えても効果は飽和し、経済的に不利で
あるので、約40%を上限とする。Nbは、クリープ破
断強度および耐浸炭性を高める効果を有する。
In particular, in order to exhibit good oxidation resistance and high temperature strength in a high temperature range of about 1000° C. or higher, it is necessary to add about 30% or more. Both of the above properties improve as the Ni content increases, but the effect is saturated even if it exceeds about 40%, which is economically disadvantageous, so the upper limit is set at about 40%. Nb has the effect of increasing creep rupture strength and carburization resistance.

但し、この効果を得るには、少くとも約0.3%の添加
を要する。一方、過剰に加えると、却ってクリープ破断
強度が低下するので、約1.5%を上限とする。なお、
Nbは通常不司避のTaを含む。TaはNbと同効元素
であるので、Taを含む場合は、NbとTaの合計量が
約0.3〜1.5%であればよい。Wは、前記Nbとの
組合せにより高温強度の向上に寄与する。
However, to obtain this effect, it is necessary to add at least about 0.3%. On the other hand, if added in excess, the creep rupture strength will decrease, so the upper limit is set at about 1.5%. In addition,
Nb usually contains unavoidable Ta. Since Ta is an element with the same effect as Nb, when Ta is included, the total amount of Nb and Ta should be about 0.3 to 1.5%. W contributes to improving high temperature strength in combination with Nb.

このために約0.5%以上加えられるが、多量に添加す
ると耐酸化性が損なわれるので約3.0%を上限とする
。本発明鋼は、上記諸元素に加えて、NおよびTiとと
もCこA7またはBのいずれか一種を複合的に含有する
点に最犬の特徴を有する。
For this purpose, it is added in an amount of about 0.5% or more, but if added in a large amount, oxidation resistance is impaired, so the upper limit is set at about 3.0%. The steel of the present invention has the most unique feature in that, in addition to the above-mentioned elements, it contains any one of C, A7, and B in combination with N and Ti.

これら元素の複合添加によって高温特性の飛躍的改善が
達成され、いずれか1つの元素を欠いてもその効果は得
られない。すなわち、Tiは鋼中のC,Nと炭窒化物を
形成し、BまたはAlはこれら化合物を微細に分散させ
るとともに結晶粒界を強化し、耐粒界割れ性を高めるこ
とにより、高温強度、特にクリープ破断強度、あるいは
高温熱衝撃特性、長時間クリープ破断強度等の顕著な改
善効果をもたらす。Nは、固溶窒素の形態でオーステナ
イト相を安定化並びに強化するとともに、Ti等と窒化
物を形成し、前記のようにAA?またはBとの共存下に
微細分散することζこより結晶粒を微細化し、かつその
粒成長を阻止して高温強度や熱衝撃特性の改善に寄与す
る。
A dramatic improvement in high-temperature properties is achieved by the combined addition of these elements, and the effect cannot be obtained even if any one element is missing. That is, Ti forms carbonitrides with C and N in steel, and B or Al finely disperses these compounds and strengthens grain boundaries, increasing intergranular cracking resistance, thereby improving high-temperature strength and In particular, it brings about a remarkable improvement effect on creep rupture strength, high-temperature thermal shock properties, long-term creep rupture strength, etc. N stabilizes and strengthens the austenite phase in the form of solid solution nitrogen, and also forms nitrides with Ti and the like, and as mentioned above, AA? Alternatively, fine dispersion in coexistence with B makes crystal grains finer and prevents grain growth, contributing to improvement of high temperature strength and thermal shock properties.

この効果を十分に得るためのN量は少くとも約0.04
%であることが望ましい。但し、多量に加えると、窒化
物が過剰に析出し、また該窒化物の阻大化を招き、却っ
て耐熱衝撃特性が劣化するので、好ましくは約0.15
%を上限とする。Tiは、上記効果を発揮させるために
、約0.04%以上とするのが好ましい。
The amount of N to fully obtain this effect is at least about 0.04
% is desirable. However, if it is added in a large amount, nitrides will precipitate excessively and the nitrides will become bulky, which will actually deteriorate the thermal shock resistance, so it is preferably about 0.15%.
The upper limit is %. In order to exhibit the above-mentioned effects, Ti is preferably about 0.04% or more.

その添加量の増加と共にクリープ破断強度の向上が認め
られるが、多量に加えると析出物の阻大化のほか、酸化
物系介在物の増加を招き強度かや\低下するので、好ま
しくは約0.15%を上限とする。Alは、上記効果を
得るために約0.02%以上添加するのが好ましい。
Creep rupture strength is observed to improve as the amount added increases, but if added in a large amount, not only will precipitates become larger, but also oxide inclusions will increase, resulting in a decrease in strength, so it is preferably about 0. The upper limit is .15%. In order to obtain the above effects, it is preferable to add Al in an amount of about 0.02% or more.

添加量の増加とともに高温強度が増加するが、多量に加
えると却って強度低下を招くので、約0.07%を上限
とするのが好ましい。Bは、鋼の基地の結晶粒界を強化
するほか、前記Ti系析出物の粗大化を防止し、その微
細析出に寄与するとともに、析出後の凝集粗大化を遅ら
せることにより、クリープ破断強度の向上をもたらす。
The high-temperature strength increases as the amount added increases, but adding too much leads to a decrease in strength, so the upper limit is preferably about 0.07%. In addition to strengthening the grain boundaries of the steel base, B prevents the coarsening of the Ti-based precipitates and contributes to their fine precipitation, and also improves the creep rupture strength by delaying the coarsening of agglomerates after precipitation. bring improvement.

このために約0.0002%以上加えるのが望ましく、
一方多量Cこ加えても強度向上は進まず、また溶接性の
劣化を招くので、好ましくは約0.004%以下とする
。その他、F,S等の不純物は、この種の鋼に通常許容
される範囲内で存在してもかまわない。
For this reason, it is desirable to add about 0.0002% or more,
On the other hand, even if a large amount of C is added, the strength will not be improved and the weldability will deteriorate, so the content is preferably about 0.004% or less. In addition, impurities such as F and S may be present within the range normally allowed for this type of steel.

次に実施例を挙げて本発明鋳鋼の高温特性について具体
的に説明する。実施例 高周波溶解炉(大気中)で各種成分の鋳鋼を溶製し、遠
心鋳造により鋳塊(外径136miX肉厚20miX長
さ500mm)を製造した。
Next, the high-temperature properties of the cast steel of the present invention will be specifically explained with reference to Examples. Example Cast steel of various components was melted in a high frequency melting furnace (in the atmosphere), and an ingot (outer diameter 136 mi x wall thickness 20 mi x length 500 mm) was produced by centrifugal casting.

各供試鋼の化学成分組成を第1表に示す。各鋳塊から試
験片を採取し、クリープ破断試験および耐熱衝撃性試験
を行なった。クリープ破断試験はJISZ2272の規
定に準拠し、かつ(A履度1093℃・荷重1.9kg
fA77および(B膣度850重7.3kgf/一の2
通りの条件で行なった。
The chemical composition of each test steel is shown in Table 1. A test piece was taken from each ingot and subjected to a creep rupture test and a thermal shock resistance test. The creep rupture test was conducted in accordance with the regulations of JIS Z2272, and
fA77 and (B vaginal degree 850 weight 7.3kgf/1/2
This was done under normal conditions.

耐熱衝撃性試験は、第1図に示すような形状・寸法に調
製した試験片(厚さ8mm)を用い、これを温度900
℃に加熱して30分間保持したのち水冷する操作を繰返
し、この操作を10回行なうごとに試片に発生したクラ
ツクの長さを測定した。耐熱衝撃性は該クラツク長さが
5mmに達したときの繰返し回数にて評価した。試験結
果を第2表に示す。なお、供試材/I6l〜4は、N,
TiおよびAlまたはBの各元素すべてを、前記所定の
範囲内で含有する本発明鋼、/1611〜20は比較鋼
である。比較鋼のうち、AllはNb,Wを含むHP材
、A6l2〜14は、Ti,AAまたはBを含まず、ま
た痛15〜20は、N,TiおよびAlまたはBのいづ
れをも含むが、その量が本発明の規定する前記範囲から
逸脱するものである。第2表に示されるように、本発明
鋼1〜4は、従来高温クリープ破断強度が高いとされて
いるNbおよびW含有HP材All、その他の比較鋼に
くらべ、高温クリープ破断強度および耐熱衝撃性のいづ
れにもすぐれている。
The thermal shock resistance test uses a test piece (thickness: 8 mm) prepared in the shape and dimensions shown in Figure 1, and is heated to a temperature of 900 mm.
The operation of heating the specimen to 10° C., holding it for 30 minutes, and then cooling it with water was repeated, and the length of cracks generated in the specimen was measured every time this operation was performed 10 times. Thermal shock resistance was evaluated by the number of repetitions when the crack length reached 5 mm. The test results are shown in Table 2. In addition, the sample materials/I6l~4 are N,
Steels of the present invention containing all of the elements Ti and Al or B within the predetermined ranges, /1611 to 20 are comparative steels. Among the comparative steels, All is an HP material containing Nb and W, A6l2 to 14 do not contain Ti, AA or B, and A15 to 20 contain N, Ti and any of Al or B, but The amount thereof deviates from the above range defined by the present invention. As shown in Table 2, inventive steels 1 to 4 have higher high temperature creep rupture strength and thermal shock resistance than Nb and W containing HP materials All, which are conventionally known to have high high temperature creep rupture strength, and other comparative steels. Excellent in both sexes.

比較鋼のなかには、クリープ破断強度または耐熱衝撃性
のいづれかが高い値を有するものもあるが、総合的な評
価において本発明鋼に及ばない。特に、本発明鋼は、8
50℃などの1000℃以下の温度域よりも、1093
℃などのように1000℃を越える高温域において、一
段とすぐれたクリープ破断特性を示すことは注目すべき
である。以上のように、本発明に係る耐熱鋳鋼は、従来
のNbおよびW含有HP材などよりもすぐれた高温特性
、就中高温クリープ破断強度および耐熱衝撃性を有し、
石油化学工業におけるエチレンクラツキングチューブや
改質炉内のりフオーマチューブとして、あるいは鉄鋼関
連説備におけるハースロールやラジアントチューブなど
、温度1000゜Cを越える高温域で使用される各種設
備部品の好適な材料として供することができる。
Some comparative steels have high values for either creep rupture strength or thermal shock resistance, but they fall short of the steel of the present invention in comprehensive evaluation. In particular, the steel of the present invention has 8
1093 than the temperature range below 1000℃ such as 50℃
It is noteworthy that it shows even better creep rupture properties in a high temperature range exceeding 1000°C, such as . As described above, the heat-resistant cast steel according to the present invention has superior high-temperature properties, especially high-temperature creep rupture strength and thermal shock resistance, than conventional Nb- and W-containing HP materials,
Suitable for various equipment parts used in high temperature ranges exceeding 1000°C, such as ethylene cracking tubes in the petrochemical industry and reformer tubes in reforming furnaces, hearth rolls and radiant tubes in steel-related construction. It can be used as a material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐熱衝撃性試験片の形状を示す説明図である。 FIG. 1 is an explanatory diagram showing the shape of a thermal shock resistance test piece.

Claims (1)

【特許請求の範囲】[Claims] 1 C0.3〜0.6%(重量%、以下同じ)、Si2
.0%以下、Mn2.0%以下、Cr20〜30%、N
i30〜40%、Nb0.3〜1.5%、W0.5〜3
.0%、N0.04〜0.15%、Ti0.04〜0.
15%、およびAl0.02〜0.07%、B0.00
02〜0.004%のいづれか一種、残部実質的にFe
よりなる耐熱鋳鋼。
1 C0.3-0.6% (weight%, same below), Si2
.. 0% or less, Mn 2.0% or less, Cr 20-30%, N
i30~40%, Nb0.3~1.5%, W0.5~3
.. 0%, N0.04-0.15%, Ti0.04-0.
15%, and Al0.02-0.07%, B0.00
02 to 0.004%, the remainder being substantially Fe
Made of heat-resistant cast steel.
JP9137081A 1981-06-13 1981-06-13 heat resistant cast steel Expired JPS5935429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9137081A JPS5935429B2 (en) 1981-06-13 1981-06-13 heat resistant cast steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9137081A JPS5935429B2 (en) 1981-06-13 1981-06-13 heat resistant cast steel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP360381A Division JPS596908B2 (en) 1981-01-12 1981-01-12 heat resistant cast steel

Publications (2)

Publication Number Publication Date
JPS57116763A JPS57116763A (en) 1982-07-20
JPS5935429B2 true JPS5935429B2 (en) 1984-08-28

Family

ID=14024483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9137081A Expired JPS5935429B2 (en) 1981-06-13 1981-06-13 heat resistant cast steel

Country Status (1)

Country Link
JP (1) JPS5935429B2 (en)

Also Published As

Publication number Publication date
JPS57116763A (en) 1982-07-20

Similar Documents

Publication Publication Date Title
JPS6344814B2 (en)
JPS6142781B2 (en)
JPH02267240A (en) Heat-resistant alloy
JPS5935424B2 (en) heat resistant cast steel
JPH01152245A (en) Heat-resistant alloy having excellent carburizing resistance
JPS61177352A (en) Heat resistant cast steel having superior elongation characteristic at room temperature
JPS5864359A (en) Heat resistant cast steel
JPS596910B2 (en) heat resistant cast steel
JPS5935425B2 (en) heat resistant cast steel
JPS5935429B2 (en) heat resistant cast steel
JPS596908B2 (en) heat resistant cast steel
JPS596909B2 (en) heat resistant cast steel
JPS5935426B2 (en) heat resistant cast steel
JPS5935984B2 (en) heat resistant cast steel
JPS5864360A (en) Heat resistant cast steel
JPS5935428B2 (en) heat resistant cast steel
JPS5935430B2 (en) heat resistant cast steel
JPS596907B2 (en) heat resistant cast steel
JPS625224B2 (en)
JPS6138256B2 (en)
JPS6142779B2 (en)
JPH046242A (en) Heat-resistant cast steel
JPH01152246A (en) Two-layer centrifugal cast tube
JPS5935985B2 (en) heat resistant cast steel
JPS6142782B2 (en)