JPS5926661B2 - Electroless plating active metal material paste and plating method using the same - Google Patents

Electroless plating active metal material paste and plating method using the same

Info

Publication number
JPS5926661B2
JPS5926661B2 JP8821780A JP8821780A JPS5926661B2 JP S5926661 B2 JPS5926661 B2 JP S5926661B2 JP 8821780 A JP8821780 A JP 8821780A JP 8821780 A JP8821780 A JP 8821780A JP S5926661 B2 JPS5926661 B2 JP S5926661B2
Authority
JP
Japan
Prior art keywords
plating
electroless
active metal
metal
weight percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8821780A
Other languages
Japanese (ja)
Other versions
JPS5713164A (en
Inventor
九州男 久々原
宏光 多木
紀哉 佐藤
克彦 本城
誠 小川
正二 黒田
健一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8821780A priority Critical patent/JPS5926661B2/en
Publication of JPS5713164A publication Critical patent/JPS5713164A/en
Publication of JPS5926661B2 publication Critical patent/JPS5926661B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques

Description

【発明の詳細な説明】 本発明は製造容易、安価にしてかつ諸特性の安定したセ
ラミック物質への無電解ニッケルまたは銅メッキの活性
金属材料ペーストおよびそれによるメッキ方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an active metal material paste for electroless nickel or copper plating on ceramic materials that is easy to manufacture, inexpensive, and has stable properties, and a plating method using the paste.

従来から誘電体、圧電体、半導体、絶縁体の機能特性を
利用したセラミック電子部品の電極材料としては磁器素
体の表面にAg、Ag−Pd、Ag一Pを、Ag−Ni
等の貴金族を主体とした焼付電極法が実用化されている
Conventionally, electrode materials for ceramic electronic components that utilize the functional characteristics of dielectrics, piezoelectrics, semiconductors, and insulators include Ag, Ag-Pd, Ag-P, and Ag-Ni on the surface of the ceramic body.
Baked electrode methods based on noble metals such as et al. have been put into practical use.

しかし近年の貴金属の高騰に伴ない各種メッキ方法が開
発されつつある。しかしながらこれらのメッキ方法にも
多くの欠点を有している。例えば磁器素体面に焼付銀電
極を形成し、その後ニッケル電極、銅電極等を電解メッ
キ法により形成することも可能であるが、この方法では
金属間で歪のあることと焼付金属層表面が粗面で多くの
小孔を有するため、メッキ処理においてメッキ液が内部
に浸透し、焼付金属層と磁器素体面との接着強度を劣化
させる欠点があつた。
However, various plating methods are being developed in response to the recent rise in the price of precious metals. However, these plating methods also have many drawbacks. For example, it is possible to form baked silver electrodes on the surface of the porcelain body and then form nickel electrodes, copper electrodes, etc. by electrolytic plating, but this method suffers from distortion between the metals and a rough surface of the baked metal layer. Since the surface has many small holes, the plating solution penetrates inside during the plating process, which deteriorates the adhesive strength between the baked metal layer and the surface of the porcelain body.

他の方法としては無電解メッキ法が用いられており、無
電解ニッケルメッキ、銅メッキは最初にσ塩化第一スズ
を吸着させ塩化パラジウムを化学反応により活性化処理
を施すことが一般的であつた。
Other methods include electroless plating, and for electroless nickel plating and copper plating, it is common to first adsorb σ stannous chloride and activate palladium chloride through a chemical reaction. Ta.

しかしセラミツク電子部品用の電極として使用する場合
には多くの問題点がある、即ち電極材料および関連材料
の種類取付方法によつて引張強度(銀焼付電極に比べて
1/2に低下)、さらには電気特性(特に寿命テストに
よる特性劣化)等が著しく劣化するものであつた。例え
ば磁器コンデンサ、圧電素子、半導体素子に電極を形成
する場合無電解ニツケルメツキ法はその法性質上基板全
周而上に形成され易く、その場合は周側面の皮膜を研削
除去して対向容量電極を形成するが、この場合は沿面耐
電圧距離は基板の厚みで決定され、電極周辺部における
電界の集中沿面汚染によつて絶縁破壊が起り易く、基板
の厚みを余り薄くすることはできないものであつた。ま
たこれ等の方法に対し部分メツキ方法としては磁器表面
に所要パターンの金属層を形成するに際し、あらかじめ
磁器表面の所要部に樹脂のメツキレジストを附与し、次
いで磁器面を活性化した後にメツキレジストを除去し、
その後無電解メツキを施して磁器表面に金属層を形成す
る方法、真空蒸着法、フオトエツチング法等種々の方法
があるが、いづれもセラミツク電子部品用電極としては
満足する結果が得られない。このように、従米から知ら
れているメツキ附与方法ではメツキの密着性が悪く特に
小型化を目的としたコンデンサ製品の素子厚みは0.1
〜0.3mmと薄く形状は4.5〜16φと種々あり量
産性を考慮した場合困難なものであつた。
However, there are many problems when using ceramics as electrodes for electronic components, including the tensile strength (reduced to 1/2 compared to silver baked electrodes), depending on the type of electrode material and related materials, and the mounting method. The electrical properties (particularly property deterioration due to life test) etc. were significantly deteriorated. For example, when forming electrodes on ceramic capacitors, piezoelectric elements, and semiconductor elements, the electroless nickel plating method tends to form electrodes on the entire circumference of the substrate due to its legal nature. However, in this case, the creepage withstand voltage distance is determined by the thickness of the substrate, and dielectric breakdown is likely to occur due to creeping contamination of the concentrated electric field around the electrode, so the thickness of the substrate cannot be made very thin. Ta. In contrast to these methods, a partial plating method involves applying a resin plating resist to the required portions of the porcelain surface in advance, and then activating the porcelain surface before plating to form a metal layer with a desired pattern on the porcelain surface. remove the resist,
There are various methods such as electroless plating to form a metal layer on the porcelain surface, vacuum evaporation method, and photoetching method, but none of them yields satisfactory results as electrodes for ceramic electronic components. In this way, with the plating method known from Jubai, the adhesion of the plating is poor, and the element thickness of capacitor products aimed at miniaturization is 0.1.
The thickness is as thin as ~0.3 mm, and the shapes vary from 4.5 to 16 φ, making it difficult when mass production is considered.

さらに容量値を少しでも大きく得る為全面に電極を形成
した場合は上記にも述べた様に寿命特性が極度に悪く信
頼性の点からも磁器の電極部に縁を設ける事が設計上必
要であつた。本発明は上記のような従来の無電解メツキ
法とは異なる新しい方法によつてセラミツク物質の必要
個所に取付けることが容易であるメツキ活性金属材料ペ
ーストおよびそれによる−メツキ方法を提供するもので
ある。
Furthermore, if electrodes are formed on the entire surface in order to increase the capacitance value as much as possible, as mentioned above, the life characteristics will be extremely poor, and from the point of view of reliability, it is necessary to provide a rim around the porcelain electrode part. It was hot. The present invention provides a plating active metal material paste that can be easily attached to required locations on ceramic materials by a new method different from the conventional electroless plating method as described above, and a plating method using the paste. .

即ち本発明は誘電体、半導体、圧電体、絶縁体等のセラ
ミツク物質への無電解ニツケルまたは銅メツキの活性用
金属として、白金族化合物を溶剤で溶解させてなる金属
ワニスを繊維索系、ゴム系、ビニール系、フエノール系
、樹脂およびその誘導体等の脂溶性、水溶性、Tif7
J性樹脂の1種あるいは2種以上のビヒクルに金属成分
に換算し0.03〜5.0重量パーセントを分散して活
性金属材料ペーストを構成し、該ペーストをセラミツク
物質の必要個所へスクリーン印刷、吹付法あるいはその
他の方法により塗布しその後420〜920℃の温度範
囲内で焼付処理を施こしその後無電解メツキを行なうこ
とを特徴とするものであり、本発明の方法によつて得た
電極は従来までの化学還元メツキ方法によつて得たもの
に比べて接着強度、電気特性等の諸特性においても優秀
な特性を得るものである。
That is, the present invention uses a metal varnish made by dissolving a platinum group compound in a solvent as an active metal for electroless nickel or copper plating on ceramic materials such as dielectrics, semiconductors, piezoelectrics, and insulators. type, vinyl type, phenol type, resin and its derivatives, etc., fat-soluble, water-soluble, Tif7
An active metal material paste is prepared by dispersing 0.03 to 5.0 weight percent of the metal component in one or more vehicles of J-type resin, and the paste is screen printed on the required location of the ceramic material. The electrode obtained by the method of the present invention is characterized in that it is coated by spraying or other methods, then subjected to baking treatment within a temperature range of 420 to 920°C, and then electroless plating. Compared to those obtained by conventional chemical reduction plating methods, this method provides excellent properties such as adhesive strength and electrical properties.

以下本発明の実施例および限定理由について述べる。Examples of the present invention and reasons for limitations will be described below.

無電解メツキ下地活性ペーストの作成方法としては、塩
化白金酸、塩化パラジウム、塩化ロジウム、塩化イリジ
ウム酸、塩化ルテニウム、オスミン酸等の白金族化合物
を水あるいは鉱酸に溶解してカルビトールターピネオル
、セロソルブアルコール等のワニスを作り、有機質バイ
ンダとしては、エチルセルローズ、酢酸セルローズ、ブ
チルゴム、ポリビニールブチラール、フエノール樹脂等
の樹脂を用い、成分割合としては金属成分が0.03〜
5.0%、樹脂分1〜10%、炭素粉末を0.5〜30
%、残分に溶剤成分を添加して、スクリーン印刷用とし
ては粘度が約30,000〜60,000cps、吹付
用としては約100〜400cpsに調整し、セラミツ
ク物質への無電解メツキ活性用ペーストとした。
The method for preparing the active paste for electroless plating is to dissolve platinum group compounds such as chloroplatinic acid, palladium chloride, rhodium chloride, chloroiridic acid, ruthenium chloride, osmic acid, etc. in water or mineral acid and add carbitol terpineol. , a varnish such as cellosolve alcohol is made, and the organic binder is a resin such as ethyl cellulose, cellulose acetate, butyl rubber, polyvinyl butyral, or phenol resin, and the metal component is 0.03~
5.0%, resin content 1-10%, carbon powder 0.5-30%
%, and a solvent component is added to the residue to adjust the viscosity to about 30,000 to 60,000 cps for screen printing and about 100 to 400 cps for spraying, and prepare a paste for electroless plating activation on ceramic materials. And so.

なおスクリーン印刷の寸法精度を向上させる為に炭素成
分を0.5〜30wt%の範囲内で添加することによつ
て印刷精度を著しく高めることが可能である。従米から
の責金属ペーストは貰金属成分が30wt%以上である
為に印刷精度が良好であつた。しかし樹脂成分のみでフ
イラ成分が含まれていないとタレが発生するが、これを
防止する為に炭素成分は優れた効果を発揮する。なお0
,5wt%以下では効果が薄く30wt%以上では焼付
時に完全に飛散せず炭素成分が残るために電気特性等に
悪影響を与え好ましくない。次にセラミツク物質への利
用方法としては電子部品として使用する誘電体磁器素子
としてBaTiO3一BaZrO3−CaTlO3系で
厚み0.15〜2mm1形状4〜20φの素子を用いて
その両面に0.5朋の縁が残るようなマスクを用い印刷
や吹付方法を用いて塗布後80〜150℃の温度で乾燥
して溶剤を蒸発させた後電気炉により420〜92『C
の温度範囲で焼付を行ない白金族成分の粒子を析出させ
る。
In addition, in order to improve the dimensional accuracy of screen printing, it is possible to significantly improve the printing accuracy by adding a carbon component within the range of 0.5 to 30 wt%. The metal paste from Jubei had good printing accuracy because the metal content was 30 wt% or more. However, if it contains only a resin component and does not contain a filler component, sagging will occur, but the carbon component has an excellent effect in preventing this. Note that 0
If it is less than 5 wt%, the effect will be weak, and if it is more than 30 wt%, it will not be completely dispersed during baking and a carbon component will remain, which will adversely affect electrical properties etc., which is not preferable. Next, as a method for using ceramic materials, we use a BaTiO3-BaZrO3-CaTlO3 system element with a thickness of 0.15 to 2 mm and a shape of 4 to 20 φ as a dielectric ceramic element used as an electronic component. After coating using a printing or spraying method using a mask that leaves edges, dry at a temperature of 80 to 150 °C to evaporate the solvent, and then heat in an electric furnace at 420 to 92 °C.
Baking is carried out at a temperature range of 100 to precipitate particles of platinum group components.

なお420〜920℃の間で焼付を行なうことの必要性
はセラミツク基板面に強固な白金族成分の粒子層を形成
することであり、420℃以下では樹脂成分が残り、N
iやCuメツキの付着が悪く920℃以上では析出粒子
が半融して活性が低下するので好ましくない。Niメツ
キとしては硫酸ニツケルに錯化剤として有機酸ナトリウ
ム塩、還元剤として次亜リン酸ナトリウム(またはヒド
ラジン、ボラザン化合物等)を含むメツキ液に浸漬して
ニツケル膜を形成した。
The necessity of baking between 420 and 920°C is to form a strong particle layer of platinum group components on the ceramic substrate surface; below 420°C, resin components remain and N
At temperatures above 920° C., the adhesion of i and Cu plating is poor and the precipitated particles are half-melted, resulting in a decrease in activity, which is not preferable. For Ni plating, a nickel film was formed by immersing nickel sulfate in a plating solution containing organic acid sodium salt as a complexing agent and sodium hypophosphite (or hydrazine, borazane compound, etc.) as a reducing agent.

また銅メツキとしては硫酸銅にロツシエル塩、苛性ソー
ダ、ホルマルンを加えて銅浴とし銅の無電解メツキを行
なつた。なお本発明の無電解メツキ活性金属材料は白金
族成分の粒子層として1μ以下で導電性のない状態で十
分にその機能を発揮することができる。なお本実施例と
しては誘電体磁器材料のみについて述べたが、その他の
圧電体、絶縁体、半導体磁器、ガラス等420℃以上に
耐えるセラミツク物質であれば全く問題は無く、従来の
無電解メツキ法とは全く異なる新しいメツキ下地形成方
法である。
For copper plating, a copper bath was prepared by adding Rothsiel's salt, caustic soda, and formalin to copper sulfate, and electroless plating of copper was performed. The electroless plating active metal material of the present invention can fully exhibit its function as a particle layer of a platinum group component with a particle layer of 1 μm or less and in a non-conductive state. Although this example describes only dielectric ceramic materials, there is no problem with other ceramic materials that can withstand temperatures of 420°C or higher, such as piezoelectric materials, insulators, semiconductor ceramics, and glass, and conventional electroless plating methods can be used. This is a new method of forming a plating base that is completely different from the previous one.

特に局部メツキ等に用いるとその特色と効果を充分に発
揮できるものである。第1表において、Jff).1,
8,12,18,26,27は本発明外の実施例あるい
は比較例である。
In particular, when used for local plating, etc., its characteristics and effects can be fully demonstrated. In Table 1, Jff). 1,
Examples 8, 12, 18, 26, and 27 are examples other than the present invention or comparative examples.

ここで黒1〜8は白金族化合物の含有量を変えた場合の
実施例でNiメツキを施した場合である。本発明範囲内
の実施例は良好な特性を示している。特に白金族化合物
の含有量としては0.1〜5wt%附近がセラミツク基
板との接着強度も高く、誘電体セラミツクに利用した場
合誘電特性あるいは寿命テストにおいても安定した特性
を示しており、優秀なものである。黒9〜11はCuメ
ツキを施した場合の実施例であるが、Niメツキに比べ
特性が低下する傾向にあつた。應12〜18は白金族化
合物の量を含有率を1wt%に一定にして焼付温度を変
えた場合の実施例である。焼付温度が370℃以下でN
iメツキの析出が均一でなく、目的とする電極は得られ
なかつた。また洗18で焼付温度が高いと一部焼結が進
行して活性が低下し、Niの析出状態その他諸特性結果
も低い水準になつている。黒19,20はCuメツキを
施した場合の実施例であるが、Njに比べて特性が低下
する傾向にあるが実用上は特性を十分保証できるもので
ある。屋21〜25は白金族化合物の含有量をWt%と
一定にしてその金属成分を変えた場合の実施例であり、
そのいずれの成分についても満足すべき特性が得られる
。屋26は従来から++公知のSnCl2,PdCl2
の水溶液を用いてSn−Pd+8の酸化還元による活性
処理を行ないその後全面Niメツキを施こし、その後周
辺部を研摩によつて電極金属を除去した試料であり、こ
れらは寿命テストで劣化が大きくまた引張強度も低いも
のであつた。
Here, black 1 to 8 are examples in which the content of the platinum group compound was changed, and Ni plating was applied. Examples within the scope of the invention show good properties. In particular, a platinum group compound content of around 0.1 to 5 wt% has high adhesion strength to ceramic substrates, and when used in dielectric ceramics, it shows stable dielectric properties and life test properties, making it an excellent material. It is something. Black 9 to 11 are examples in which Cu plating was applied, but the characteristics tended to be lower than those with Ni plating. Examples 12 to 18 are examples in which the content of the platinum group compound was kept constant at 1 wt % and the baking temperature was changed. N when baking temperature is below 370℃
The i-plating was not deposited uniformly, and the desired electrode could not be obtained. In addition, when the baking temperature in washing 18 is high, sintering partially progresses and the activity decreases, and the Ni precipitation state and other properties are also at a low level. Black 19 and 20 are examples in which Cu plating is applied, and although the characteristics tend to be lower than those of Nj, the characteristics can be sufficiently guaranteed in practical use. Yas. 21 to 25 are examples in which the content of platinum group compounds was kept constant at Wt% and the metal components were changed,
Satisfactory properties can be obtained for any of the components. Ya 26 is conventionally known SnCl2, PdCl2
These samples were subjected to oxidation-reduction activation treatment of Sn-Pd+8 using an aqueous solution of 100%, and then Ni plating was applied to the entire surface, and the electrode metal was removed by polishing the surrounding area. The tensile strength was also low.

應27は従来から一般的に用いられている銀焼付電極の
比較例である。本発明の下地活性ペーストと比較すると
初期値には有違差が認められないが、熱エージング゛後
の接着強度および寿命劣化特性に優れた値を示している
。第2表は黒4,5,6の組成に対して炭素粉末を0.
5〜35%の範囲内で添加した場合の実施例である。
27 is a comparative example of a conventionally commonly used silver-baked electrode. When compared with the base active paste of the present invention, no difference is observed in the initial values, but it shows excellent values in adhesive strength and life deterioration characteristics after heat aging. Table 2 shows 0.0% carbon powder for the compositions of black 4, 5, and 6.
This is an example in which it is added within a range of 5 to 35%.

特性的には屋4,5,6と大差ないが、Niメツキ形成
時の寸法精度を著しく改善するものである。ここで0.
5%未満ではその効果が薄く30%を越えると剥離が発
生してバラツキが増大する。さらにこれ等メツキ中CO
,Cr,B等の微量成分を共被着させることによつて熱
1−ジング特性を改善できる。
Although the characteristics are not much different from Ya 4, 5, and 6, the dimensional accuracy during Ni plating formation is significantly improved. Here 0.
If it is less than 5%, the effect will be weak, and if it exceeds 30%, peeling will occur and variations will increase. Furthermore, these are the COs in Metsuki.
By co-depositing trace components such as , Cr, B, etc., thermal 1-ging characteristics can be improved.

以上のように本発明の無電解メツキ活性ペーストおよび
それによるメツキ方法を実施することによつて従来まで
困難とされていたセラミツク物質への司部メツキが容易
に形成することができまた従来の焼付電極銀に比べて価
格も安価で特性的にも良好であり、さらに工業的に量産
化に適した産業価値の高い無電解メツキ活性金属材料ペ
ーストおよびそれによるメツキ方法を得るに至つた。
As described above, by carrying out the electroless plating active paste of the present invention and the plating method using the paste, it is possible to easily form the main part plating on ceramic materials, which has been considered difficult in the past, and it is also possible to form plated parts using the conventional baking method. We have obtained an electroless plating active metal material paste and a plating method using the paste, which is less expensive and has better characteristics than electrode silver, and which is suitable for industrial mass production and has high industrial value.

Claims (1)

【特許請求の範囲】 1 セラミック物質への無電解ニッケルまたは銅メッキ
の活性用金属として白金族化合物を溶剤に溶解させてな
る金属ワニスを脂溶性樹脂、水溶性樹脂、両性樹脂の1
種あるいは2種以上のビヒクルに金属成分として0.0
3〜5.0重量パーセント、および2μ以下の炭素粉末
を0.5〜30重量パーセント分散させてなる無電解メ
ッキ活性金属材料ペースト。 2 セラミック物質への無電解ニッケルまたは銅メッキ
の活性用金属としての白金族化合物を溶剤に溶解させて
なる金属ワニスを脂溶性樹脂、水溶性樹脂、両性樹脂の
1種あるいは2種以上のビヒクルに金属成分として0.
03〜5.0重量パーセントおよび、2μ以下の炭素粉
末を0.5〜30重量パーセント分散させてなるペース
トをセラミック物質に塗布し、420〜920℃の温度
範囲内で熱処理を施し、その後無電解メッキを行なうこ
とを特徴とする無電解メッキ活性金属材料ペーストを用
いたメッキ方法。
[Claims] 1. A metal varnish made by dissolving a platinum group compound in a solvent as an active metal for electroless nickel or copper plating on ceramic materials, and a metal varnish made of a fat-soluble resin, a water-soluble resin, or an amphoteric resin.
0.0 as a metal component in a species or two or more vehicles
An electroless plating active metal material paste comprising 3 to 5.0 weight percent and 0.5 to 30 weight percent of carbon powder of 2μ or less dispersed therein. 2. A metal varnish made by dissolving a platinum group compound as an active metal for electroless nickel or copper plating on ceramic materials in a solvent in a vehicle of one or more of fat-soluble resins, water-soluble resins, and amphoteric resins. 0 as a metal component.
A paste consisting of 0.5 to 30 weight percent of carbon powder of 0.03 to 5.0 weight percent and 0.5 to 30 weight percent of carbon powder of 2 μ or less is applied to a ceramic material, heat treated within a temperature range of 420 to 920 °C, and then electroless A plating method using an electroless plating active metal material paste.
JP8821780A 1980-06-28 1980-06-28 Electroless plating active metal material paste and plating method using the same Expired JPS5926661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8821780A JPS5926661B2 (en) 1980-06-28 1980-06-28 Electroless plating active metal material paste and plating method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8821780A JPS5926661B2 (en) 1980-06-28 1980-06-28 Electroless plating active metal material paste and plating method using the same

Publications (2)

Publication Number Publication Date
JPS5713164A JPS5713164A (en) 1982-01-23
JPS5926661B2 true JPS5926661B2 (en) 1984-06-29

Family

ID=13936721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8821780A Expired JPS5926661B2 (en) 1980-06-28 1980-06-28 Electroless plating active metal material paste and plating method using the same

Country Status (1)

Country Link
JP (1) JPS5926661B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831075A (en) * 1981-08-19 1983-02-23 Matsushita Electric Ind Co Ltd Local electroless plating method
JPS5933869A (en) * 1982-08-20 1984-02-23 Hitachi Ltd Electrode material for semiconductor device
JPS5974528A (en) * 1982-10-21 1984-04-27 Seiko Epson Corp Vertical conducting agent for display panel

Also Published As

Publication number Publication date
JPS5713164A (en) 1982-01-23

Similar Documents

Publication Publication Date Title
JPH0130794B2 (en)
JPS5926662B2 (en) Electroless plating active metal material paste and plating method using the same
US4510179A (en) Electrode on heat-resisting and isolating substrate and the manufacturing process for it
JPS5926661B2 (en) Electroless plating active metal material paste and plating method using the same
US4559279A (en) Electrode on heat-resisting and isolating substrate
US3721870A (en) Capacitor
JPS5948950B2 (en) Active metal material paste for electroless plating and plating method using it
JPS634332B2 (en)
JPS634327B2 (en)
JPS6225748B2 (en)
JPS6237112B2 (en)
JPS6039154B2 (en) Electroless plating base active paste and electroless plating method using the same
JPS646530B2 (en)
JPS634335B2 (en)
JP2574383B2 (en) Electrode forming method for ceramic electronic parts
JPS634338B2 (en)
JP3701038B2 (en) Thick film copper conductor paste composition and method for producing circuit board using the same
JPS629204B2 (en)
JPS6412083B2 (en)
JPS634336B2 (en)
JPS631729B2 (en)
JPS634331B2 (en)
JPS58161759A (en) Method for plating on aluminum base plate
JPS631727B2 (en)
JPH027167B2 (en)