JPS5928597A - Method and apparatus for electroplating carbon electrode rod and carbon electrode rod - Google Patents

Method and apparatus for electroplating carbon electrode rod and carbon electrode rod

Info

Publication number
JPS5928597A
JPS5928597A JP13653982A JP13653982A JPS5928597A JP S5928597 A JPS5928597 A JP S5928597A JP 13653982 A JP13653982 A JP 13653982A JP 13653982 A JP13653982 A JP 13653982A JP S5928597 A JPS5928597 A JP S5928597A
Authority
JP
Japan
Prior art keywords
plating
carbon
rod
plated
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13653982A
Other languages
Japanese (ja)
Other versions
JPH0241598B2 (en
Inventor
Haruo Yasuda
安田 晴雄
Masao Imura
井村 征夫
Toshio Kojima
小嶋 俊雄
Akira Shiotani
塩谷 明
Takayuki Mizutani
水谷 孝行
Yasuro Iwai
岩井 康郎
Kunihiko Yoshida
吉田 国彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP13653982A priority Critical patent/JPS5928597A/en
Publication of JPS5928597A publication Critical patent/JPS5928597A/en
Publication of JPH0241598B2 publication Critical patent/JPH0241598B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a carbon electrode rod free from plating irregularity, by a method wherein plural plating units each of which comprises a hermetically closed container having an anode and a carbon rod being an object to be plated as a cathode are provided in parallel and respectively connected in series to supply a current in series. CONSTITUTION:In a hollow cylindrical container 1 used as the anode of a plating unit, a carbon rod 10 being an object to be plated having a shape similar to said container 1 is arranged so as to form a gap distance of usually about 1- 10mm. between the container 1 and the rod 10 and plural formed plating units are arranged in parallel. In this state, respective containers 1 are connected in series or in parallel by connecting pipes 3 so as to continuously flow a plating solution through the containers 1 in series from inflow ports 2. On the other hand, the containers 1 are connected to a power source 11 in series by wirings and a current is supplied to each container 1 in current density of 0.5-450A/dm<2>. In addition, the plating liquid is recirculated at a flow speed of 10-30m/ sec to form a plating film to the surface of each rod 10. By this method, the mutual irregularity in the plating amount of the rod 10 comes to 1/10 or less as compared with a conventional one and the error of a plating thickness can be limited within a range of + or -0.05mm..

Description

【発明の詳細な説明】 本発明は、炭素電極棒又は接地俸などのような製品の母
材である炭素焼結体又は黒鉛体の円柱状又は多角形状の
憧状物(以下、単に炭素棒という)の表面にメッキを均
一に施す電気メツキ方法及びその装置並びにこれらの方
法及びその装置により得られた炭素′電極棒に関するも
のである。
Detailed Description of the Invention The present invention relates to a cylindrical or polygonal shaped object (hereinafter simply a carbon rod) made of a carbon sintered body or a graphite body that is a base material of products such as a carbon electrode rod or a grounding rod. The present invention relates to an electroplating method and apparatus for uniformly applying plating to the surface of a carbon material, and a carbon electrode rod obtained by these methods and apparatus.

従来、炭素電極棒の表面にメッキを施す方法及び装置は
次の通りである。
Conventionally, the method and apparatus for plating the surface of a carbon electrode rod are as follows.

前記軍、極棒は通常、大量生産型のものであり、メッキ
時間は2〜′#時間におよぶため、そのメッキ方法及び
装置は必然的に一度に多数の飲素′Kttdl!棒を同
時にメッキする方法を採用せざるを得ながった。
The above-mentioned military poles are usually mass-produced, and the plating time is 2~'# hours, so the plating method and equipment necessarily require a large number of drinks at one time. We had no choice but to adopt a method of plating the rods at the same time.

従来方法はたとえは第1A図に示ずようなメッキ枠19
に10〜30本の炭素棒loをセットし、第2図に示す
如く、大きなメッキ俗@20中に多数のメッキ枠19を
浸漬し、導電性ブスバー23上で固定してメッキをする
方法である。そのためメッキ枠内ではそれぞれの炭素棒
は、I#X部2部上8並列に通電し、またそれぞれのメ
ッキ枠もブスバー28より並列通電されていた。
For example, the conventional method uses a plating frame 19 as shown in FIG. 1A.
10 to 30 carbon rods are set in the plate, and as shown in Fig. 2, a large number of plating frames 19 are immersed in a large plating container 20, and then fixed on a conductive bus bar 23 for plating. be. Therefore, within the plating frame, each of the carbon rods was energized 8 times in parallel above the I#X section 2, and each of the plating frames was also energized in parallel from the bus bar 28.

その結果、炭素電極%10に析出した金属メッキ量は一
つのメッキ枠においてはそれぞれ導電部19’と炭素棒
10との接点、メッキ浴槽2oでは導電性ブスバー28
とメッキ枠19との間の接点22の電気抵抗が均一にな
らないため、メッキ量が大きくばらついて、半均メッキ
量に対し極端にメッキの付かないもの或は他の2〜3倍
メッキ旭゛が付着するものがあった。このメッキ量のば
らつきを少くするために従来神々の対策がとられて来た
が、この接点においてはメッキ液の付着による汚れ、酸
化被膜、接触圧力の差などによる電気抵抗がばらつき、
その電気抵抗によるジュール熱によって温度が上昇する
と更にメッキ液等による接点腐蝕が加って更に加速され
るため、この電気抵抗を均一にする根本的な対策がない
まま今日に至っている。
As a result, the amount of metal plating deposited on the carbon electrode %10 is the contact point between the conductive part 19' and the carbon rod 10 in one plating frame, and the amount of metal plating deposited on the conductive bus bar 20 in the plating bath 2o.
Since the electrical resistance of the contact point 22 between the plated frame 19 and the plating frame 19 is not uniform, the amount of plating varies greatly, and some are extremely unplated compared to the semi-uniform plating amount, or are plated 2 to 3 times as much as others. There was something that stuck to it. Conventional countermeasures have been taken to reduce this variation in the amount of plating, but at these contacts, the electrical resistance varies due to dirt due to adhesion of plating solution, oxide film, and differences in contact pressure.
When the temperature rises due to Joule heat caused by the electrical resistance, corrosion of the contacts due to the plating liquid etc. is added and further accelerated, so to this day there has been no fundamental measure to make this electrical resistance uniform.

これは被メッキ体が、炭素電極棒にかさらす多量生産品
であるメッキ製品に関しては共通な課題であり、メッキ
法の品質管理上の大きな間親点になっている。
This is a common problem with mass-produced plated products in which the object to be plated is exposed to the carbon electrode rod, and is a major problem in quality control of the plating method.

更に炭素%枠棒の一端に凸部、他端に四部を有する接続
式炭素′#L極俸枠棒いては、上記メッキ猷のほらつき
に原因してメッキ膜の厚みにほらつきができる。この厚
みのはらつきは士Q、2mm位にも□達するため、この
接続式炭素′f4L極俸の枠棒時に凹凸部を嵌合させよ
うとしても完全嵌合が得られない。
Furthermore, in the case of a connected type carbon L pole frame rod having a convex portion at one end and four portions at the other end, the thickness of the plating film may fluctuate due to the flutter of the plating layer described above. This variation in thickness reaches as much as 2 mm, so even if you try to fit the concave and convex portions into the frame rod of this connection type carbon 'f4L pole, you will not be able to get a complete fit.

このため本発明者らは、先に実公昭55−1808’4
号で提案しているように、「接続式炭素電極棒の凹形部
に長い割溝」を設け、それによりメッキの厚み誤差を吸
収することにより解決した。然し乍ら、上記考案による
電極棒は長い間に亘って業界では好評を得ているが、欠
点としては嵌合時に接続部が拡がること及び割溝が設け
られているため強度が低下する点などがある。これら従
来の解決手段に対してもメッキ後加工して厚み誤差をな
くす方法や割溝によらない方法も提案されている。
For this reason, the present inventors first proposed the
As proposed in the issue, the problem was solved by providing a long split groove in the concave part of the connected carbon electrode rod, thereby absorbing the plating thickness error. However, although the electrode rod according to the above invention has been well received in the industry for a long time, its drawbacks include that the connection part expands when mated and the strength is reduced due to the groove. . In response to these conventional solutions, methods have also been proposed in which the thickness error is eliminated by processing after plating, and methods that do not involve grooves.

しかしながらこれらの従来方法は未だ完全なものになっ
ていない。これら従来法の欠点は何れも並列通電による
メッキ量のほらつきに起因するものである。
However, these conventional methods have not yet been perfected. The drawbacks of these conventional methods are all due to fluctuations in the amount of plating due to parallel energization.

これに対して本発明は従来の並列通電によるメツキ一方
法に替えて直列通電によるメッキ方法及び装置を提案し
、これらによってメッキはらつきの少い炭素電極棒をう
るものである。
In view of this, the present invention proposes a plating method and apparatus using series energization instead of the conventional plating method using parallel energization, and by these methods, a carbon electrode rod with less plating unevenness can be obtained.

実際にこの直列通電方式が発明されなかったのは、従来
法の多量同時生産方式における大きなメツキ浴槽中での
同時メッキ方式からは、直列通電することは不可能であ
ったことに起因している。
In fact, the reason why this series energization method was not invented was that it was impossible to conduct series energization using the simultaneous plating method in a large plating bath in the conventional high-volume simultaneous production method. .

これらの欠点を解決するため、本怪明者らは、大きなメ
ッキ浴槽の代りに陽極と被メッキ体である炭素棒を陰極
とした単位毎の密閉容器より成るメツキュニットを多数
並設させることとし、このメツキュニットを夫々電気的
に直列に接続する方法を瑠想した。
In order to solve these drawbacks, the inventors decided to install a large number of metsukunits in parallel, each consisting of a sealed container for each unit, with an anode and a carbon rod to be plated as a cathode, instead of a large plating bath. We devised a method of electrically connecting these metsukunits in series.

本発明のこの着想により、電極棒相互のメッキ量のばら
つきは、従来の1イ。以下になり電極棒のメッキ厚みの
誤差を±o、obmm以内におさめることができるよう
になった。
With this idea of the present invention, the variation in the amount of plating between electrode rods is reduced to one level compared to the conventional method. It became possible to keep the error in the plating thickness of the electrode rod within ±o, obmm.

更にユニットを密閉式にし、このユニットの陰極と陰極
である被メッキ物の炭素棒との間隔を1〜10馴の範囲
とし、一端に1JL解液の人口を他端、。
Furthermore, the unit was made into a closed type, and the distance between the cathode of this unit and the carbon rod of the object to be plated, which was the cathode, was set in the range of 1 to 10 mm, and the population of 1 JL solution was placed at one end, and the other end.

に出口を設けて電解液を高速に移動すれば、′r+L極
表面に生成する境界膜を破り、高スピードで金属イオン
の供給が口j能になり、電流密度を大きくすることがで
きることを新規に知見した。これにより、電流密度をQ
、 5 A/dm”がら最高45 OA/dm2まで取
れ、電流密度に応じてメッキ時間を大巾に短縮できるこ
とを新規に知見した。
We have discovered that if an outlet is provided at the top of the electrode and the electrolyte is moved at high speed, the boundary film formed on the surface of the r+L pole can be broken, metal ions can be supplied at high speed, and the current density can be increased. I found out. This reduces the current density to Q
, 5 A/dm'' to a maximum of 45 OA/dm2, and it was newly discovered that the plating time could be significantly shortened depending on the current density.

そCで本発明者等は、直列通電により雷1極棒の相互の
メッキ量のほらつきを減少させ、これに陽極の形状を陰
極である被メッキ体の炭素棒の外径と相似する形状とし
て、陽極と陰極とのIMj I#lをl〜lQmmの等
間隔に保つことによりメッキの厚み誤差を士Q、Q5m
mの範囲になるようメッキ膜を施すことができるように
なり、炭素電極棒の本体表面のメッキ膜を高精度で均一
に施すことができるようになった。接続式炭素電極棒の
凹凸部に施すメッキ法においても誤差の少ないメッキ膜
を施すことができ、完全触合のできる接続式炭素電極棒
を提供することができることを新規に知見した。
Therefore, the inventors of the present invention reduced the variation in the amount of plating between two lightning pole rods by series energization, and also changed the shape of the anode to be similar to the outer diameter of the carbon rod to be plated, which is the cathode. By keeping the IMj I#l between the anode and the cathode at equal intervals of l~lQmm, the plating thickness error can be reduced to Q, Q5m.
It has become possible to apply a plating film to a range of m, and it has become possible to apply a plating film uniformly with high precision on the surface of the main body of a carbon electrode rod. It has been newly discovered that a plating film with little error can be applied to the uneven parts of a connected carbon electrode rod, and that a connected carbon electrode rod that can be completely contacted can be provided.

また、電流密度は0.5〜4.50 A/dm2に応じ
流速を1cm〜30m/SeCとし、好ましくは30〜
45 OA7dm  、流速60cm〜80m/sec
にすれは、従来の方法に比較し電流密度が約10〜15
0倍となりメッキ所要時間を20分〜1分の如〈従来の
約”10〜14.。に短縮することかできるよ共にメッ
キに要するメッキ設備並びにメッキコストを著しく低減
することができ極めて効率がよく電気メッキする方法及
びその装置並びに、これによりメッキ誤差のきわめて少
ない接続式炭素tmsi棒を提供するものである。
Further, the current density is 0.5 to 4.50 A/dm2, and the flow rate is 1 cm to 30 m/SeC, preferably 30 to 30 m/SeC.
45 OA7dm, flow rate 60cm~80m/sec
Compared to the conventional method, the current density is about 10 to 15
0 times, the time required for plating can be shortened to 20 minutes to 1 minute (about 10 to 14 minutes compared to conventional methods). At the same time, the plating equipment required for plating and the plating cost can be significantly reduced, making it extremely efficient. The present invention provides a method and apparatus for electroplating, and a connected carbon TMSI rod with very little plating error.

本発明は少くとも陽極となる容器と、この容器内の一定
の間隔を隔てて装入された炭素棒よりなる陰極としての
被メッキ体との間にメッキ液を満し循環させるようにし
たメツキュニットのm&個を、機械的に直列又は並列に
連結し、かつ少くと。、1も−の電源に電気的に直列接
続し、前記メツキュニットの夫々に電流を直列に通じ、
電流密度を0.5〜450 A/dm  とし、メッキ
液の流速を1 cm〜80■秒として循環させ、メッキ
液の流速に対1心して電流を制御し、メツキュニット内
に装入した1゜炭素棒の表面にメッキ膜を形成すること
を特徴とする炭素W、 j!#Mのメッキ方法に関する
ものである。
The present invention provides a metsukunite device in which a plating solution is filled and circulated between at least a container serving as an anode and a body to be plated as a cathode made of carbon rods inserted at a fixed interval in the container. mechanically connected in series or parallel, and at least m & pieces of. , 1 are electrically connected in series to a power supply, and a current is passed in series to each of the metcunits,
The current density was set to 0.5 to 450 A/dm, the plating solution was circulated at a flow rate of 1 cm to 80 seconds, and the current was controlled relative to the flow rate of the plating solution. Carbon W, which is characterized by forming a plating film on the surface of the rod, j! This relates to the plating method of #M.

本発明の他の目的の−っは一端部は凸形を、他端部は凹
形をなし、一つの炭素電極棒の凸形部に、他の同形の炭
素′電極棒の凸形部を嵌合接続させることができる接続
式炭素電極棒において、少くとも@極を有する円筒形容
器内に炭素棒よりなる被メッキ体を装入し、陽極と陰極
としての被メッキ体との間隔を1〜19mmの範v++
ではけ等間隔に保持し、前記容器の1側に設けたメッキ
液装入口と他側に設けたメッキ液排出口との間にメッキ
液を流通させるようにし、かつ前記旬、枠棒の凸形部の
中間及び他側の凹形部の内方を基幹した複数個のメツキ
ュニットを機械的に直列又は並列に連結し、メッキ液を
直列又は並列に循環流通させるように、。
Another object of the present invention is that one end is convex and the other end is concave, and the convex part of one carbon electrode rod is connected to the convex part of another carbon electrode rod of the same shape. In a connectable carbon electrode rod that can be connected by fitting, a body to be plated made of a carbon rod is placed in a cylindrical container having at least an @ electrode, and the distance between the body to be plated as an anode and a cathode is set to 1. ~19mm range v++
The brushes are held at equal intervals so that the plating solution flows between the plating solution inlet provided on one side of the container and the plating solution outlet provided on the other side, and the protrusion of the frame bar is A plurality of mesh units located in the middle of the shaped part and inside the concave part on the other side are mechanically connected in series or in parallel, so that the plating solution is circulated in series or in parallel.

し、前記メツキュニットを電気的に電源に対して直列に
接紹;し電流密度を0.5〜45 OA/dm”とし、
メッキ液の流速をl cm〜alJIll/秒として循
環させ、メッキ液の流速に刈応して電流を制御し、メツ
キュニット内に装入した炭素棒の凸形部の先端部分1と
凹形部の内方部を残して部分的にメッキし、前記炭素棒
の凸形部の根本部分と、凹形部の周縁端部分に施される
メッキ膜は、その基部より先端又は内方に向けて手酌゛
のテーパーを市しているようメッキする炭素′#L極棒
の部分的電気メツキ方法を提供するにある。
and the metcunite is electrically connected in series with a power source; and the current density is set to 0.5 to 45 OA/dm,
The plating solution is circulated at a flow rate of l cm to alJIll/sec, and the current is controlled in response to the flow rate of the plating solution, and the tip portion 1 of the convex portion and the concave portion of the carbon rod inserted into the metcunite are connected. The inner part is partially plated, and the plating film applied to the base of the convex part and the peripheral edge of the concave part of the carbon rod is hand-plated from the base to the tip or inward. The object of the present invention is to provide a method for partially electroplating a carbon L pole rod with a tapered surface.

本発明の更に他の目的とするところは炭素棒とはば相似
する形状の陽極を有する容器であって、この容器は少く
とも被メッキ体である炭素棒を出し入れする開口部と、
その一端にはメッキ液の流入口と、その他端にはメッキ
液の流出口とを備え、かつ容器の複数個がそれぞれ直列
又は並列に8111械的に連結せられ、メッキ液が・直
列又は並列にl cm〜80m/秒の範囲の所定の流速
で循環するように構成し、被メッキ体である前記炭素棒
は′電源に対して電気的に直列接続され、電流密度が0
.51〜45 OA7dm  となるよう偶成したこと
を特徴とする戻素単枠棒のメッキ装置を提供するにある
Still another object of the present invention is to provide a container having an anode having a shape similar to that of the carbon rod, and the container has at least an opening for inserting and removing the carbon rod, which is an object to be plated;
One end thereof is provided with an inlet for the plating solution, and the other end is provided with an outlet for the plating solution, and a plurality of containers are mechanically connected in series or in parallel, respectively, and the plating solution is supplied in series or in parallel. The carbon rod, which is the body to be plated, is electrically connected in series with a power source, and the current density is 0.
.. To provide a plating device for a return element single frame bar, which is characterized in that the plating device is assembled to have an OA of 51 to 45 and an OA of 7 dm.

本発明の史に池の目的とする所は、メッキ1換の厚み誤
差か±0゜Q5m1nの範囲にある高精度のメッキを施
した炭素′酸枠棒を提供するにある。
The primary objective of the present invention is to provide a highly accurate plated carbon-acid frame rod with a thickness error within the range of ±0°Q5m1n.

本発明の更に他の目的とする所は一端部は凸形を、他端
部は凹形をなし、一つの炭素′電極棒の凹形部に、他の
同形の炭素寛&!俸の凸形部奮獣合接続させることがで
きる接続式炭素電極棒において、。
Yet another object of the present invention is that one end is convex and the other end is concave, and one carbon' electrode rod has a concave part and another carbon of the same shape has a concave shape. In the connectable carbon electrode rod, the convex part of the tube can be connected together.

前記凸形部の外表面の根本部分及び凹形部の内表面の周
縁端は、電fiI7i棒本体の外周表向と連続してテー
パー状の金用メッキ膜が形成されており、該電極棒の本
体外周表1n】のメッキ膜)Vみ及び前記凸形部の根本
部分と凹形部の周縁端部とのテーパー状のメッキ膜の基
部の厚みとが±0.051ffrnの誤差範囲にあるよ
う高精度のメッキ膜か施されて成る接続式炭素電極棒を
提供することにある。
A tapered gold plating film is formed on the base of the outer surface of the convex part and the peripheral edge of the inner surface of the concave part, and is continuous with the outer circumferential surface of the electrode fiI7i rod body. The thickness of the tapered plating film between the base of the convex portion and the peripheral edge of the concave portion is within an error range of ±0.051ffrn. The purpose of the present invention is to provide a connected carbon electrode rod which is coated with a high-precision plating film.

以下本発明のメッキ方法の原理を、、説明すると次の通
りである。
The principle of the plating method of the present invention will be explained below.

本発明のメッキ法を直列通電方式にすると被メ゛ツキ体
へのメッキ析出量が、い1れの仮メッキ体においても等
しく Ir出し、はらつきが著しく少なくなる。その理
由は次の辿りである。第8図及び第4図は各々のメツキ
ュニットを機械的に並列及び直列に連結し、各ユニット
の電極は電気的にIR列に接続した状態を示す図である
。第′8図に示すものはメツキュニラFが開放式であり
、第4図に示すものは密閉式である。これらの第8図及
び第4図においで、各々のメツキュニットのもつ電気抵
抗をR1,R2,−・、、Rnとし、抵抗R1+ R2
,+・・・、Rnを直列につないだときの合成抵抗をR
1直列に接続した両端の電圧をv1陽極陰極間に流れる
電流を1とするとオームの法則により、■−v/Rとな
る。しかし夫々の被メッキ体に流れる電流は直列接続の
ときは途中の漏洩がない限り皆同じである。
When the plating method of the present invention is applied in series, the amount of plating deposited on the body to be plated is the same for each temporarily plated body, and the variation is significantly reduced. The reason is as follows. FIGS. 8 and 4 are diagrams showing a state in which the respective metcunits are mechanically connected in parallel and in series, and the electrodes of each unit are electrically connected to the IR string. The one shown in Fig. '8 has an open type metsculinilla F, and the one shown in Fig. 4 has a closed type. In these figures 8 and 4, the electrical resistance of each metschunite is R1, R2, -..., Rn, and the resistance R1 + R2
, +..., R is the combined resistance when Rn is connected in series.
If the voltage across the two terminals connected in series is v1 and the current flowing between the anode and cathode is 1, then according to Ohm's law, -v/R. However, when connected in series, the current flowing through each object to be plated is the same unless there is leakage along the way.

即ち、夫々のメツキュニットの電気抵抗が異なる場合に
おいても、メツキュニットの夫々の端子の電圧をVl 
+ V2 + VB +・・・・とするとv−V、+V
2+V8− ・−+vn−IR□+IR2+lR8−・
−IRn−I(R1+R,十R8・・・拘、)−IRと
なる。即ちメツキュニットの夫々の端子の電圧は夫々の
電気抵抗に比例して異なった愉になるが、被メッキ体に
流れる電流1は一定であるから被メッキ体へのメッキ析
出量も等しくなる。
In other words, even if the electrical resistance of each metschunit is different, the voltage at each terminal of the metschnit is set to Vl.
+ V2 + VB +..., then v-V, +V
2+V8- ・-+vn-IR□+IR2+lR8-・
-IRn-I(R1+R, 10R8...K)-IR. That is, although the voltages at the respective terminals of the metcunit vary in proportion to their respective electrical resistances, since the current 1 flowing through the object to be plated is constant, the amount of plating deposited on the object to be plated is also equal.

従来の並列ms、方式を第5図の模式図で説明すると前
記同様メツキュニットの電気抵抗をRo。
The conventional parallel ms system will be explained using the schematic diagram in FIG.

R、R、・、・、Rnとすると、これらを第5図8 の如く並列に接続した場合RI I R21・・・、R
nを流れる電流をそれぞれ工□、■2.・・・、■n1
陽枠、陰極の両端子間の電圧をVとすると、91/ダ]
接続においては、メッキユニ゛ノドσ)爺ミ子σノ電1
+、と両側のtt EEとは共通であるから、V −R
□1、− R,I、 −R8I、−・・・−Rnlnと
なる。R□、R2,・・・、Rnを合成した抵抗をRS
RをfMlれるTt T?l’l、を工とすると、次σ
つようになる。
When R, R, . . . , Rn are connected in parallel as shown in Figure 5, RI I R21 . . . R
Process the current flowing through n, respectively □, ■2. ...,■n1
If the voltage between the positive frame and cathode terminals is V, then 91/da]
For connection, plating uniform node σ) grandchild σ node 1
+, and tt EE on both sides are common, so V −R
□1, -R,I, -R8I, -...-Rnln. The combined resistance of R□, R2,..., Rn is RS
Tt T? Let l'l be the factor, then σ
become stronger.

I−I、+I、+I、十・・・+I    V−RIp つまり工は設定電流であり、1□、12.・・・、1□
1は仮メッキ体(炭素棒)に流れる電流である力)ら設
定電流は被メッキ体に流れる電流の総本Jである。
I-I, +I, +I, 10...+I V-RIp In other words, 1 is the set current, 1□, 12. ..., 1□
1 is the current flowing through the temporarily plated body (carbon rod), and the set current is the total current J flowing through the body to be plated.

各−ニットの被メッキ体Gこ流れる′亀bitGよI、
−夙。
Each knitted body to be plated G flows 'tortoise bit G yo I,
- 夙.

メッキ量もこの電流に比例した析出量となる力)ら、夫
々の被メッキ体へのメッキ析出1しま夫々σ)メ゛ンキ
ュニットの電気抵抗によりばらつきを生ずるのである。
Since the amount of plating is proportional to this current, the amount of plating deposited on each object to be plated varies depending on the electrical resistance of the main unit.

よって前記の理由により、夫々の被メッキ体のメッキ析
出粗のばらつきを少くするには、複数個のメツキュニッ
トの電極を電気的に直列接続し、メッキ電流を各ユニッ
トで一定にすることか必要である。
Therefore, for the reasons mentioned above, in order to reduce the variation in the plating deposition roughness of each object to be plated, it is necessary to electrically connect multiple Metcunite electrodes in series and make the plating current constant for each unit. be.

しかしメツキュニット間の機械的接続即ちメッキ液の循
環配管は、直列、並列いずれでもよく、メッキ液の循環
量及び流速並びにメッキ液の液送圧力などが経済的であ
る方を選択すれはよい。
However, the mechanical connection between the metcunits, that is, the piping for circulating the plating solution, may be either series or parallel, and the one that is economical in terms of the circulation amount and flow rate of the plating solution, the plating solution delivery pressure, etc. may be selected.

@極は被メッキ体である炭素細か丸棒の他多角形、半丸
形等の形状であってもよく、炭素棒の外形に相似した形
であると均一な厚みのメッキ膜か得られる。
The @ electrode may be in the shape of a fine round carbon rod, which is the body to be plated, or may be polygonal, semicircular, etc. If the shape is similar to the outer shape of the carbon rod, a plated film of uniform thickness can be obtained.

さらに少くとも陽極となる部分をもった容器と炭素体よ
りなる陰極としての被メッキ体との間隔がほぼ等間隔に
保たれていることが車要であり、この間隔は1〜101
11111位に設定するのがよい。
Furthermore, it is essential that the distance between the container having at least a part that will become an anode and the body to be plated as a cathode made of carbon material be maintained at approximately equal intervals, and this interval should be between 1 and 101
It is best to set it to 11111th place.

この陽極と陰極との間隔は、後述するように電圧効率、
電流密度に応じたメッキ液の流速並びに流量、被メッキ
体の出入の難易さで、電気効率を経済性から総合的に定
められている。
The distance between this anode and cathode is determined by the voltage efficiency, as described later.
Electrical efficiency is determined comprehensively from an economic point of view, based on the flow rate and flow rate of the plating solution depending on the current density, and the difficulty of moving the object to be plated in and out.

メッキ膜の厚み誤差を±0.05mfn以内とするため
にはメツキュニットを電気的に直列配線して、被メッキ
体の相互のメッキの析出量をほらつきの少ないほぼ等し
い状態にする。陽極は被メッキ体の形状に相似形で、陽
極と陰極との間隔を1〜キ膜を形成することができる。
In order to keep the thickness error of the plating film within ±0.05 mfn, the metcunits are electrically wired in series so that the amounts of plating deposited on the objects to be plated are almost equal with less irregularity. The anode has a shape similar to that of the object to be plated, and the distance between the anode and the cathode can be 1 to 500 mm.

電流密度を0.5〜450 Vam  とし、メッキ液
の流速をI cm〜80■/抄として循環させ、メッキ
する場合、′電流V;度を大きくすれはする程、メッキ
時間は短縮され高速メッキが達成される。そして高速メ
ッキを達成するためには、メッキ液をできるだけ早く流
通させメッキに必要な金桝イメンを供給せねばならない
。第6図はメッキ液の流速と電流密度との関係を示した
ものである。メッキ液の流速と良好なメッキが得られる
電流密度ムとはメッキ浴槽の形式には関係なく、全く正
比例゛の相関関係がある。メッキ液は電流密度に対応し
て高速流通することが必要で、このために加用強制流通
が必要となる。
When plating is carried out by circulating the plating solution at a current density of 0.5 to 450 Vam and a flow rate of I cm to 80 cm/sheet, the higher the current V, the shorter the plating time and the faster the plating. is achieved. In order to achieve high-speed plating, the plating solution must be circulated as quickly as possible to supply the metal needed for plating. FIG. 6 shows the relationship between the flow rate of the plating solution and the current density. The flow rate of the plating solution and the current density at which good plating can be obtained are completely directly proportional, regardless of the type of plating bath. The plating solution needs to flow at a high speed in accordance with the current density, which requires forced flow.

本発明の方法を実施するに当り好ましい電流密度とメッ
キ液の流速及びこれに要するメッキ時間との関係を示す
と次のようである。
The preferred relationship between the current density, the flow rate of the plating solution, and the plating time required for carrying out the method of the present invention is as follows.

第1表 上記表から明らかなように高速メッキをするためには、
電流密度を30〜4501/dm  とし、これに対応
してメッキ液の流速を60〜3000 cyiseC。
Table 1 As is clear from the table above, in order to perform high-speed plating,
The current density was set to 30 to 4501/dm, and the flow rate of the plating solution was set to 60 to 3000 cyiseC.

好ましくは′ftL極間隔を2〜5 mm位の比較的狭
くし、メッキ液の流速を電流密度と対応しで、痛めるこ
とにより高速電気メッキがJ能となるのである。
Preferably, the distance between the 'ftL poles is relatively narrow, about 2 to 5 mm, and the flow rate of the plating solution is adjusted to match the current density, thereby making high-speed electroplating possible.

本発明において、1端邪に凸形部をもち、他端部に凹形
部を形成し、一つの炭素電極棒の門形部に他の同形の炭
素電極棒の凸形部を嵌合接続させて使用する接続式炭素
’[1極棒の電気メ゛ンキ方法においては、電気メツキ
膜の厚み誤差が±0.05ffLfl+となるような高
@度の電気メッキを施さないとその助合接続が不能又は
極めて困難となるおそれカミあり、陰極となる容体と陰
極となる被メ゛ツキ体との間隔を均等にする必要かある
In the present invention, one end has a convex portion and the other end has a concave portion, and the portal portion of one carbon electrode rod is connected by fitting the convex portion of another carbon electrode rod of the same shape. In the case of a single-pole electroplating method, unless a high degree of electroplating is applied so that the thickness error of the electroplated film is ±0.05ffLfl+, the auxiliary connection will be difficult. There is a risk that it will be impossible or extremely difficult to do so, and it is necessary to equalize the distance between the container that will serve as the cathode and the mated body that will serve as the cathode.

このために、炭素′電極棒が固形油1川である場合は、
容器の陽極となる部分は円筒状とし、陽極と陰極との間
隔を等間隔とすることにより島精曳σ〕電気メッキを施
すことができる。
For this reason, if the carbon'electrode is a solid oil,
By making the part of the container that becomes the anode cylindrical and making the distance between the anode and cathode equal, electroplating can be performed.

被メッキ体が単に円形断面の俸状体であるときは棒状体
の外周面の全面に亘り均一厚みのメッキ膜を施すことが
できる。しかし、本発明の他の目的の一つである接続式
炭素1!極棒を製造する場合は、炭素電極棒の1側の凸
形部の根本部分と他の凹形部の周縁端部とに部分的に施
すメッキ膜は前記凸形部の根本部分を凹形部の周縁端の
基部の厚み誤差が−t:0.05mmでありかつ、凸形
部の先端方向並びに凹形部の内端方向にゆくに従って、
膜1ψが薄くなってテーパー状となり、従って接続式電
極棒はその凸形部のテーパーと凹形部のテーパーと合せ
て両者が嵌合し易くなり、かつ一旦制合すると抜は難く
なる。これは炭素電極棒を茶器に挿入したとき、その凸
形部の根本部分及び凹形部の周縁端部にはメッキ液が滝
通し、凸形部の先端部及び凸形部の内方にはメッキ液が
流通し1(いように塞栓により密封することにより達成
され、炭素′に枠棒の凸形部の根本部と凹形部の周縁端
部とにテーパー状のメッキ膜ができるのである。この場
合、後述するように炭素電極棒の凸形部の根本部分及び
凹形部の周縁端部に被着したメッキ膜は凸形部の先端方
向及び凹形部の内方向にゆくに従って薄くなりテーパー
がつき凸形部と門形部が嵌合し易く、抜は爵くなるこれ
は主として電極間隔か遠くなるためである。
When the object to be plated is simply a bar-shaped object with a circular cross section, a plating film of uniform thickness can be applied over the entire outer peripheral surface of the rod-shaped object. However, one of the other objects of the present invention is the connected carbon 1! When manufacturing an electrode rod, a plating film that is partially applied to the root part of the convex part on one side of the carbon electrode rod and the peripheral edge of the other concave part makes the root part of the convex part concave. The thickness error at the base of the peripheral edge of the part is -t: 0.05 mm, and as it goes toward the tip of the convex part and the inner end of the concave part,
The membrane 1ψ becomes thinner and has a tapered shape, so that the connecting electrode rod has a tapered convex portion and a taper of its concave portion, making it easy for the two to fit together, and once fitted together, it becomes difficult to remove. This is because when a carbon electrode rod is inserted into a tea set, the plating solution flows through the base of the convex part and the peripheral edge of the concave part, and the plating liquid flows into the tip of the convex part and inside the convex part. As the plating solution flows through, a tapered plating film is formed on the carbon at the root of the convex part of the frame rod and the peripheral edge of the concave part. In this case, as will be described later, the plating film deposited on the base of the convex part and the peripheral edge of the concave part of the carbon electrode rod becomes thinner as it goes toward the tip of the convex part and inward of the concave part. The tapered part makes it easy for the convex part and the gate part to fit together, making it difficult to pull them out.This is mainly due to the distance between the electrodes.

本発明の目的とする接続式炭素電極棒の凸形部の外表面
及び凹形部の内表面の全部にメッキ膜を施すことは好ま
しくない。またメッキ1模を形成するのは電極棒の凸形
部の根本部分と門形部の周縁端部にのみ限定されねばな
らない。この理由は電極棒の凸形部の外表面と凹形部の
内表面の全部にメッキ膜があった場合は電極棒の消耗に
伴い、凸凹の接続部が高温にさらされて、メッキが溶は
出し、凸凹の間に間隙か生じ嵌合力かなくなり抜は易く
なるので好ましくないからである。また、逆近まで消耗
しても嵌合力は保持されるがしかしそれが強固に嵌合し
た場合でも炭素質の固有抵抗が高いので、赤熱し、酸化
消耗をして使用不ロ■能となる。炭素電極棒の接続は、
両者が同時に満足することか必要であり、凸形部の根本
部分と凹形部の周縁端部分に部分的にメッキ膜を設け、
かつ凸形部の先端部分と凹形部の内方部分はメッキせず
、炭素質のままとすると凸形部と凹形部とを接続した際
に、凸形部、凹形部の夫々のメッキ膜が嵌合すると同時
に凸形部、凹形部の夫々の炭素質部分が嵌合されるので
ある。上記凸凹部の基部に施したメッキ膜の嵌合は主と
して新旧の電極棒間に多量の電流を流す機能を持ち−、
上記凸凹部の先端又は内方のメッキを施さない部分の炭
素質チーツク一部の嵌合は、嵌合力を最後まで保持する
1機能を有するために必要とするものである。
It is not preferable to apply a plating film to the entire outer surface of the convex portion and the inner surface of the concave portion of the connected carbon electrode rod, which is the object of the present invention. Furthermore, the plating pattern must be limited only to the root portion of the convex portion of the electrode rod and the peripheral edge portion of the portal portion. The reason for this is that if there is a plating film on the entire outer surface of the convex part and the inner surface of the concave part of the electrode rod, as the electrode rod wears out, the concave and convex connection parts will be exposed to high temperatures and the plating will melt. This is undesirable since a gap is created between the protrusions and the protrusions, and the fitting force is lost, making it easy to pull out. In addition, the mating force is maintained even if it is worn to the reverse, but even if it is firmly fitted, the carbonaceous material has a high specific resistance, so it becomes red hot and becomes oxidized and worn out, making it unusable. . To connect the carbon electrode,
It is necessary to satisfy both conditions at the same time, so a plating film is partially provided on the root part of the convex part and the peripheral edge part of the concave part,
In addition, if the tip of the convex part and the inner part of the concave part are not plated and are made of carbon, when the convex part and the concave part are connected, each of the convex part and the concave part At the same time as the plating film is fitted, the carbonaceous portions of the convex and concave portions are also fitted. The fitting of the plating film applied to the base of the above-mentioned uneven parts mainly has the function of passing a large amount of current between the old and new electrode rods.
The engagement of a portion of the carbon cheek at the tip or inner part of the uneven portion which is not plated is necessary in order to maintain the fitting force to the end.

本発明に使用するメツキュニットは開放式の場合は加圧
強制流通によりメッキ液を高速流通することができない
ため電流落度0.5〜10 A/dm であり、メッキ
液の流速をl cm〜10 cm/秒の如く遅くシ、電
極間隙も5〜lQmmと広くしなG−1れはならず、メ
ッキ時間も1時間〜18時間を要し、高速メッキは期待
できない。従ってメツキュニラFは密閉容器中に被メッ
キ体である炭素棒を保持し、メッキ液を陽極と陰極との
間に強制高速流通ずるものでないと高速短時間メッキは
期待できない0 以下回向に基づいて本発明の方法及び袋側並びに得られ
る炭素電極棒の恰成及びメッキ膜の被着状況等の具体例
について密閉式メッキ法について説明する。
In the case of the open type metcunit used in the present invention, the plating solution cannot be circulated at high speed by pressurized forced circulation, so the current drop is 0.5 to 10 A/dm, and the flow rate of the plating solution is 1 cm to 10 A/dm. cm/sec, the electrode gap is as wide as 5 to 1Q mm, and the plating time is 1 to 18 hours, so high-speed plating cannot be expected. Therefore, with Metcunilla F, high-speed, short-time plating cannot be expected unless the carbon rod to be plated is held in a sealed container and the plating solution is forced to flow between the anode and cathode at high speed. The sealed plating method will be described with reference to specific examples of the method of the present invention, the bag side, the configuration of the resulting carbon electrode rod, and the state of plating film deposition.

まず、第7図は本発明の炭素′電極棒のメッキ方法に直
接使用する装置の主要部の概要を示す平面図である。
First, FIG. 7 is a plan view schematically showing the main parts of an apparatus directly used in the method of plating carbon electrode rods of the present invention.

」二記図向において、1はメツキュニットの陽極となる
中空円筒状の容器であり、この容器の内部は披メッキ体
である炭素棒とけは相似する中華円筒の形状をなしてい
る。
2. In the drawing, 1 is a hollow cylindrical container that serves as the anode of metcunite, and the inside of this container has the shape of a Chinese cylinder with similar shapes to the carbon rods that are plated.

即ち、上記の炭素棒が円柱状の丸棒である場合・には、
上記容器lは口の丸棒よりもやや大きな内径を有する円
筒状であって、メッキ液に対して不溶性の陽極となる導
電性金属部をもった容器であればよい。また炭素棒が例
えは4角形、8角形等の多角柱等から成る場合には上記
容器lは少くとも内径が上記炭素棒よりもやや大きな相
(1ツ形をなした形状であればよい。
That is, when the above carbon rod is a cylindrical round rod,
The container 1 may be a cylindrical container having an inner diameter slightly larger than the round bar at the mouth, and has a conductive metal part that serves as an anode insoluble in the plating solution. Further, when the carbon rod is made of a polygonal column such as a quadrangle or an octagon, the container 1 may have at least a shape with an inner diameter slightly larger than that of the carbon rod.

そして、上記円柱状物が例えは直径19 mtnの炭素
質から成る円柱状の電極棒である場合は、容器1の内径
は少くとも上記電極棒の直径19gmよりも2〜20朋
は大きく、容器1の中心部に上記電極棒が位置すれは容
器の内壁面と上記電極棒の表面との間隙距離が通常l〜
lQmm位になるように容器の大きさを設計すればよい
If the cylindrical object is, for example, a cylindrical electrode rod made of carbonaceous material with a diameter of 19 mtn, the inner diameter of the container 1 is at least 2 to 20 mm larger than the diameter of the electrode rod, which is 19 gm. When the electrode rod is located at the center of the container, the gap distance between the inner wall surface of the container and the surface of the electrode rod is usually l~
The size of the container may be designed to be about 1Qmm.

なお、上記電極間隙がl mm以下となるとメッキ液の
流通抵抗が大きくなり、液の送給ポンプ圧が太きなるた
め好ましくない。従って送給ポンプの容量も大きくしな
いと、所望とするメッキ液の流速が得られない。送給ポ
ンプ容量が大きくなるとエネルギーの消費が大きくなり
、工業的に不紅済である。
It should be noted that if the electrode gap is less than 1 mm, the flow resistance of the plating solution increases and the pressure of the solution pump increases, which is not preferable. Therefore, the desired flow rate of the plating solution cannot be obtained unless the capacity of the feed pump is also increased. As the capacity of the feed pump increases, energy consumption increases, which is industrially disadvantageous.

従って、上記寸法は電圧効率と被メッキ物表I11に境
界膜が発生しない範囲でかつこの間隙を流れるメッキ液
の流通抵抗が極端に晶くならない範囲で決定される。即
ち、゛電圧効率を左右するメッキ電圧はこの間隙の距離
に比例する液の電気抵抗部分と陰・陽画徐における界面
抵抗によるものの和で表わされる。従って、この間隙は
小さい方が液の電気抵抗による電圧降下は小さくなり電
圧効率がよくなる。また、界面抵抗も被メッキ物である
陰極或いは陽極表面の静止状態層と間隙中心部を流れる
高速のメッキ液の流速の速度勾配に対して反比例的な性
質を翁している。上記の電極間隙が大きいと液の流れが
6極の表向で層流になるため、6極の表面に形成される
境界膜が厚くなり、この境膜の厚みが大きくなるとその
境界膜又は層流内ではイオンの移動1ffl IJtが
小さくなり新しいイオンの供給が不足するために良好な
メッキかできなくなる。
Therefore, the above-mentioned dimensions are determined within a range in which a boundary film does not occur on the voltage efficiency and the plated object table I11, and in a range in which the flow resistance of the plating solution flowing through this gap does not become extremely crystallized. That is, the plating voltage, which influences voltage efficiency, is expressed as the sum of the electrical resistance of the liquid, which is proportional to the gap distance, and the interfacial resistance between the negative and positive areas. Therefore, the smaller the gap, the smaller the voltage drop due to the electrical resistance of the liquid, and the better the voltage efficiency. Furthermore, the interfacial resistance is inversely proportional to the velocity gradient of the high-speed plating solution flowing through the center of the gap between the stationary layer on the surface of the cathode or anode that is the object to be plated. If the above-mentioned electrode gap is large, the liquid flow becomes laminar on the surface of the hexapole, so the boundary film formed on the surface of the hexapole becomes thicker. In the flow, the ion movement 1ffl IJt becomes small and the supply of new ions becomes insufficient, making it impossible to perform good plating.

これに対して従来はメッキ速度を上げるためメッキ液中
に空気を吹き込んだり被メッキ物を動転揺動するなどし
てこの境界膜を破っていたがこの方法ではせいぜい2〜
8倍の高速化が限度であった。
In contrast, in the past, in order to increase the plating speed, this boundary film was broken by blowing air into the plating solution or by shaking the object to be plated.
The limit was an eight-fold increase in speed.

これに対して本発明は両極間のメッキ液の流速を1Cr
n〜80m/秒、好ましくは60 cm 〜30m/秒
の速度で移動させることにより両極表面と液流の間の速
度勾配を大きくし、両極表iTuに発生する層流域を非
′/itに薄くし、乱流状態でイオンの供給を豊冨にす
ることによりメッキの高ffi化を可能にできるのであ
る。
On the other hand, in the present invention, the flow rate of the plating solution between the two electrodes is set to 1Cr.
By moving at a speed of n ~ 80 m/s, preferably 60 cm ~ 30 m/s, the velocity gradient between the polar surfaces and the liquid flow is increased, and the laminar region generated at the polar surfaces iTu is thinned to non-'/it. However, by enriching the supply of ions in a turbulent flow state, it is possible to increase the ffi of plating.

一方、液の流速を高くすれはする程、乱流域か増して層
流域が減少するので境膜は小さくなり、メッキ電圧は小
さくなるか、逆に高速の液流を得るためには液の流通抵
抗が大となるため断1f+1檀に逆比例して高圧を要す
るようになり、動力費か増大し更に気蕾摘造を維持する
ことも困鄭となって来る。このために前記の間隙1〜1
0 rrrm程度及び30 cm 〜60 cm/’?
5以上30 m/I−以下の適当な流速のときが高速メ
ッキのために最も良好な結果を得ることができる条件と
なる。
On the other hand, the higher the liquid flow rate, the more the turbulent area increases and the laminar area decreases, resulting in a smaller boundary film and lower plating voltage, or conversely, in order to obtain a high-speed liquid flow, Since the resistance becomes large, a high pressure is required in inverse proportion to the cutting rate of 1f+1, which increases the power cost and makes it difficult to maintain air bud removal. For this purpose, the gap 1-1
About 0 rrrm and 30 cm to 60 cm/'?
A suitable flow rate of 5 to 30 m/I- is the condition under which the best results can be obtained for high-speed plating.

つまり本発明は被メッキ体と容器の内壁の形状とはほぼ
相似形であって、なるべく被メッキ体と容器内壁田1と
の間隙距離が小さくなり、かつ被メッキ体と容器内壁と
が接触することなく、シかもこれらの間隙を該メッキ溶
液が連続的に流シ)Jするスペース(電極間@)が十分
に大きく保たれているとメッキを短時間でかつ効率よく
施すことができるのである。
In other words, in the present invention, the shape of the object to be plated and the inner wall of the container are almost similar, the gap distance between the object to be plated and the inner wall of the container 1 is as small as possible, and the object to be plated and the inner wall of the container are in contact with each other. If the space (between the electrodes) in which the plating solution flows continuously through these gaps is kept sufficiently large, plating can be done in a short time and efficiently. .

従って、上記容器lは仮メッキ体である電極棒の形状及
び長さ又は直径などの寸法をこ相応した形状を考慮して
設計することが必要である。
Therefore, it is necessary to design the container 1 in consideration of the shape and dimensions such as length and diameter of the electrode rod, which is a temporarily plated body.

次に、このようにして形状と大きさか定まった容器を少
くとも2以上、妊ましくは5ないし20個位を第7図に
示すように並列的に配列する。
Next, at least two containers, preferably 5 to 20 containers whose shape and size have been determined in this manner are arranged in parallel as shown in FIG.

そしてこれら並列した複数個の容器lの先順位に配設さ
れた一つの容filの先端位置に該メッキ溶液の流入口
2を設け、かつこれら並列配置麹、シた複数の容′ff
rl内をメッキ溶液が連続して直列に流速するよう夫々
の容器lが連結管3によりそれぞれ適宜所定の位置で直
列又は並列に連結した一群の容器lを配設する。この連
結管を設ける適宜所定の位置はなるべく容器lの両端部
であることが好ましく、この両端のうち一端又は両端の
いずれもが容器本体と崩脱自在に係合されている態様に
おいては、それぞれの両端に係合する容器係合体4及び
5の位置であることが最適である。
Then, an inlet 2 for the plating solution is provided at the tip of one container fil arranged in the order of precedence among these plural containers 1 arranged in parallel.
A group of containers L are arranged in which each container L is connected in series or in parallel at an appropriate predetermined position by a connecting pipe 3 so that the plating solution flows continuously in series in RL. Preferably, the appropriate predetermined positions for providing this connecting pipe are at both ends of the container l, and in an embodiment in which one or both of these ends are releasably engaged with the container body, each The optimum position is for the container engaging bodies 4 and 5 to engage with both ends of the container engaging bodies 4 and 5.

その理由は、本発明のメッキ方法は電極が直列接続して
あり、その電極間隔が一定でかつ炭素棒と@極とが相似
形であり、該メッキ溶液が連続して複数個の容器内を一
定の流速で、かつどの容器の中のいずれの部分において
も均一に流動させることができるため、被メツキ体表面
のいずれの部分も高精度で均一に金属メッキし得るので
ある。
The reason for this is that in the plating method of the present invention, the electrodes are connected in series, the spacing between the electrodes is constant, and the carbon rod and the @ electrode are similar in shape, so that the plating solution is continuously passed through multiple containers. Since the flow can be made uniform at a constant flow rate in any part of any container, any part of the surface of the object to be plated can be metal-plated uniformly with high precision.

従って、上記メッキ溶液の流入口2はなるべく該容i1
の倫合体4又は5の一端部に設けることが団ましい。
Therefore, the inlet 2 of the plating solution should preferably have a volume i1
It is best to provide it at one end of the connecting body 4 or 5.

そして、前記容器係合体4及び5が容器本体1と係合す
る側面のほぼ中央部には被メッキ体である炭素棒を容器
1の中でほぼ中央部に配置させるための突出した支持体
6及び7をそれぞれ備えていることが望ましい。しかも
、上記支持体6及び7は電気メッキに必要な電流通路を
兼ね備えているものとする。
At approximately the center of the side surface where the container engaging bodies 4 and 5 engage with the container body 1, there is a protruding support 6 for arranging the carbon rod, which is the body to be plated, at approximately the center of the container 1. and 7, respectively. Furthermore, the supports 6 and 7 are assumed to have a current path necessary for electroplating.

■−M、L また、これらの並列されたμ数の容器lのそれぞれには
、そのほぼ両側部の装置に第8図及び第8A図に示すよ
うに11列に電流が流れる・ように電源11と直列接続
する口とが本発明の装置醒において重要な条件となる。
■-M, L In addition, in each of these μ-numbered containers L arranged in parallel, a power source is connected so that current flows in 11 rows to the devices on almost both sides as shown in FIGS. 8 and 8A. 11 and the port connected in series are important conditions in the device operation of the present invention.

このようにすれば、各m極間抵抗のばらつきに関係なく
電気的に直列に連結されている仮メッキ体に流れる電流
を一定にすることができ、従って被メッキ体ごとに均一
なメッキを施すことができるようになる。
In this way, the current flowing through the temporarily plated bodies electrically connected in series can be made constant regardless of variations in the resistance between each m electrode, and therefore uniform plating can be applied to each body to be plated. You will be able to do this.

これは従来のメッキ法のように複数個の炭素棒が電気的
に並列に接続されていると、曲事は各接点の接触抵抗が
全く同じになることがあり得ないから被メッキ体(炭素
棒)個々に流れる電流が異なるからである。その結果、
破メッキ体(炭素棒、)に移行する全組1以後メッキ量
と呼ふフにもバラツキが生ずる。これに対して本発明に
おいてはメッキ時間を25〜150分の1にもできるの
で、この分だけ設備容量的に見て直列に接続することが
可能になりメッキ量のバラツキを減少することができる
This is because when multiple carbon rods are electrically connected in parallel as in the conventional plating method, it is impossible for the contact resistance of each contact point to be exactly the same. (bar) This is because the current that flows individually is different. the result,
Variations also occur in the amount of plating after the entire set 1 is transferred to the broken plated body (carbon rod). On the other hand, in the present invention, the plating time can be reduced to 1/25 to 150 times, which makes it possible to connect in series in terms of equipment capacity and reduce variations in the amount of plating. .

一方、これらの並列された一部の他の後順位に。On the other hand, these were paralleled in some other subsequent order.

配設された容器1の一部、たとえはこの茶器の該係合体
4又は5のいずれかの側面部の位置にメッキ溶液の流出
口8を設ける必要がある。
It is necessary to provide an outlet 8 for the plating solution in a part of the container 1, for example, on the side surface of either the engaging body 4 or 5 of the tea utensil.

このようにしてatt成された本発明の装置において、
容器1の一端又は両端のいずれかの開口部IAより被メ
ッキ体である炭素棒を同容器1の内壁に被メッキ体10
(炭素棒)が接触しないように入れる。このとき、同容
器内のほぼ中央好ましくは被メ艮キ′体1oの表…1と
同容器1の内壁面のいずれの部分においても、これらの
間隙距離がたとえは1 ” 10 amO)%回内で均
等となるような位置に、上記被メッキ体が配置されるこ
とが望ましい。
In the device of the present invention constructed in this way,
The carbon rod to be plated is attached to the inner wall of the container 1 through the opening IA at one end or both ends of the container 1.
(Carbon rods) are inserted so that they do not touch each other. At this time, the gap distance between these parts is approximately at the center of the container, preferably at any part of the surface 1 of the plated body 1o and the inner wall surface of the container 1. It is desirable that the objects to be plated be placed at even positions within the plated area.

なお、上記被メッキ体を容器内に押入するに際しては、
第7A図に示すように仮メッキ体1oである炭素棒を予
めそれぞれの容器の配設された間隔と相応するよう並列
的に配置して保持した搬送板12を機械的に進退させ自
動的に供給すること゛ができる。
In addition, when pushing the above-mentioned object to be plated into the container,
As shown in FIG. 7A, the carbon rods, which are the temporary plated bodies 1o, are arranged in parallel and held in advance in a manner that corresponds to the distance between the respective containers. It is possible to supply.

そのためには、容″a1の少くとも一端又は両端は開口
しており、この開口部IAと係合体4又は5との間隙に
上記搬送板12に炭素棒の一端を支持した状態でC又は
Dの方向から平行移送されることが必要となる。
For this purpose, at least one end or both ends of the volume "a1" are opened, and one end of the carbon rod is supported on the conveying plate 12 in the gap between the opening IA and the engaging body 4 or 5. It is necessary to transport the material in parallel from the direction of .

そして、被メッキ体である炭素棒lOの一端を支持する
係合体4又は5のいずれかが容器方向に前後移動するこ
とによって行うこともできる。
It is also possible to perform this by moving either the engaging body 4 or 5, which supports one end of the carbon rod IO, which is the body to be plated, back and forth in the direction of the container.

このようにして容器内に挿入された被メツキ体表向に該
メッキ浴液である硫酸鉛と硫酸との混合水浴液、即ち最
も安価で本発明に満合したメッキ溶液をl cm〜3 
m/seeの述度で上記被メツキ体表向にゲ16実に接
触させつつ、連続的に移動させ、前記仮メッキ体表面に
該メッキ金桝イオンが多量に供給されるよう該メッキ浴
液の流入口2から流出口8の方向へ流動させるのである
。その結果、電流密度は0.5〜450 A7’dm 
 、 g1fi連1 cm〜3 Qm/sea 、高速
メッキを目的とする場合には′屯m密度30〜450 
A/dm  57fi流速60Crn〜30m/SeC
とするのがよい。そのため本発明によれば、・炭紫棒の
被メツキ体表面は低速のメッキ方法によるメッキ速度の
約25〜150倍の極めて高速のメッキも可能となり、
従ってメッキ所要時間は従来の約25〜150分の1の
短時間とすることができるので、メッキ設備費もそれに
相応して著しく安価に低減できる。
The plating bath solution, a mixed water bath solution of lead sulfate and sulfuric acid, that is, the cheapest plating solution that satisfies the present invention, is applied to the surface of the object to be plated inserted into the container at a rate of 1 cm to 3 cm.
The plating bath liquid is brought into contact with the surface of the object to be plated at a rate of m/see and continuously moved so that a large amount of the plating metal ions are supplied to the surface of the temporary plating object. The fluid is caused to flow from the inlet 2 to the outlet 8. As a result, the current density is 0.5-450 A7'dm
, g1fi series 1 cm ~ 3 Qm/sea, when aiming at high speed plating, 'ton m density 30 ~ 450
A/dm 57fi flow rate 60Crn~30m/SeC
It is better to Therefore, according to the present invention, the surface of the charcoal purple rod to be plated can be plated at an extremely high speed of approximately 25 to 150 times the plating speed of a low speed plating method.
Therefore, the time required for plating can be reduced to about 25 to 150 times that of the conventional method, and the cost of plating equipment can be correspondingly reduced significantly.

第9A図及び第9B図並びに第9C図、第9D図に示す
ものは、本発明のメッキ方法及び装置を使用し、て得ら
れた接続式炭素電極棒の町端部を断面として示した。第
9A図においてその1側端部に形成された凸形部10A
の根本部分10Bと、その他O1!I端邪に形成された
凹形部100の周縁内側端部10Dに夫々銅メッキ等の
メッキ膜L4Aと14Bとが若干のテーパーをもって形
成されている状態を示しである。
9A and 9B, as well as FIGS. 9C and 9D, are cross-sectional views of the edges of connected carbon electrode rods obtained using the plating method and apparatus of the present invention. Convex portion 10A formed at one end of FIG. 9A
Root part 10B and other O1! This figure shows a state in which plating films L4A and 14B, such as copper plating, are formed with a slight taper on the inner peripheral edge 10D of the concave portion 100 formed at the I-end.

第9B図に示すものは炭素電極棒1oの一側に設けた門
形部100の周縁内端部10Dを円筒状とし、凹形m1
ocのテーパ一部に対して若干の段部10Eを設けた実
施例を示すものである。
In the case shown in FIG. 9B, the inner end 10D of the periphery of the gate-shaped part 100 provided on one side of the carbon electrode rod 1o is cylindrical, and the concave shape m1
This shows an embodiment in which a slight stepped portion 10E is provided on a tapered portion of the oc.

第9C図に示すものは、凸形部10Aは根本部10Bま
で同じ傾斜であり、凹形部100は周縁端部1’ODを
円筒状とし、門形部のテーノく一部10(Eに対して若
干の段部IUEを設けた場合を7J<す。
In the one shown in FIG. 9C, the convex portion 10A has the same slope up to the root portion 10B, the concave portion 100 has a cylindrical peripheral end 1'OD, and the portal portion 10 (E) has a cylindrical peripheral end 1'OD. On the other hand, the case where some stepped portions IUE are provided is 7J<.

第9Dldに示すものは、凸形部10Aは根本部10B
まで同じ傾多)であり、凹形部toCは周縁端部10D
を外方に拡がる切落しを設け、凹形部100のテーパ一
部分がこの切落部につながっている場合を示す。実験に
よると、第9B図及び第9G図に示す段部を設けたもの
は、IRf′Al0Kを設けない第9A図、第9D図に
下すものよりも嵌り易く、抜は難い特徴があることか判
った。
In what is shown in the ninth Dld, the convex portion 10A is the base portion 10B.
(the same inclination up to), and the concave portion toC is the peripheral edge portion 10D.
A case is shown in which a cutout is provided that expands outward, and a portion of the taper of the concave portion 100 is connected to this cutout. According to experiments, the stepped portions shown in FIGS. 9B and 9G are easier to fit in and more difficult to remove than those shown in FIGS. 9A and 9D, which do not have IRf'Al0K. understood.

また、凸形gtoAの根本部分10Bに施されたメッキ
膜14Aの外径D0と凹形部100の周縁内側端部10
Dに施されたメッキ膜14Bの内径り、との間に次の関
係を満たず範囲が、最も好ましい、嵌合状態となる。
In addition, the outer diameter D0 of the plating film 14A applied to the root portion 10B of the convex gtoA and the inner peripheral edge 10 of the concave portion 100
The most preferable fitted state is the range where the following relationship is satisfied between the inner diameter of the plating film 14B applied to D and the inner diameter of the plating film 14B applied to D.

Δ、[)−DニーD2  とすると 0≦ΔDく帆10市 つまり凸形部の根本部分の外径D□と凹形部の周縁端部
の内径D2とは等しいか、それよりも0.IO朋以内D
りの方がD2より大きいのが望ましい。その理由は凸形
部10Aと凹形部100が嵌合した際、炭素質部の嵌合
とメッキ膜部の嵌合が前記に述べた如く、両者が同時に
満足しなけれはならないからである。嵌合は凸形部10
Aの非メッキ部分(炭素質部)と凹形部100の非メッ
キ部分が嵌合することにより炭素電極棒の機械的な結合
が完全かつ容易になる。一方凸形部10Aの根本部!・
・10Bのメッキ膜14Aと門形部1000周縁内側端
部RODのメッキ族14Bの獣舎においては、両者のメ
ッキ膜の厚さのばらつきが大きいとm記の条件を満足す
る口とが不可能となり嵌合が困難となる。前記外径D 
と内径り、との差ΔDが零よりも小さいと凸形部と凹形
部の基部0メツキ膜は接触しなくなり、ΔDがo、lo
mmより大きいと凹形部の中へ凸形部の根本部分まで嵌
合することが困難となるからである。よってRiJ記の
条件の中にメッキ膜の厚みをi′l71J御することに
より、わずかの押2.1込力で両者のメッキ膜が圧接と
同時に銅σ−)展延性により変形し丁度よい嵌合力を保
ち、人容屋の11を流を発熱することなく新電4i!l
!棒から旧電極棒へiff電する口とがiJ能となるの
である。
Δ, [)-D knee D2 If 0≦ΔD, then the outer diameter D□ of the base of the convex portion and the inner diameter D2 of the peripheral end of the concave portion are equal to or 0. IO Home D
It is desirable that D2 be larger than D2. The reason for this is that when the convex portion 10A and the concave portion 100 are fitted together, both the fit of the carbonaceous portion and the fit of the plated film portion must be satisfied at the same time, as described above. Fitting is the convex part 10
By fitting the non-plated part (carbonaceous part) of A and the non-plated part of the recessed part 100, the mechanical connection of the carbon electrode rod becomes complete and easy. On the other hand, the root portion of the convex portion 10A!・
・In the case of the plating group 14B of the plating film 14A of 10B and the inner edge ROD of the portal part 1000, if there is a large variation in the thickness of both plating films, it is impossible to satisfy the conditions in m. This makes fitting difficult. The outer diameter D
If the difference ΔD between
This is because if the diameter is larger than mm, it becomes difficult to fit the base of the convex part into the concave part. Therefore, by controlling the thickness of the plating film i'l71J within the conditions described in RiJ, both plating films are pressed together with a slight pressing force and are simultaneously deformed due to the malleability of the copper σ-), resulting in just the right fit. Shinden 4i maintains the resultant force and does not generate heat in the 11th generation of the human care shop! l
! The opening of the if current from the rod to the old electrode rod becomes iJ function.

このような接続式炭素電極棒を製造する装置(ま第10
図に示す通りである。第1O図において、■は陽極とな
る円筒部をもった容器を示し、こび)容器lの一方の開
口部IAより容器係合体4をあてがい、バッキング16
により密封して結合する。
Equipment for manufacturing such connected carbon electrode rods (or the 10th
As shown in the figure. In FIG. 1O, ■ indicates a container with a cylindrical portion that serves as an anode;
to seal and bond.

容器係合体4にはメツキュニットlの開口端IAよりそ
の内部空洞中に回けて突出する棒状の被メツキ体支持体
6が設けられており、この支持体6の先端に4栓17を
設け、これを接続式炭素電極棒lOの101!lに形成
した凹形部100に成金して支持するようにし、この容
器係合体4の支持台12をシリンダー15(第7A図参
照量こより支持して炭素Km棒10をメツキュニットの
容器lの内部空洞10中に仲人する。
The container engaging body 4 is provided with a rod-shaped support body 6 for the body to be plated that extends from the open end IA of the mesh unit l into its internal cavity and projects therein, and four plugs 17 are provided at the tip of this support body 6. This is 101 of the connection type carbon electrode lO! The supporting stand 12 of the container engaging body 4 is supported by a cylinder 15 (see FIG. 7A), and the carbon Km rod 10 is placed inside the container L of Metcunite. Matchmaker in hollow 10.

容器lの他側の開口部IBには他の容器係合体5がバッ
キング16により密封して結合されておリ、この他の容
器係合体5には内方に突出する被メツキ体支持体7が設
けられており、この被メツキ体支持体7の内+’dIは
円錐状の門孔部7Aが形成され、接続式炭素電枠棒1o
の一端に形成された凸形Il目OAが仲人されたときシ
ールリング18の個所でシールされ、シールリング18
より先方にある凸形+41s 10 Aはメッキされな
いようにメッキ液の流通を阻止するよう愕成する。7B
は必要に応じて設けたス上ツバ−であり、電極棒の凸形
1)ISIOAの先端を支持するものである。容器1の
1側の開【」部IAを閉基する容器係合体4にはメッキ
液流出口8が収けられており、他側の容器係合体5には
メッキ液流人1」2が設けられる。このメンキユニット
1を第8A図に不すように多数並列に配置して、連結管
8により各メツキュニットを直列に連結する。
Another container engaging body 5 is hermetically coupled to the opening IB on the other side of the container l by a backing 16, and this other container engaging body 5 has a plated object support 7 that protrudes inward. A conical gate hole 7A is formed in +'dI of the body support 7 to be plated, and a connecting carbon electric frame rod 1o is provided.
When the convex Il-th OA formed at one end is sealed, it is sealed at the seal ring 18, and the seal ring 18
The convex shape +41s10A located further forward is designed to block the flow of the plating solution to prevent plating. 7B
is a top collar provided as necessary to support the tip of the convex 1) ISIOA of the electrode rod. A plating solution outlet 8 is accommodated in the container engaging body 4 that closes the opening IA on one side of the container 1, and a plating solution outlet 1'2 is housed in the container engaging body 5 on the other side. provided. A large number of these mesh units 1 are arranged in parallel as shown in FIG. 8A, and each mesh unit is connected in series by a connecting pipe 8.

このようにするとメッキ液は先順位のメツキュニット1
−Iより入り、順次1− Il、 ]、 −III 。
In this way, the plating solution will be the first one
Enter from -I, sequentially 1-Il, ], -III.

1−Ft+ 、・・・1−Nと直列に流通する。被メツ
キ体支持体6の外方中央より突出した電極6Aは電源1
゜11の負端子に、又導電体である被メツキ体支持体6
は導線18により電源11に接続されている。
1-Ft+, . . . flows in series with 1-N. The electrode 6A protruding from the outer center of the plated object support 6 is connected to the power source 1.
To the negative terminal of
is connected to the power source 11 by a conductor 18.

メツキュニット1の容器の陽極となる導電体部分と被メ
ッキ体である炭素棒10との間隔は第10図に示すよう
に等間隔に保持されており、電極6Aの先端部分6Gは
被メッキ体10と’f4L気的に接続されており、陽極
σぐ容器と陰極の仮メッキ体との間にメッキ液が流通す
るとメッキができるのである。
As shown in FIG. 10, the distance between the conductor portion serving as the anode of the container of Metcunite 1 and the carbon rod 10 as the plated body is maintained at equal intervals, and the tip portion 6G of the electrode 6A is connected to the plated body 10. When the plating solution flows between the anode σ container and the cathode temporary plating body, plating can be performed.

また、炭素電極棒lOの凸形VAlOAの根本部分LO
Bのメッキ膜14A及び門形部100の周縁内側端部1
01)のメッキ膜14Bも同時にメッキされ、その基部
の厚さは±o、’o5mmの範囲内に制御することがで
きる。この場合このメッキ膜14Aと14Bとはその先
端及び内方端にゆくに従って夫々薄くなりテーパーした
形状となる。
In addition, the root part LO of the convex VAlOA of the carbon electrode rod LO
B plating film 14A and peripheral inner end 1 of portal portion 100
The plating film 14B of 01) is also plated at the same time, and the thickness of its base can be controlled within the range of ±o, 'o5 mm. In this case, the plating films 14A and 14B become thinner and tapered toward their tips and inner ends.

第1O図に示す場合においては、塞栓17が奄極忰lO
の凹形部100に嵌合しているので、門形部100は図
示の段部10Fより内方部分はメッキ液の流通が阻止さ
れ、メッキされない状態となる。又他側の凸形部IOA
はシールリング18でその中間をシールされているので
、このシール点の先端部分はメッキされないため同形の
接続式炭素区極棒の凸形部と凹形部との嵌合が堅固にお
こなわれる。
In the case shown in FIG.
Since the gate-shaped portion 100 is fitted into the recessed portion 100, the plating solution is prevented from flowing through the portion of the gate-shaped portion 100 inward from the step portion 10F shown in the figure, and the plated portion is not plated. Also, the convex part IOA on the other side
is sealed in the middle by a seal ring 18, and the tip of this sealing point is not plated, so that the convex part and the concave part of the connected carbon pole rod of the same shape are firmly fitted.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例 1 直径16酷、長さが400 nLmの炭素棒を第7図に
示す本発明の装置内に挿入し、間隔を3.5−として硫
酸銅250 Q/lと硫酸359/lとの混合水溶液を
メッキ液として、これを8 crty’Seaの流坏で
供紐しつつ電流密度8Vdm2で3時間メッキを行った
。また第2図の従来法の開放型メッキ浴槽中で電極を並
列配置して電源に対して並列接続した場合であって平均
の電流!度が前記と同じ3 A/chn2で8時間メッ
キを行った。試別は100本としその結果全第11図及
び第2表、第3表に示す。
Example 1 A carbon rod with a diameter of 16 mm and a length of 400 nLm was inserted into the apparatus of the present invention shown in FIG. Using a mixed aqueous solution as a plating solution, plating was carried out for 3 hours at a current density of 8 Vdm2 while being fed through an 8 crty'Sea flow tube. In addition, the average current when the electrodes are arranged in parallel and connected in parallel to the power supply in the conventional open plating bath shown in Fig. 2! Plating was carried out for 8 hours at the same power as above, 3 A/chn2. A total of 100 samples were tested and the results are shown in Figure 11 and Tables 2 and 3.

第11図は本発明の密閉浴槽、直列通電方式でメッキし
た場合と従来例の開放浴槽で並列通電方式メッキを行っ
た′蝋枠棒に夫々析出したメッキ量の分布図である。
FIG. 11 is a distribution diagram of the amount of plating deposited on the wax frame rods when plating was performed using the series energization method in the closed bathtub of the present invention and when plating was performed using the parallel energization method in the conventional open bathtub.

第11図の分布図aは本発明の密閉浴槽で直列通電を行
ったときの電極棒に析出したメッキ量の分布であり、b
は従来法の開放浴槽で並列通電を行ったときの電極棒に
析出したメッキ量の分布である。並列通電は被メッキ体
である炭素棒の接点の接触抵抗をはじめとした柚々′電
気抵抗が夫々の被メッキ体である炭素棒に流れる電流を
ばらつかせてメッキ量のばらつきとなって113の広い
分布となった。本発明の直列通電は夫々の被メッキ体で
ある炭素棒へ流れる電流は一定であるので、はとんどば
らつきがなく、はぼ同量のメッキ量が得られた。
The distribution map a in FIG. 11 is the distribution of the amount of plating deposited on the electrode rod when series current is applied in the closed bath of the present invention, and b
is the distribution of the amount of plating deposited on the electrode rod when parallel current is applied in an open bath using the conventional method. In parallel energization, the electrical resistance including the contact resistance of the contacts of the carbon rods that are the objects to be plated causes the current flowing through each carbon rod that is the object to be plated to vary, resulting in variations in the amount of plating113. There was a wide distribution of In the series energization of the present invention, since the current flowing to each carbon rod serving as the object to be plated is constant, there is almost no variation in the current, and approximately the same amount of plating can be obtained.

第2表は銅メツキ量のばらつき状態を偏差値で表わした
ものである。
Table 2 shows the variation in copper plating amount using deviation values.

fl! 8表は炭素電極棒を3等分し頭艮、中央部、後
部のそれぞれの麺メッキの1換厚のばらつき状態を#厚
の差(最大値と最小l1rti)を藺査したものである
Fl! Table 8 shows the difference in the thickness (maximum value and minimum l1rti) of the carbon electrode rod divided into three parts and the variation in the thickness of the noodle plating on the head, center, and rear parts.

第2表 第2表における平均重量は直列通電でも並列通電でも変
化はないが、メッキ量のばらつきを偏差値で見ると並列
通電の10分の1以下である。
Table 2 The average weight in Table 2 does not change with series energization or parallel energization, but when looking at the variation in plating amount in terms of deviation value, it is less than one-tenth of parallel energization.

第8表よりメッキ膜の厚みは直列通電においては炭素電
極棒のどの部分も均一で厚みのばらつきが少なく、膜厚
の差は小さいが並列通電においては頭部と後部に厚く析
出し又電極棒の個々の膜厚の誤差(最大値一般小値)は
大きい。
From Table 8, the thickness of the plating film is uniform on all parts of the carbon electrode rod when energized in series, with little variation in thickness, and the difference in film thickness is small, but when energized in parallel, a thick layer is deposited on the head and rear part of the electrode rod. The errors in the individual film thicknesses (maximum value, generally small value) are large.

実施例 2 直径19mm、長さ4 Q Q m、mの炭素棒を第7
図に示す本発明の装置内に実施例1と同様に挿入し、電
極間隔を2amとして硫酸鉛250す/lと硫酸85g
7tの混合水溶液をメッキ液とし、電流密度を2A、/
dm  、 80 A7dm  、 60 A/dm 
 、 200 A、/dm 。
Example 2 A carbon rod with a diameter of 19 mm and a length of 4 Q Q m, m was
It was inserted into the device of the present invention shown in the figure in the same manner as in Example 1, with an electrode spacing of 2 am, and 250 g of lead sulfate/l and 85 g of sulfuric acid.
A mixed aqueous solution of 7t was used as the plating solution, and the current density was 2A, /
dm, 80 A7dm, 60 A/dm
, 200 A,/dm.

800 A/dm  、 450 A/dm  につい
てメッキ凰及びメッキの膜厚のばらつきを調査した。試
料は80本とした。電流密度に対応してそれぞれ流速は
0.02 m/sea 、 0.7 m/sea 、 
1.6 m/sea 、 l Om/sea 、 20
 m/sec 、 80 m/sec 、メッキ時間は
6時間、24分、12分、8.6分、2.4分、1.6
゛分に設定し実験した結果を第4表及び第5表に示す。
Variations in plating film thickness and plating thickness were investigated at 800 A/dm and 450 A/dm. The number of samples was 80. The flow velocities are 0.02 m/sea, 0.7 m/sea, and 0.7 m/sea, respectively, corresponding to the current density.
1.6 m/sea, l Om/sea, 20
m/sec, 80 m/sec, plating time is 6 hours, 24 minutes, 12 minutes, 8.6 minutes, 2.4 minutes, 1.6
Tables 4 and 5 show the results of experiments conducted with the setting of 10 minutes.

第4表は夫々の電流密度における銅メッキ垣のばらつき
を偏差値(δ/ X 100 )で表わしたものである
Table 4 shows the variation in copper plated walls at each current density expressed as a deviation value (δ/X 100 ).

第5表は夫々の電流密度における翔メッキの膜jシの誤
差(最大値−最小値)で表したものである。
Table 5 shows the error (maximum value-minimum value) of the plating film at each current density.

第  4  表 1≧に ■ ん ん ん 第5表 流密1 L 04 00L 第4表より低電流密度でも高電流密度においても、メッ
キ量及びその偏差値はほとんど変化なく、これに対する
電流密度による影響はみられなかった。
Table 4 If 1≧■ Hmmmm 5th surface current density 1 L 04 00L From Table 4, the amount of plating and its deviation value hardly change at both low and high current densities, and the influence of current density on this. was not seen.

第5表においてもメッキ膜の厚みに対しては電流密度に
よる影菅はみられなかった。
Also in Table 5, there was no effect of current density on the thickness of the plating film.

以上の実験結果を綜合判断すると、本発明のようにメツ
4浴檜を密閉型とし、各ユニットの電極を電気的に直列
接続とし、かつ各ユニットを順次メッキ液が流通するよ
うに機械的に直列に連結してメッキすると′電流密度及
びそれに対応したメッキ液の流速、−メッキ時1川等の
条件に関係なく膜厚の誤差が±0.05gfi以下で、
かつメッキ量か一定となることが確認された。
Judging from the above experimental results, it can be concluded that, as in the present invention, the four-bath cypress is sealed, the electrodes of each unit are electrically connected in series, and each unit is connected mechanically so that the plating solution flows in sequence. When plating is connected in series, the error in film thickness is less than ±0.05gfi regardless of the current density, the flow rate of the plating solution corresponding to it, the flow rate during plating, etc.
It was also confirmed that the amount of plating remained constant.

実施例 8 的径19am、長さ480 rnthの第9B図に示す
接続式炭素電極棒を第1O図に示すメツキュニットと同
じ型の密閉型メンキ陪檜内に押入し、直列配線し間隔を
2 mmとして硫酸銅250す/l 、硫酸85 g/
/の混合水溶液をメッキ液とし、電流密度100 A/
dm″、流速は5 m/SeO、メッキ時間7.2分で
メッキを行った。又従来法の第2図の開放型メッキ浴槽
に第1B図の接続式炭素電極棒川のメッキ枠を使用し、
被メッキ体である炭素棒の凸形部の根本部分まで浸漬し
電流密度3 、/l、/dm  で4時間メッキをした
。メッキ液は密閉型浴槽のものと同じとした。試料(炭
素棒)は夫々50本とした。
Example 8 The connected carbon electrode rods shown in Fig. 9B with a target diameter of 19 am and a length of 480 rnth were inserted into a closed-type menki hinoki of the same type as the metsukunite shown in Fig. 1O, and wired in series with a spacing of 2 mm. Copper sulfate 250 s/l, sulfuric acid 85 g/l
A mixed aqueous solution of / was used as the plating solution, and the current density was 100 A/
dm", the flow rate was 5 m/SeO, and the plating time was 7.2 minutes. Also, the plating frame of the connected carbon electrode rod shown in Fig. 1B was used in the open plating bath shown in Fig. 2 using the conventional method. death,
The carbon rod to be plated was immersed up to the base of the convex portion, and plated at a current density of 3,/l,/dm for 4 hours. The plating solution was the same as that used in the closed bath. The number of samples (carbon rods) was 50 each.

次にその結果を示す。The results are shown below.

第6表は第9B図の電極棒の凸形部の根本部分のメッキ
膜14Aと凹形部の周縁内側端部のメッキ膜14Bとの
夫々の厚みをtl 1 t2とし、試験しその膜厚の誤
差(最大(tm −k小値)で示したものである。
Table 6 shows the thicknesses of the plating film 14A at the base of the convex portion of the electrode rod in FIG. 9B and the plating film 14B at the inner end of the periphery of the concave portion, respectively, as tl 1 t2. Error (maximum (tm - k small value)).

第7表は接続式炭素電極棒の凸形部と門形部とを実際に
嵌合し、この嵌合した炭素電、極棒をトーチに装着し、
電流1600Aで調相にアークを飛ばしながら実用テス
トを繰返した結果である。
Table 7 shows how to actually fit the convex part and the portal part of the connected carbon electrode rod, and attach the fitted carbon electrode and electrode rod to the torch.
This is the result of repeated practical tests with a phase-adjusted arc at a current of 1600A.

(4) 凸凹部のいずれかのメッキ膜が厚すき′て嵌合
困難なもの (B)  メッキ膜の嵌合が不充分か又は接触してなく
て使用中に接続部が発熱したり、酸化消耗し折損したも
の (0)  嵌合も良好で、使用中も支障を起さす良好で
あったもの の8つに分類し試料50本のそれぞれの試験結果を示し
た。
(4) The plated film on one of the uneven parts is too thick to make it difficult to fit. (B) The plated film is not properly fitted or there is no contact, and the connection part generates heat or oxidizes during use. The test results for each of the 50 samples were classified into 8 categories: worn and broken (0), which had a good fit, and caused problems during use.

第  6  表 第  7  表 第6表よりtl、t2のそれぞれの平均メ゛ツキ膜の厚
みは直列通電及び並列通電、ともほぼ等しl/)カ(、
膜厚誤差は直列通電の方が著しく小さく±0.05酎以
下に制御することができ、前記1区径差ΔD&ま0≦Δ
D<0.10fimの範囲内に十分入っていること力く
判った。
Table 6 Table 7 From Table 6, the average thickness of the mesh film for each of tl and t2 is almost the same for both series and parallel energization.
The film thickness error is significantly smaller with series energization and can be controlled to less than ±0.05, and the above-mentioned 1 section diameter difference ΔD&ma0≦Δ
It was clearly seen that D<0.10fim was well within the range.

第7表における結果から、本発明のい1れの接続式電m
捧においては、嵌合状紳及び使用中σ〕状伸も良好であ
った。然し、従来法においては、メ゛ンキ膜の厚すぎる
ものや、薄すさるものがあり、これらの原因によるもの
が夫々16%及び18%あり嵌合状態及び便用中の状態
も良好なものは66%であった。
From the results in Table 7, it can be seen that one of the connection type electric m
In the test, the fit state and the σ] state elongation during use were also good. However, in the conventional method, there are cases where the coating film is too thick or thin, and 16% and 18% of cases are due to these reasons, respectively, and the fit and condition during use are good. was 66%.

任って、本発明の接続式炭素電極棒によると、完全にか
つ容易に嵌合し、脱は輸<、高温焼純中においても脱落
が生ぜず、使用効率ioo%であることが確認された。
It has been confirmed that the connectable carbon electrode rod of the present invention fits completely and easily, does not come off even during high-temperature sintering, and has a usage efficiency of io0%. Ta.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図及び第1B図は実験に使用したメッキ枠の+l
t造を例示する断面図、第2図は従来のメツキ装置図、
第8図は開放メッキ浴槽を並設し、メッキ液を並列に流
通させ、電極をilt源に対し直列接続したメッキ装置
を示す説明用断面図、第4図は密閉メッキ浴槽を直列に
並設し、電極を電源に対し1H列に接続し、メッキ液を
直列に順次循環させた本発明のメッキ装置を示す説明用
断面図、第5図は開放メッキ浴槽中に陰陽両電極を並列
配置し、両極の亀樟を電源に対して並列接続した従来の
メッキ装置の説明用断面略図、第6図は第8図(開放メ
ッキ浴槽、並列a電〕及び第4図(密閉メッキ浴槽、直
列通電)により試験したメッキ液の直達と電流密度との
関係をボす特性図、第7図、第7A図は本発明の炭素棒
の?i4J渉電気メッキ用装置の一例を示す平ll1I
図、第8図、第8A図は本発明の炭素棒の昼休電気メッ
キ装置において直列して電流が通電する状態を示す説明
図、第9A図、第9B図、第9C図、第9D図は本発明
の接続式炭素1i1.f!l!!棒の実施態様を示す一
部断面図、第1θ図は本発明の接続式炭素寛徐俸のメッ
キ装置の詳細を示す断101図、第11図は本発明のメ
ッキ方式と従来のメッキ方式とを比較したメッキ姐分布
図である。 ■・・・陽極となるメッキ容器(メ゛ンキュニ゛ント)
、2・・・メッキ液流入口、8・・・連結管、4・・・
容器係合体、5・・・他の容器係合体、6・・・被メ゛
ンキ体支持体、6A・・・被メ7ツキ体支持体の凹孔部
、7・・・他σ)被メツキ体支持体、8・・・メッキ液
出口、9・・・1川LJ MS、lO・・・炭素棒、1
1・・・電源、12A、12B・・・容器係合体の支持
台、120.・、メッキユニ′ントσ〕支持台、13・
・・電線、14・・・メッキ膜、IOA・・・電極棒の
凸形部、IOB・・・電極棒の凸形部の根本部分、10
0・・・電極棒の凹形部、lOD・・・電極棒凹形部の
周縁内端部、IOE・・・奄4!Ii俸凹形部の周縁内
端部内方に設けた段部、14A・・・箪柳俸凸形部の根
本部分のメッキ増、14B・・・′電極棒凹形+@Sσ
ノ周縁内端部のメッキj曽、15・・・油圧シリンダー
、16・・・バッキング、17・・・購栓、18・・・
シール1ノング、19・・メッキ枠、20・・・メッキ
浴僧、21・・・炭素棒の抑止め部、22・・・接点部
、28・・・導電部、24・・・メッキ液、25・・・
メッキ液人口、26・・・メッキ液出口、271.・陽
極。 第1A図 第2図 第3図 第00図 第9D図 第10図
Figures 1A and 1B show +l of the plated frame used in the experiment.
A cross-sectional view illustrating a T structure, Figure 2 is a diagram of a conventional plating device,
Fig. 8 is an explanatory cross-sectional view showing a plating apparatus in which open plating baths are arranged in parallel, plating solution is passed in parallel, and electrodes are connected in series to an ilt source, and Fig. 4 is a plating apparatus in which closed plating baths are arranged in series. FIG. 5 is an explanatory sectional view showing a plating apparatus of the present invention in which the electrodes are connected to the power source in 1H rows and the plating solution is serially circulated. FIG. , a schematic cross-sectional diagram for explaining a conventional plating device in which bipolar bipolar wires are connected in parallel to the power supply; ), Figures 7 and 7A are characteristic diagrams showing the relationship between the direct conduction of the plating solution and the current density, which were tested using the method of the present invention.
Figures 8 and 8A are explanatory diagrams showing states in which current is applied in series in the daytime electroplating apparatus for carbon rods of the present invention, Figures 9A, 9B, 9C, and 9D is the connected carbon 1i1. of the present invention. f! l! ! A partial cross-sectional view showing an embodiment of the rod, Fig. 101 is a cross-sectional view showing details of the plating device for the connected carbon slender plate of the present invention, and Fig. 11 is a partial cross-sectional view showing the plating method of the present invention and the conventional plating method. It is a plating distribution map comparing the two. ■・・・Plating container that becomes the anode (main unit)
, 2... Plating liquid inlet, 8... Connecting pipe, 4...
Container engaging body, 5... Other container engaging body, 6... Support for body to be machined, 6A... Recessed hole of body support for body to be machined, 7... Other σ) Plating body support, 8... Plating liquid outlet, 9... 1 River LJ MS, lO... Carbon rod, 1
1... Power source, 12A, 12B... Support stand for container engaging body, 120.・, plating unit σ] support stand, 13・
...Electric wire, 14... Plating film, IOA... Convex part of electrode bar, IOB... Root part of convex part of electrode bar, 10
0...Concave portion of the electrode rod, lOD...Inner peripheral edge of the concave portion of the electrode rod, IOE...4! Ii Stepped part provided inside the inner edge of the periphery of the concave part, 14A... Increased plating at the base of the convex part of the willow part, 14B...'Concave electrode rod +@Sσ
Plating on the inner edge of the periphery, 15...Hydraulic cylinder, 16...Backing, 17...Bus plug, 18...
Seal 1 nong, 19... Plating frame, 20... Plating bath monk, 21... Carbon rod restraint part, 22... Contact part, 28... Conductive part, 24... Plating liquid, 25...
Plating solution population, 26... Plating solution outlet, 271. ·anode. Figure 1A Figure 2 Figure 3 Figure 00 Figure 9D Figure 10

Claims (1)

【特許請求の範囲】 L 少くとも陽極となる容器と、この容器内に一定の間
隔を隔てて装入した炭素棒よりなる陰極としての被メッ
キ体との間にメッキ液を満し循環させるようにしたメツ
キュニットの複数個を;−機械的に直列又は並列に連結
し、かつ少くとも−の!源に電気的に直列配線で接続し
、前記メツキュニットの夫々に電流を通じ、屯流密曳を
0.5〜450 A/dm  とし、メッキ液の流速を
1 cm〜3″0駒として循環させ、メッキ液の流速に
対1心して電流を制御し、メツキュニット内に装入した
炭素棒の表面にメッキ膜を形成することを特徴とする炭
素電極棒のメッキ方法。 & 炭素棒の外形とはは相似する形状の陽°極を有する
容器内にメッキ液が満されている特許請求の範囲第1項
記載のメ謁キ方法。 & 容器は、密閉型もしくは開放型であることを特徴と
する特許請求の範囲第1項記載のメツを方法。 表 メッキ浴槽は密閉型の容器であって、この中に装着
する陽極は、少なくとも不溶性iIl極である特許請求
の範囲第1項記載のメッキ方法。 5 前記電流密度を80〜450 Vdm  とする特
許請求の範囲第1項記載のメッキ方法。 6 メッキ液の流速を60cm〜a o m、”8+と
じて循環させる特許請求の範囲第1項記載のメッキ方法
。 7、 陽極と板メッキ体としての陰極である炭素棒との
間隔がそれぞれの部分において1〜lQmmの範囲内で
あってほぼ等間の距離に隔たれている特許請求の範囲第
1項記載のメッキ方法。 B、 メッキ液は少く)なくとも硫酸銅と硫酸との混合
水溶液であることを特徴とする特許請求の範囲第1項記
載のメッキ方法。 9 炭素棒の一部又は全部にメッキ膜をJ構成するに際
し、被メッキ体である炭素棒を′電源に対し直列接続し
て被メツキ電流を一定にすることと、陽極と炭素棒の間
隔を一定とすることと、メッキ液流速を一定とするよう
にする○とによりそのメッキ膜厚みの誤差を±0.05
市の範囲に制御する特許請求の範囲第1項記載の炭素t
!極俸のメッキ方法。 1〇  一端部は凸形を、他端部は凹形をなし、一つの
炭素電極棒の凹形部に、他の同形の炭素′wL極棒の凸
形部を嵌合接続させることができる接続式炭素電極棒の
メッキ方法において、少くとも陽極となる部分を看する
円筒形容器内に被メッキ体である炭素棒を装入し、陽極
と陰極としての被メッキ体との間隔を1〜10酷の範囲
でほぼ等間隔に保持し、01ノ記容器の1側に設けたメ
ッキ液装入口と他側に設けたメッキ液排水口との間にメ
ッキ液を循環流通させるように構成し、かつ前記電極棒
の1側の凸形部の中間及び他側の凹形部の内方を塞栓し
た複数側のメツキュニットを機械的に直列又は並列に連
結し、メッキ液を直列又は並列に循環流通させるように
し、前記メツキュニットを電気的に電源に対して直列に
接続し、電流密度を帆5〜450 yam  とし、メ
ッキ液の流速を1 cm〜36 mA少として循環させ
、メッキ液の流速に対応して電かしを制御し、メツキュ
ニット内に装入した炭素棒の凸形部の先端部分と凹形部
の内方部分とを残して部分的にメッキし、前記炭素棒の
凸形部の根本部分と凹形部の周縁端部分とに施されるメ
ッキ膜はその基部より先端又は内方に向けて小W1;の
テーパーが形成されるようメッキすることを特徴とする
接続式炭素電極棒の部分的電気メツキ方法。 IL  前記電流密度を80〜450 A7dm  と
し、メッキ液の流速を60cm〜s o m/3として
循環させ、メッキ時間を25〜3分となるよう電流密度
とメッキ液の流速とを対応させて設定し、そのメッキ膜
の厚み誤差を±0.05mmの範囲に制御する特許請求
の範囲第10項記載の電気メツキ方法。 11  炭素棒本体の外周表面のメッキ膜の厚み及び凸
形部の根本部分と凹形部の周縁端部分のテーパー状メッ
キ膜の基部の厚み誤差が±0.05酌の範囲内になるよ
う制御してメッキ膜を施す特許請求の範囲第10項記載
の電気メツキ方法。 1&−炭素棒とほぼ相似する形状の陽極を有する容器で
あって、この容器は少くとも被メッキ体である炭素棒を
出入れする開口部と、一端にはメッキ液の流入口と、他
端に設けたメッキ液の光出口とを1IiI’え、かつ容
器の複数個かそれぞれ直列又は並列に連結されており、
かつこれら容器の複数個をメッキ液が直列又は並列にl
 cm〜301?!/T!l’の範囲の所定の流速でW
4 mするように構成し、被メッキ体である前記炭素棒
を電源に対して電気的に直列接続し、電流密度がO15
〜450 A/dm  となるよう構成した口とを特徴
とする炭素電極棒のメッキ装置。 14電流密度を30〜450 A/dm  とし、メッ
キ液の流速を60cm〜80 m/seaで循環流通さ
れるよう構成し、メッキ液の流速と電流密度とをできる
だけ高く設定し、メッキ膜の)ν。 み誤差範囲が士U、05mmの範囲内となるよう構成し
た特許請求の範囲第18項記載のメッキ装置。 1五 すくなくとも陽極である容器と、扱メッキ体とし
ての陰極である炭素棒との間隔かそれぞれの部分におい
て1〜lQmrnの範囲内でほぼ等間隔の距駐に保たれ
ていることを特徴とする特#1M求の組曲第13項記載
のメッキ装置。 16 一端部は凸形を、他端部は凹ルをなし、一つの炭
素電極棒の凹形部に、他の同形の炭素電極棒の凸形部を
嵌合接続させることかできる接続式炭素電極棒において
、前記凸形部の外表面の根本部分及び凹形部の内表面の
周縁端には、亀The本体の外周表面と連続してテ−パ
ー状の金属メッキ膜が形成されており、該電極棒の本体
外周表面のメッキ膜厚み及び前記凸形部の根本部分と凹
形部の周縁端部とのテーパー状のメッキ膜の基部の厚み
か±0.05門の誤差範囲にあるようメッキ膜か施され
て成る接続式炭素電極棒。 1?、  接続式炭素電極棒において、凸形部の根本部
分及び凹形部の周縁端部に施されたメッキ膜は、その基
部より先端に向けて手酌のテーパーをなしている特許請
求の範囲第16項に記載の接続式炭素電極棒。
[Scope of Claims] L A plating solution is filled and circulated between at least a container serving as an anode and a body to be plated as a cathode consisting of carbon rods inserted at regular intervals in the container. -Mechanically connected in series or parallel, and at least -! electrically connected to a power source by series wiring, passing a current through each of the metcunites, setting the flow rate to 0.5 to 450 A/dm, and circulating the plating solution at a flow rate of 1 cm to 3"0 pieces, A method for plating a carbon electrode rod, which is characterized by controlling the current in relation to the flow rate of the plating solution and forming a plating film on the surface of the carbon rod loaded into a metcunite. & The outer shape of the carbon rod is similar. A plating method according to claim 1, wherein a container having an anode shaped like the plating solution is filled with a plating solution. The plating method according to claim 1.Table The plating method according to claim 1, wherein the plating bath is a closed container, and the anode installed in the bath is at least an insoluble iIl electrode. 6. The plating method according to claim 1, wherein the current density is 80 to 450 Vdm. 6. The plating method according to claim 1, wherein the plating solution is circulated at a flow rate of 60 cm to 450 Vdm. Method. 7. The plating according to claim 1, wherein the distance between the anode and the carbon rod which is the cathode as a plated plate is within the range of 1 to 1Q mm in each part and are spaced at approximately equal distances. Method. B. The plating method according to claim 1, wherein the plating solution is at least a mixed aqueous solution of copper sulfate and sulfuric acid. 9 When forming a plating film on part or all of a carbon rod, the carbon rod to be plated is connected in series to a power source to keep the plating current constant, and the distance between the anode and the carbon rod is The error in the plating film thickness can be reduced to ±0.05 by keeping it constant and by keeping the plating solution flow rate constant.
Carbon t according to claim 1, which is controlled within the city limits.
! The plating method of Gokuyou. 10 One end has a convex shape and the other end has a concave shape, and the concave part of one carbon electrode rod can be fitted and connected to the convex part of another carbon'wL pole rod of the same shape. In the method of plating a connected carbon electrode rod, the carbon rod to be plated is placed in a cylindrical container that looks at at least the part that will become the anode, and the distance between the anode and the object to be plated as the cathode is set at 1 to 1. The plating solution is maintained at approximately equal intervals within a range of 10 degrees, and the plating solution is circulated between the plating solution inlet provided on one side of the container and the plating solution drain port provided on the other side of the container. , and mechanically connects in series or parallel a plurality of mesh units embolized in the middle of the convex part on one side and the inside of the concave part on the other side of the electrode rod, and circulates the plating solution in series or parallel. The mesh unit is electrically connected in series to a power source, the current density is set to 5 to 450 yam, and the plating solution is circulated at a flow rate of 1 cm to 36 mA. Correspondingly, the electric kettle is controlled, and the carbon rod inserted into the metcunite is partially plated except for the tip of the convex part and the inner part of the concave part, and the convex part of the carbon rod is plated. A connected carbon electrode characterized in that the plating film applied to the base portion and the peripheral end portion of the concave portion is plated so that a taper of small W1 is formed from the base toward the tip or inward. Method of partial electroplating of rods. IL The current density is set to 80 to 450 A7 dm, the plating solution is circulated at a flow rate of 60 cm to s o m/3, and the current density and the plating solution flow rate are set to correspond to each other so that the plating time is 25 to 3 minutes. The electroplating method according to claim 10, wherein the thickness error of the plating film is controlled within the range of ±0.05 mm. 11 Control the thickness error of the plating film on the outer peripheral surface of the carbon rod body and the thickness error of the base of the tapered plating film on the root part of the convex part and the peripheral end part of the concave part to be within the range of ±0.05. 11. The electroplating method according to claim 10, wherein a plating film is applied by applying a plating film. 1 & - A container having an anode having a shape almost similar to that of a carbon rod, and this container has at least an opening for taking in and out the carbon rod which is the object to be plated, an inlet for plating solution at one end, and an inlet for the plating solution at the other end. and a light outlet for the plating solution provided in the container, and a plurality of containers are each connected in series or in parallel,
And the plating solution is placed in a plurality of these containers in series or in parallel.
cm~301? ! /T! W at a given flow rate in the range l'
The carbon rod, which is the object to be plated, is electrically connected in series to a power source, and the current density is O15.
A plating device for a carbon electrode rod, characterized by a port configured to provide a plating voltage of ~450 A/dm. 14 The current density is 30 to 450 A/dm, the plating solution is circulated at a flow rate of 60 cm to 80 m/sea, the flow rate of the plating solution and the current density are set as high as possible, and the plating film is ν. 19. The plating apparatus according to claim 18, wherein the plating error range is within a range of 0.5 mm. 15. The distance between the container, which is at least an anode, and the carbon rod, which is a cathode and serves as a plating object to be treated, is maintained at approximately equal intervals within the range of 1 to lQmrn in each part. The plating apparatus described in Section 13 of the special #1M request suite. 16 A connection-type carbon having a convex shape at one end and a concave shape at the other end, which allows the concave portion of one carbon electrode rod to be fitted and connected to the convex portion of another carbon electrode rod of the same shape. In the electrode rod, a tapered metal plating film is formed at the base of the outer surface of the convex portion and at the peripheral edge of the inner surface of the concave portion, and is continuous with the outer circumferential surface of the turtle body. , the thickness of the plating film on the outer peripheral surface of the main body of the electrode rod and the thickness of the base of the tapered plating film between the base of the convex part and the peripheral edge of the concave part are within an error range of ±0.05 mm. Connectable carbon electrode rod with a similar plating film. 1? In the connected carbon electrode rod, the plating film applied to the root portion of the convex portion and the peripheral end portion of the concave portion is tapered from the base toward the tip. Connectable carbon electrode rod as described in .
JP13653982A 1982-08-05 1982-08-05 Method and apparatus for electroplating carbon electrode rod and carbon electrode rod Granted JPS5928597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13653982A JPS5928597A (en) 1982-08-05 1982-08-05 Method and apparatus for electroplating carbon electrode rod and carbon electrode rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13653982A JPS5928597A (en) 1982-08-05 1982-08-05 Method and apparatus for electroplating carbon electrode rod and carbon electrode rod

Publications (2)

Publication Number Publication Date
JPS5928597A true JPS5928597A (en) 1984-02-15
JPH0241598B2 JPH0241598B2 (en) 1990-09-18

Family

ID=15177551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13653982A Granted JPS5928597A (en) 1982-08-05 1982-08-05 Method and apparatus for electroplating carbon electrode rod and carbon electrode rod

Country Status (1)

Country Link
JP (1) JPS5928597A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316489A (en) * 1988-06-14 1989-12-21 Yamaha Corp Plating method
JPH0238473U (en) * 1988-08-31 1990-03-14
WO1999010563A3 (en) * 1997-08-21 1999-08-19 Atotech Deutschland Gmbh Method and device for energy saving simultaneous electrolytic treatment of several workpieces
US6652657B2 (en) 2000-07-31 2003-11-25 United Technologies Corporation Method for electrochemically treating articles and apparatus and method for cleaning articles
WO2009127037A1 (en) * 2008-04-18 2009-10-22 Integran Technologies Inc. Electroplating method and apparatus
US8734624B2 (en) 2011-05-30 2014-05-27 Ebara Corporation Plating apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513034U (en) * 1978-07-13 1980-01-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513034U (en) * 1978-07-13 1980-01-28

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316489A (en) * 1988-06-14 1989-12-21 Yamaha Corp Plating method
JPH0238473U (en) * 1988-08-31 1990-03-14
WO1999010563A3 (en) * 1997-08-21 1999-08-19 Atotech Deutschland Gmbh Method and device for energy saving simultaneous electrolytic treatment of several workpieces
US6652657B2 (en) 2000-07-31 2003-11-25 United Technologies Corporation Method for electrochemically treating articles and apparatus and method for cleaning articles
WO2009127037A1 (en) * 2008-04-18 2009-10-22 Integran Technologies Inc. Electroplating method and apparatus
US8734624B2 (en) 2011-05-30 2014-05-27 Ebara Corporation Plating apparatus

Also Published As

Publication number Publication date
JPH0241598B2 (en) 1990-09-18

Similar Documents

Publication Publication Date Title
US6093291A (en) Electroplating apparatus
JPH0222490A (en) Method for forming sheet membrane having many passages and said sheet member
EP2746433B1 (en) Device for vertical galvanic metal, preferably copper, deposition on a substrate and a container suitable for receiving such a device
KR102254554B1 (en) Electroplating divice for copper foil manufacturing
JPS5928597A (en) Method and apparatus for electroplating carbon electrode rod and carbon electrode rod
US5393396A (en) Apparatus for electrodepositing metal
WO2023020300A1 (en) Method and device for preparing gradient plating by means of laser-assisted electrodeposition
JPH03229889A (en) Method and device for continuously coating conductive substrate using high-speed electrolytic method
KR910009403B1 (en) Selective electroplating apparatus and method
BE1005928A5 (en) Structural material for electrode insoluble.
JPH0317920B2 (en)
US4294670A (en) Precision electroplating of metal objects
TW201911408A (en) Distribution system for chemical and/or electrolytic surface treatment
JP6650072B2 (en) Apparatus for performing vertical electric metal film formation on a substrate
JPH03285097A (en) Anode for electroplating and electroplating method
CN105324521A (en) Anode and high-speed plating device provided with same
CN105308222A (en) Power-supply member, and high-speed plating device provided with same
EP0059481A1 (en) High speed plating apparatus
US3634047A (en) Electroplated member and method and apparatus for electroplating
US2540805A (en) Electrolytic apparatus for making radiator cores
CN114101818A (en) Method for processing surface microtexture by maskless electrolysis
US2743229A (en) Electrode for plating hollow articles
JP2006111958A (en) Electrodeposition method and device therefor
GB2053967A (en) Selective plating of pin or socket connectors
TW567248B (en) Electrotyping device and method