JPS5928570B2 - Method for producing polymerization catalyst component - Google Patents

Method for producing polymerization catalyst component

Info

Publication number
JPS5928570B2
JPS5928570B2 JP5542376A JP5542376A JPS5928570B2 JP S5928570 B2 JPS5928570 B2 JP S5928570B2 JP 5542376 A JP5542376 A JP 5542376A JP 5542376 A JP5542376 A JP 5542376A JP S5928570 B2 JPS5928570 B2 JP S5928570B2
Authority
JP
Japan
Prior art keywords
titanium
titanium trichloride
catalyst component
polymerization
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5542376A
Other languages
Japanese (ja)
Other versions
JPS52138492A (en
Inventor
徹也 岩尾
平三 佐々木
昭 伊藤
政弘 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP5542376A priority Critical patent/JPS5928570B2/en
Priority to GR53342A priority patent/GR63148B/en
Priority to CA277,885A priority patent/CA1097316A/en
Priority to GB19013/77A priority patent/GB1544193A/en
Priority to PT66524A priority patent/PT66524B/en
Priority to MX169120A priority patent/MX145423A/en
Priority to IT23588/77A priority patent/IT1104772B/en
Priority to CS319977A priority patent/CS212796B2/en
Priority to DE19772722150 priority patent/DE2722150A1/en
Priority to FR7714920A priority patent/FR2352000A1/en
Priority to AT350477A priority patent/AT360751B/en
Priority to YU1221/77A priority patent/YU40477B/en
Priority to BR7703149A priority patent/BR7703149A/en
Priority to US05/797,227 priority patent/US4187385A/en
Priority to NLAANVRAGE7705370,A priority patent/NL184005C/en
Publication of JPS52138492A publication Critical patent/JPS52138492A/en
Publication of JPS5928570B2 publication Critical patent/JPS5928570B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は改良されたチーグラー型触媒成分の製造方法に
かんする。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to an improved method of making Ziegler-type catalyst components.

チーグラー型触媒を用いるエチレンまたはα一オレフィ
ン類の重合あるいは共重合は既知である。
The polymerization or copolymerization of ethylene or alpha-olefins using Ziegler-type catalysts is known.

また最も一般的なチーグラー型触媒はチタン化合物を含
む触媒成分と有機アルミニウム化合物とよりなるもので
ある。さらにまた、チタン化合物をふくむ触媒成分を粉
砕して使用すると触媒性能が向上することも既知である
The most common Ziegler type catalyst is composed of a catalyst component containing a titanium compound and an organoaluminum compound. Furthermore, it is also known that catalytic performance is improved by using a pulverized catalyst component containing a titanium compound.

チタン触媒成分をボールミルなどを用いて粉砕する従来
の方法では、えられる粉砕生成物の粒度分布の幅が広く
、通常直径が5ミクロン以下の微粒子を10重量%以上
ふくんでいる。
In the conventional method of pulverizing a titanium catalyst component using a ball mill or the like, the resulting pulverized product has a wide particle size distribution and usually contains 10% by weight or more of fine particles with a diameter of 5 microns or less.

チタン化合物をふくむ触媒成分と有機アルミニウム化合
物とからなる重合触媒を用いる、エチレンまたはα−オ
レフィン類の重合または共重合において、生成する重合
物または共重合物の粒度は、使用されるチタン触媒成分
の粒度の影響を著しく受ける。
In the polymerization or copolymerization of ethylene or α-olefins using a polymerization catalyst consisting of a catalyst component containing a titanium compound and an organoaluminum compound, the particle size of the resulting polymer or copolymer depends on the titanium catalyst component used. Significantly affected by particle size.

従来の方法で粉砕してえられたチタン触媒成分は微粒子
を多量にふくんでいるので、それを使用してえられる重
合物または共重合物も粒度分布が広く、通常直径50ミ
クロン以下の微粉末を10ないし30重量%ふくんでい
る。ポリエチレンまたはポリα=オレフィンの製造にさ
いし、生成ポリマーの粒度分布が広く、とくに微粉末が
多いとP過、遠心分離などによる生成ポリマーと溶媒と
の分離が困難となり、また散逸によるロスも多くなるこ
とは乾燥工程、ペレット化工程に於ても同様である。
Since the titanium catalyst component obtained by pulverization by conventional methods contains a large amount of fine particles, the polymer or copolymer obtained using it also has a wide particle size distribution, and is usually a fine powder with a diameter of 50 microns or less. Contains 10 to 30% by weight. When producing polyethylene or polyα-olefin, the particle size distribution of the produced polymer is wide, especially if there is a large amount of fine powder, it becomes difficult to separate the produced polymer from the solvent by P filtration, centrifugation, etc., and there is also a large amount of loss due to dissipation. The same applies to the drying process and pelletizing process.

したがつてそれらを防止するために余分な設備をほどこ
し、複雑な製造操作で行わなければならないので、その
改善が望まれている。
Therefore, in order to prevent these problems, it is necessary to provide extra equipment and perform complicated manufacturing operations, and therefore, improvements are desired.

粉砕チタン触媒成分の粒度を改良する方法が、いくつか
すでに提案されている。
Several methods have already been proposed to improve the particle size of ground titanium catalyst components.

たとえば、三塩化チタンまたは三塩化チタン組成物に少
量の有機エーテル類、またはそれと金属ハロゲン化物と
の錯体を添加して共粉砕する方法、(特公昭42302
4、特公昭43−10065など)ハロゲン化マグネシ
ウムなどの固体マグネシウム化合物と四塩化チタン、ま
たは三塩化チタンとを共粉砕して固体表面にそれらのチ
タン化合物を担持させるさいに、少量の有機エーテル類
と・・ロゲン化アルミニウムの錯体、あるいはポリキシ
ロキサンを添加して共粉砕する方法(特公昭49−13
5136、特開昭48−21777)などがある。これ
らの方法では、粉砕操作により微粒化すると同時に凝集
団粒化がおこり、粉砕生成物の粒度が改良され、直径5
ミクロン以下の微粒子は数重量%程度まで減少する。
For example, a method of co-pulverizing titanium trichloride or a titanium trichloride composition by adding a small amount of organic ether or a complex of it and a metal halide (Japanese Patent Publication No. 42302
4, Japanese Patent Publication No. 43-10065, etc.) When co-pulverizing a solid magnesium compound such as magnesium halide with titanium tetrachloride or titanium trichloride to support the titanium compound on the solid surface, a small amount of organic ethers is used. A method of co-pulverization by adding an aluminum halogenide complex or polyxyloxane (Japanese Patent Publication No. 49-13
5136, JP-A-48-21777), etc. In these methods, agglomeration and agglomeration occur simultaneously with atomization through the crushing operation, and the particle size of the crushed product is improved, with a diameter of 5.
Fine particles smaller than microns are reduced to a few percent by weight.

しかし、このような粉砕生成物も、重合反応に使用する
さいに、溶媒に懸濁し、ポンプなどを用いる重合機への
装入、また重合中のかくはん、などにより再び微粒子に
分散するものがあり、そのために微細な重合物または共
重合物が生成し、粒度分布が広くなるという欠点を有し
ている。
However, when such pulverized products are used in polymerization reactions, they may be suspended in a solvent and redispersed into fine particles by charging into a polymerization machine using a pump or stirring during polymerization. Therefore, it has the disadvantage that fine polymers or copolymers are produced and the particle size distribution becomes wide.

本発明の目的はチタン触媒成分の粉砕生成物の粒度を改
良し、重合反応に使用するさいも微粒子に再び分散する
ことのない粉砕処理方法を提供することにある。上記の
目的は、三塩化チタン、三塩化チタン組成物、又はハロ
ゲン化マグネシウムに四塩化チタンを担持した組成物を
、これに対し約10重量%以下の少量のエチレン又はα
−オレフインを添加し一般式AlRmX3−n1(式中
Rはアルキル又はアリール、Xは水素又はハロゲン、m
は1〜3である)で示される有機アルミニウム化合物と
共粉砕することにより達成される。
An object of the present invention is to provide a pulverization method that improves the particle size of a pulverized titanium catalyst component and prevents the titanium catalyst component from being redispersed into fine particles used in a polymerization reaction. The above purpose is to prepare titanium trichloride, a titanium trichloride composition, or a composition in which titanium tetrachloride is supported on magnesium halide in a small amount of about 10% by weight or less of ethylene or α.
- olefin is added and the general formula AlRmX3-n1 (wherein R is alkyl or aryl, X is hydrogen or halogen, m
is achieved by co-pulverizing with an organoaluminum compound shown in (1 to 3).

本発明の方法における出発原料は、三塩化チタンまたは
三塩化チタン組成物、あるいは固体担体の表面に担持さ
れた四塩化チタン、上記三塩化チタンまたは三塩化チタ
ン組成物である。
The starting material in the method of the present invention is titanium trichloride or a titanium trichloride composition, or titanium tetrachloride supported on the surface of a solid support, or the titanium trichloride or titanium trichloride composition described above.

三塩化チタンまたは三塩化チタン組成物とは、四塩化チ
タンを水素で還元して得られる三塩化チタン、四塩化チ
タンを金属で還元してえられる三塩化チタンと金属ハラ
イドとの共晶体、および四塩化チタンをSl−H結合を
有する化合物、または有機アルミニウム化合物で還元し
てえられる三塩化チタン組成物など、三塩化チタンまた
は三塩化チタンを主成分とするすべての三塩化チタン組
成物を意味する。
Titanium trichloride or a titanium trichloride composition refers to titanium trichloride obtained by reducing titanium tetrachloride with hydrogen, a eutectic of titanium trichloride and a metal halide obtained by reducing titanium tetrachloride with a metal, and Refers to all titanium trichloride compositions containing titanium trichloride or titanium trichloride as a main component, such as titanium trichloride compositions obtained by reducing titanium tetrachloride with a compound having an Sl-H bond or an organoaluminum compound. do.

また、四塩化チタン、あるいは上記の三塩化チタンまた
は三塩化チタン組成物を担持させる固体担体としては、
シリカ、アルミナ、シリカ・アルミナ、酸化硼素、マグ
ネシウム化合物など広範囲のものが用いられ、とくに限
定されないが、マグネシウム化合物、とくに・・ロゲン
化マグネシウムが好適である。
In addition, the solid carrier supporting titanium tetrachloride or the above-mentioned titanium trichloride or titanium trichloride composition includes:
A wide range of compounds can be used, such as silica, alumina, silica-alumina, boron oxide, and magnesium compounds. Although not particularly limited, magnesium compounds, particularly...magnesium rogenide, are preferred.

これらの固体担体に上記チタン化合物を担持させるには
、両者を混合共粉砕する、あるいは溶媒の存在または不
存在下で、両者を加熱反応させる、などの方法が通常行
なわれている。上記の出発原料は、とくに予じめ微粉砕
することにより次の共粉砕を有利に行なうことができる
。共粉砕において使用される一般式AlRmX3−m(
R.X及びmは前記のとおり)の有機アルミニウム化合
物は、たとえばトリエチルアルミニウム、トリイソブチ
ルアルミニウム、ジエチルアルミニウムモノクロライド
、ジイソブチルアルミニウムモノクロライド、ジイソプ
ロピルアルミニウムモノクロライド、ジエチルアルミニ
ウムモノブロマイド、エチルアルミニウムセスキクロラ
イドなどがあげられる。その使用量は出発原料中のチタ
ン1原子に対して0.01ないし100モルの範囲が好
ましい。この有機アルミニウム化合物は出発原料を予め
微粉砕するさいに加えておいてもよい。共粉砕において
存在させるエチレンまたはαオレフインの量は出発原料
に対し約10重量%以下であり、その下限は通常約0.
01重量%である。好ましくは0.1ないし10重量%
の範囲である。オレフインの量が0.01重量%より少
なくなると、たとえば0.005重量%では粒度調整効
果は認められず、反対に10重量%をこえるとき、たと
えば15重量%では粒度調整効果は認められるが、生成
ポリマーの大きさが不均一となるほかその形状も不均一
になりそのためかさ比重が低下する。また20重量%に
なると粉砕中に触媒成分が固化して粉体状の触媒が得ら
れない。上記のα−オレフインとしてはプロピレン、ブ
テン−1などの低級α−オレフインが使用されるが、こ
れらは触媒による重合のさいに使用されるモノマーと同
種である必要はない。
In order to support the titanium compound on these solid carriers, methods such as mixing and co-pulverizing the two, or subjecting the two to a heating reaction in the presence or absence of a solvent, are generally carried out. The abovementioned starting materials can advantageously be subjected to the subsequent co-pulverization, in particular by being pulverized beforehand. General formula AlRmX3-m (
R. Examples of the organoaluminum compound (where X and m are as described above) include triethylaluminum, triisobutylaluminum, diethylaluminium monochloride, diisobutylaluminum monochloride, diisopropylaluminum monochloride, diethylaluminum monobromide, ethylaluminum sesquichloride, and the like. . The amount used is preferably in the range of 0.01 to 100 mol per 1 atom of titanium in the starting material. This organoaluminum compound may be added when the starting material is pulverized in advance. The amount of ethylene or alpha olefin present in co-milling is about 10% by weight or less based on the starting material, and the lower limit is usually about 0.
01% by weight. Preferably 0.1 to 10% by weight
is within the range of When the amount of olefin is less than 0.01% by weight, for example, 0.005% by weight, no particle size adjustment effect is observed; on the other hand, when it exceeds 10% by weight, for example, 15% by weight, a particle size adjustment effect is observed, but The size of the produced polymer becomes non-uniform, and its shape also becomes non-uniform, resulting in a decrease in bulk specific gravity. Further, if the amount is 20% by weight, the catalyst components will solidify during pulverization, making it impossible to obtain a powdered catalyst. As the above-mentioned α-olefin, lower α-olefins such as propylene and butene-1 are used, but these need not be the same kind of monomers used in the catalytic polymerization.

共粉砕操作は粉体を粉砕する通常の粉砕機たとえばボー
ルミル、振動ミル、塔式ミル、ジエツトミルなどを用い
て、実質的に酸素、水分の不存在下で行われる。
The co-pulverization operation is carried out substantially in the absence of oxygen and moisture using a conventional pulverizer for pulverizing powder, such as a ball mill, vibration mill, tower mill, jet mill, etc.

また共粉砕は少量の水素共存下で行つてもよい。粉砕の
温度はとくに限定されないが、一般に−30℃ないし1
50℃の範囲であり、粉砕時間は1ないし100時間が
適当である。粉砕にさいしオレフインは気相の状態でも
また液相の状態でも導入される。本発明に従つて調製さ
れたチタン触媒成分の粉砕生成物の粒度が改善される理
由は次のとおりであると考えられるが、本発明はこの理
論的説明に拘束されるものではない。
Further, co-pulverization may be carried out in the coexistence of a small amount of hydrogen. The temperature of pulverization is not particularly limited, but is generally between -30°C and 1°C.
The temperature is in the range of 50°C and the grinding time is suitably 1 to 100 hours. During the milling, the olefin is introduced both in the gas phase and in the liquid phase. The reason for the improved particle size of the milled product of the titanium catalyst component prepared according to the present invention is believed to be as follows, although the present invention is not bound to this theoretical explanation.

出発原料のチタン化合物と有機アルミニウム化合物の共
粉砕にさいして、微粒化と凝集団粒化が併行しておこり
、それと同時に共存するエチレン又はα−オレフインの
重合により少量のポリエチレンまたはポリα−オレフイ
ンが生成し、これが粒子相互の一種の連結剤となり団粒
化したチタン成分粒子の再分散及び微粒化を防ぐ作用を
する。かくして本発明によれば、チタン触媒成分の粉砕
生成物は直径5ミクロン以下の微粒子が数重量%以下で
あり従つて粒度分布の幅も狭くなる。
During co-pulverization of the starting materials titanium compound and organoaluminum compound, atomization and agglomeration granulation occur simultaneously, and at the same time, a small amount of polyethylene or polyα-olefin is produced by polymerization of coexisting ethylene or α-olefin. This acts as a kind of bonding agent between the particles and prevents the agglomerated titanium component particles from being redispersed and atomized. Thus, according to the present invention, the pulverized product of the titanium catalyst component contains less than a few percent by weight of fine particles with a diameter of 5 microns or less, and therefore has a narrow particle size distribution.

さらにこの様にして得られたチタン成分を用いてオレフ
イン類を重合又は共重合することにより微粉末含有率の
極めて少ない、粒度分布の狭い重合体又は共重合体の製
造が可能となる。以下、本発明を実施例により説明する
Furthermore, by polymerizing or copolymerizing olefins using the titanium component thus obtained, it becomes possible to produce a polymer or copolymer with an extremely low content of fine powder and a narrow particle size distribution. The present invention will be explained below using examples.

実施例 1 四塩化チタンを高温で水素によつて還元してえた三塩化
チタン307を窒素気流中で直径12mTLの鋼球10
0個の人つた内容積約1lのポツトに入れ、30時間振
動ミル粉砕した。
Example 1 Titanium trichloride 307, obtained by reducing titanium tetrachloride with hydrogen at high temperature, was formed into a steel ball 10 with a diameter of 12 mTL in a nitrogen stream.
The mixture was placed in a pot with an internal volume of approximately 1 liter, and crushed in a vibratory mill for 30 hours.

次にジエチルアルミニウムモノクロライドO.3mlを
加え5分間粉砕し、粉砕を続けながらプロピレン200
mlを4時間で装入した。
Next, diethylaluminum monochloride O. Add 3ml of propylene and grind for 5 minutes, then add 200ml of propylene while continuing grinding.
ml was charged in 4 hours.

このようにして得られた三塩化チタンの微粒子含有率を
以下に示す方法で測定した結果3.4wt%であつた。
The fine particle content of the titanium trichloride thus obtained was measured by the method shown below and was found to be 3.4 wt%.

窒素で置換された直立管中に、粉砕して得られた三塩化
チタンを入れO.7CTrL/secの速度で窒素ガス
を下方より上方に15時間通した。
The titanium trichloride obtained by pulverization was placed in a standpipe purged with nitrogen, and the mixture was heated to O. Nitrogen gas was passed from the bottom to the top for 15 hours at a rate of 7 CTrL/sec.

これによつて直立管から溢流した微粒子をそれに連結し
た集塵器に捕集し、装入量に対する上記の捕集量の比で
表わし、粉砕生成物の微粒子含有率とした。以下の実施
例及び比較例においても微粒子は上記の測定方法で定義
される意昧で使われる。この微粒子は5μ以下と考えら
れる。上記の粒度調整三塩化チタンを用いてプロピレン
の重合を行なつた。
As a result, the fine particles overflowing from the standpipe were collected in a dust collector connected thereto, and expressed as the ratio of the above collected amount to the charged amount, which was taken as the fine particle content of the pulverized product. Also in the following Examples and Comparative Examples, fine particles are used in the meaning defined in the above measurement method. This fine particle is considered to be 5μ or less. Polymerization of propylene was carried out using the above particle size-adjusted titanium trichloride.

参考例 1 内容積21f)SUS−3・2製オートクレーフ中に、
窒素雰囲気下でヘプタン1000mj、粒度調製三塩化
チタン1.27、ジエチルアルミニウムモノクロライド
2.Omlを装入した。
Reference example 1 Internal volume 21f) In an autoclave made of SUS-3/2,
Under a nitrogen atmosphere, heptane 1000 mj, particle size adjustment titanium trichloride 1.27, diethylaluminum monochloride 2. Oml was charged.

オートクレーブをプロピレンで置換したのち、水素を分
圧でO.5kg/c?まで装入した。
After purging the autoclave with propylene, hydrogen was pumped at partial pressure to O. 5kg/c? I loaded it up to.

オートクレーブの内容物をかきまぜながら、加熱して5
分後に内部温度を70℃まで昇温し、70℃で重合を継
続した。重合中はプロピレンを連続的に圧入して内部圧
力を5k9/cdゲージに保つた。重合時間4時間でプ
ロピレンの装入を止め、メタノ一ル300mjを加えて
触媒を分解し、483yのポリマーが得られた。
Stir the contents of the autoclave and heat for 5 minutes.
After a few minutes, the internal temperature was raised to 70°C, and polymerization was continued at 70°C. During the polymerization, propylene was continuously injected to maintain the internal pressure at 5k9/cd gauge. After 4 hours of polymerization time, charging of propylene was stopped, and 300 mj of methanol was added to decompose the catalyst, yielding a polymer of 483y.

得られたポリマーの沸とうn−ヘプタン抽出残(以下■
と略記する)は82.3%、極限粘度数1.83、かさ
比重はO.427/mlであり、重合反応の活性は10
17/7−Tic13組成物・hr(以下7/7−ca
t−hrと略記する)であつた。
The boiling n-heptane extraction residue of the obtained polymer (hereinafter ■
) is 82.3%, the intrinsic viscosity is 1.83, and the bulk specific gravity is O. 427/ml, and the activity of the polymerization reaction is 10
17/7-Tic13 composition/hr (hereinafter 7/7-ca
(abbreviated as t-hr).

7得られたポリマーパウダーを200meshふるいで
ふるつて200mesh以下の微粒を測定した結果、9
.3wt%であつた。
7 The obtained polymer powder was sieved through a 200 mesh sieve and fine particles of 200 mesh or less were measured, and the result was 9.
.. It was 3wt%.

比較例 1 実施例1の方法に於て四塩化チタンを高温で水素還元し
て得られた三塩化チタンを単に34時間粉砕して、実施
例1と同様に三塩化チタンの微粒子を測定した結果18
.3wt%であつた。
Comparative Example 1 Titanium trichloride obtained by reducing titanium tetrachloride with hydrogen at high temperature in the method of Example 1 was simply ground for 34 hours, and the fine particles of titanium trichloride were measured in the same manner as in Example 1. 18
.. It was 3wt%.

この三塩化チタンを用いて参考例1と同様に重合を行つ
たところ、生成ポリマーの■は80.3%、極限粘度数
1,73、かさ比重0.38y/ml、200mesh
以下の微粒28.7%であり、重合活性は837/7−
cat−hrであつた。実施例 2 四塩化チタンを塩化アルミニウムの存在下でアルミニウ
ム粉末で還元し、その組成がほ父Ticl3・i−A1
c13である共晶体を得た。
Polymerization was carried out in the same manner as in Reference Example 1 using this titanium trichloride.
The following fine particles are 28.7%, and the polymerization activity is 837/7-
It was cat-hr. Example 2 Titanium tetrachloride was reduced with aluminum powder in the presence of aluminum chloride, and its composition was as follows: Ticl3・i-A1
A eutectic of c13 was obtained.

この共晶体307を実施例1と同様に30時間粉砕した
のち更にジエチルアルミニウムモノクロライド0.3m
e、エチレン100m1を用いて実施例1と同様に処理
した。これを実施例1と同様に微粒を測定した結果3.
7%であつた。
This eutectic 307 was crushed for 30 hours in the same manner as in Example 1, and then 0.3 m of diethylaluminum monochloride was added.
e, treated in the same manner as in Example 1 using 100 ml of ethylene. As a result of measuring fine particles in the same manner as in Example 1, 3.
It was 7%.

参考例 2 この粒度調整三塩化チタン0.67、ジエチルアルミニ
ウムモノクロライド1.2m1を用いて参考例1と同様
に重合を行なつた。
Reference Example 2 Polymerization was carried out in the same manner as in Reference Example 1 using 0.67 ml of this particle size-adjusted titanium trichloride and 1.2 ml of diethylaluminum monochloride.

生成ポリマーのは91,1%、極限粘度数1,68、か
さ比重0.43、200mesh以下の微粒7.8wt
%であり、重合活性は2657/7一Cat−Hrであ
つた。
The resulting polymer is 91.1%, has an intrinsic viscosity of 1.68, has a bulk specific gravity of 0.43, and has 7.8wt of fine particles of 200mesh or less.
%, and the polymerization activity was 2657/7-Cat-Hr.

比較例 2 実施例2と同様な金属アルミニウムで還元してえた三塩
化チタン共晶体を単に34hr粉砕し、実施例1と同様
に測定したところ微粒は21.3%であつた。
Comparative Example 2 A titanium trichloride eutectic obtained by reduction with metal aluminum as in Example 2 was simply ground for 34 hours and measured in the same manner as in Example 1, and the fine particles were found to be 21.3%.

この三塩化チタンを用いて参考例2と同様に重合を行な
つたところ、生成ポリマーのは8869%、極限粘度数
1.68、かさ比重0.41y/ml、200mesh
以下の微粒23.4%であつた。
When polymerization was carried out in the same manner as in Reference Example 2 using this titanium trichloride, the resulting polymer was 8869%, intrinsic viscosity 1.68, bulk specific gravity 0.41y/ml, and 200mesh.
The following fine particles were 23.4%.

また重合活性は232y/y−Cat−Hrであつた。
実施例 3実施例2の方法に於て、粒度調整時に使用す
るオレフインをエチレンに代えて200mjのブテン−
1を用いた以外は同様に行なつたところ三塩化チタンの
微粒は443%であつた。
Moreover, the polymerization activity was 232y/y-Cat-Hr.
Example 3 In the method of Example 2, 200 mj of butene was used instead of ethylene for the olefin used during particle size adjustment.
When the same procedure was carried out except that 1 was used, the proportion of fine particles of titanium trichloride was 443%.

参考例 3 〉※
重合で得られたポリプロピレンのは90.8%、極限粘
度数1,77、かさ比重0.42、200mesh以下
の微粒8.3%であつた。
Reference example 3 〉※
The polypropylene obtained by polymerization had a content of 90.8%, an intrinsic viscosity of 1.77, a bulk specific gravity of 0.42, and 8.3% of fine particles of 200 mesh or less.

また本重合反応での活性は235y/7一Cat−Hr
であつた。実施例 4無水塩化マグネシウム29.4y
、四塩化チタン0.67を実施例1と同様に振動ミルで
20時間粉砕したのち、トリイソブチルアルミニウム0
.3m1を加え粉砕を続けながらエチレンを507/H
rの速度で4時間導入し粒度調整チタン組成物を作つた
In addition, the activity in the main polymerization reaction is 235y/7-Cat-Hr.
It was hot. Example 4 Anhydrous magnesium chloride 29.4y
, titanium tetrachloride 0.67 was pulverized in a vibration mill for 20 hours in the same manner as in Example 1, and then triisobutylaluminum 0.67
.. Add 3ml of ethylene and continue grinding to 507/H of ethylene.
A particle-sized titanium composition was prepared by introducing at a rate of r for 4 hours.

これを実施例1と同様にして微粒を測定した結果、5.
0wt%であつた。
As a result of measuring fine particles in the same manner as in Example 1, 5.
It was 0wt%.

参考例 4 上記チタン組成物とトリイソブチルアルミニウムを触媒
として、参考例1の方法に準じてエチレンの重合を行つ
たところ生成ポリマーの200mesh以下の微粒は3
.8%であつた。
Reference Example 4 When ethylene was polymerized according to the method of Reference Example 1 using the above titanium composition and triisobutylaluminum as catalysts, the resulting polymer had fine particles of 200 mesh or less.
.. It was 8%.

比較例 3 実施例4の方法においてエチレンによる粒度調整を行わ
なかつた場合の粉砕チタン組成物の微粒は18.7%、
生成ポリエチレンの200mesh以下の微粒は15.
3%であつた。
Comparative Example 3 The fine particles of the pulverized titanium composition when the particle size adjustment with ethylene was not performed in the method of Example 4 was 18.7%,
Fine particles of 200 mesh or less of produced polyethylene are 15.
It was 3%.

比較例4〜6 実施例2の方法に於て共粉砕時に添加するエチレンの量
を変化させて同じ実験をくり返して触媒を調製した。
Comparative Examples 4 to 6 Catalysts were prepared by repeating the same experiment as in Example 2 by changing the amount of ethylene added during co-pulverization.

結果を表1に示す。比較例4A、5Aで調製した触媒を
用いて重合を行なつた結果を表2に示す。
The results are shown in Table 1. Table 2 shows the results of polymerization using the catalysts prepared in Comparative Examples 4A and 5A.

Claims (1)

【特許請求の範囲】 1 三塩化チタン、三塩化チタン組成物、又はハロゲン
化マグネシウムに四塩化チタンを担持した組成物を、こ
れに対し約10重量%以下の少量のエチレン又はα−オ
レフィンを添加して、一般式AlR_mX_3_−_m
(こゝでRはアルキル基又はアリール基を示し、Xは水
素またはハロゲンを表わし、mは1〜3である)で示さ
れる有機アルミニウム化合物と共粉砕することを特徴と
する、エチレンまたはα−オレフィン類重合用触媒成分
の製造方法。 2 三塩化チタン、三塩化チタン組成物、又はハロゲン
化マグネシウムに四塩化チタンを担持した組成物を予じ
め微粉砕する特許請求の範囲第1項記載の触媒成分の製
造方法。 3 上記エチレン又はα−オレフィンを約0.01ない
し10重量%の範囲で添加する特許請求の範囲第1項記
載の触媒成分の製造方法。
[Claims] 1. Titanium trichloride, a titanium trichloride composition, or a composition in which titanium tetrachloride is supported on magnesium halide, to which a small amount of ethylene or α-olefin of about 10% by weight or less is added. Then, the general formula AlR_mX_3_-_m
(herein, R represents an alkyl group or an aryl group, X represents hydrogen or halogen, and m is 1 to 3). A method for producing a catalyst component for polymerizing olefins. 2. The method for producing a catalyst component according to claim 1, wherein titanium trichloride, a titanium trichloride composition, or a composition in which titanium tetrachloride is supported on magnesium halide is pulverized in advance. 3. The method for producing a catalyst component according to claim 1, wherein the ethylene or α-olefin is added in an amount of about 0.01 to 10% by weight.
JP5542376A 1976-05-17 1976-05-17 Method for producing polymerization catalyst component Expired JPS5928570B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP5542376A JPS5928570B2 (en) 1976-05-17 1976-05-17 Method for producing polymerization catalyst component
GR53342A GR63148B (en) 1976-05-17 1977-04-30 Process for the polymerization of ethylene of a-olefins and catalyst therefor
CA277,885A CA1097316A (en) 1976-05-17 1977-05-06 PROCESS FOR THE POLYMERIZATION OF ETHYLENE OR .alpha.- OLEFINS AND CATALYST THEREFOR
GB19013/77A GB1544193A (en) 1976-05-17 1977-05-06 Polymerisation of olefins and catalyst component therefor
PT66524A PT66524B (en) 1976-05-17 1977-05-06 Process for the polymerization of ethylene or alpha-olefins and a catalyst for the same
MX169120A MX145423A (en) 1976-05-17 1977-05-13 IMPROVED PROCEDURE FOR THE PREPARATION OF A CATALYST FOR THE POLYMERIZATION OF STYLENE AND / OL-OLEPHINS
IT23588/77A IT1104772B (en) 1976-05-17 1977-05-16 PROCEDURE FOR THE POLYMERIZATION OF ETHYLENE AND / OR ALFA-OLEFINE, AND RELATED CATALYST
CS319977A CS212796B2 (en) 1976-05-17 1977-05-16 Method of preparing titanium component of ziegler type catalysts
DE19772722150 DE2722150A1 (en) 1976-05-17 1977-05-16 PROCESS AND CATALYST FOR THE MANUFACTURING OF POLYOLEFINS
FR7714920A FR2352000A1 (en) 1976-05-17 1977-05-16 PROCESS FOR POLYMERIZATION OF ETHYLENE OR A-OLEFINS USING TITANIUM AND ALUMINUM-BASED CATALYZERS AND NEW PRODUCTS THUS OBTAINED AT HIGH STEREOREGULARITY
AT350477A AT360751B (en) 1976-05-17 1977-05-16 METHOD FOR POLYMERIZING AETHYLENE AND / OR ALPHA OLEFINES
YU1221/77A YU40477B (en) 1976-05-17 1977-05-16 Process for obtaining catalysts used in the polymerisation of alpha-olefines
BR7703149A BR7703149A (en) 1976-05-17 1977-05-16 PROCESS FOR POLYMERIZATION OF ETHYLENE OR ALPHA-OLEFINS AND CATALYST FOR THE SAME
US05/797,227 US4187385A (en) 1976-05-17 1977-05-16 Process for the polymerization of ethylene or alpha-olefins and catalyst therefor
NLAANVRAGE7705370,A NL184005C (en) 1976-05-17 1977-05-16 PROCESS FOR PREPARING A CATALYST FOR POLYMERIZING ETHENE AND / OR ALFA OLEFINS AND POLYMERIZATION TO BE CARRIED OUT.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5542376A JPS5928570B2 (en) 1976-05-17 1976-05-17 Method for producing polymerization catalyst component

Publications (2)

Publication Number Publication Date
JPS52138492A JPS52138492A (en) 1977-11-18
JPS5928570B2 true JPS5928570B2 (en) 1984-07-13

Family

ID=12998157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5542376A Expired JPS5928570B2 (en) 1976-05-17 1976-05-17 Method for producing polymerization catalyst component

Country Status (2)

Country Link
JP (1) JPS5928570B2 (en)
CS (1) CS212796B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919567B2 (en) * 1978-11-27 1984-05-07 昭和電工株式会社 Improved method for producing ethylene polymers

Also Published As

Publication number Publication date
JPS52138492A (en) 1977-11-18
CS212796B2 (en) 1982-03-26

Similar Documents

Publication Publication Date Title
JP3303239B2 (en) Supported catalyst
EP0584626A2 (en) Process for producing ethylene polymers having reduced hexane extractable content
JPS6123205B2 (en)
EP0435250A2 (en) Preparation of very low molecular weight polyethylene in a fluidized bed
WO2006020623A1 (en) Robust spray-dried ziegler-natta procatalyst and polymerization process employing same
EP1778746A1 (en) Robust spray-dried ziegler-natta procatalyst and polymerization process employing same
JP2007512416A (en) Spray dried mixed metal Ziegler catalyst composition
JPH03290410A (en) Catalytic composition for olefin polymerization activated by dimethyl aluminium chloride
JPS6338363B2 (en)
US4202953A (en) Process for the production of polyolefins
AU584693B2 (en) Process for simultaneously dimerizing ethylene and copolymerizing ethylene with the dimerized product
JPH02107605A (en) Catalyst component
JPS5928570B2 (en) Method for producing polymerization catalyst component
JPH0336841B2 (en)
WO1996030122A1 (en) Polymer-supported catalyst for olefin polymerization
JPS5831086B2 (en) Method for producing titanium trichloride catalyst component for α-olefin polymerization
JPS5837012A (en) Manufacture of catalyst component and polymerization of 1-alkene therewith
JPS6160085B2 (en)
JPS58215408A (en) Polymerization of olefin
JPS6026407B2 (en) Method for producing ethylene copolymer
US4158088A (en) Process for the polymerization of ethylene or α-olefins and catalyst therefor
JPS5840568B2 (en) Method for polymerizing ethylene or α-olefins
KR840001168B1 (en) Titanium tricheoride catalytic component
JPS6363561B2 (en)
JPS6215562B2 (en)