JPS634338B2 - - Google Patents

Info

Publication number
JPS634338B2
JPS634338B2 JP55114576A JP11457680A JPS634338B2 JP S634338 B2 JPS634338 B2 JP S634338B2 JP 55114576 A JP55114576 A JP 55114576A JP 11457680 A JP11457680 A JP 11457680A JP S634338 B2 JPS634338 B2 JP S634338B2
Authority
JP
Japan
Prior art keywords
metal
substrate
plating
resist
dried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55114576A
Other languages
Japanese (ja)
Other versions
JPS5737817A (en
Inventor
Katsuhiko Honjo
Hiromitsu Tagi
Norya Sato
Makoto Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11457680A priority Critical patent/JPS5737817A/en
Publication of JPS5737817A publication Critical patent/JPS5737817A/en
Publication of JPS634338B2 publication Critical patent/JPS634338B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Ceramic Capacitors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はセラミツク電子部品の製造方法に関
し、製造容易、安価でかつ諸特性の安定したセラ
ミツク電子部品の提供を目的とするものである。 従来、誘電体素子、圧電体素子等の機能特性を
利用したセラミツク電子部品の電極には、磁器素
材の表面にAg、Ag−Pd、Ag−Pt、Ag−Ni等
の貴金属を主体とした金属混合物を焼付したもの
が用いられているが、近年の貴金属の高騰に伴な
い各種のメツキ法が開発されつつある。 しかしながら、これらの方法には多くの欠点が
あり、例えば、磁器素体表面に焼付銀電極を形成
し、その後ニツケル電極、銀電極を電解メツキ等
により金属電極を設ける事も可能であるが、この
方法では焼付金属層表面が粗面で多くの小孔が存
在するため、メツキ処理においてメツキ液がこの
小孔内部に浸透し、焼付金属層と磁器素体の付着
強度を冷化させる欠点があつた。他の方法として
は無電解メツキ法が用いられており、ニツケルメ
ツキの場合には、最初に塩化第1錫と塩化パラジ
ウムとの化学反応により触媒活性化処理をほどこ
すことが一般的である。しかし、この方法を誘電
体素子、圧電体素子、半導体素子等のセラミツク
電子部品用の電極の形成方法として使用する場合
には多くの問題点がある。すなわち、電極材料お
よび関連材料の種類、取付方法によつて引張強
度、容量、損失角、誘電率などが低下すること
や、容量温度特性変化率、耐湿負荷寿命特性等の
圧電体素子あるいはコンデンサーとしての特性が
劣化することである。例えば無電解ニツケルメツ
キ法の場合には、その工法性質上、金属被膜が基
板の全周表面上に形成され易く、このため周側面
の皮膜を研削除去して対向容量電極を形成しなけ
ればならないが、この場合、沿面耐電圧距離は基
板の厚みで決定されるため、電極周端部における
短絡状態によつて絶縁破壊が起り易く、基板の厚
みを余り薄くする事はできない。また、これらの
方法に対し部分メツキ方法としては、磁器表面に
所要パターンの金属層を形成するに際し、あらか
じめ磁器表面の所要個所にメツキレジストを付与
し、次いで磁器を活性化した後メツキレジストを
除去し、その後無電解メツキを施こして磁器表面
に金属層を形成する方法、もしくは真空蒸着法や
フオトエツチング法等種々の方法が知られている
が、いづれの方法を用いてもセラミツク電子部品
用電極としては満足する結果が得られなかつた。
すなわち、これら従来から知られているメツキ付
与方法ではメツキの密着性が悪く量産性も良くな
かつた。特にコンデンサーを例にとつた場合、小
型大容量のコンデンサーは素体厚みが0.1mm〜0.3
mmと薄く、形状も4.5mm〓〜16mm〓と種々あり、量
産性を考慮した場合困難なものであつた。さらに
容量値を少しでも大きくするために全面に電極を
形成した場合には、上記した様に寿命特性が極度
に悪くなり、信頼性の上から問題点が多くあつ
た。 本発明は、上記した数多くの欠点を除去し、著
しく安定した諸特性を有するセラミツク電子部品
の製造方法を提供するものである。 すなわち、本発明の製造方法においては、金属
化合物および金属微粉末の少くともいづれか一方
から構成された金属成分を含む溶液をセラミツク
基板に塗布乾燥し、この基板の必要個所にレジス
トを塗布乾燥硬化し、レジスト部以外の金属成分
を除去した後、基板を350〜900℃の温度範囲で熱
処理して基板の必要箇所に金属微粒子を析出さ
せ、その後無電解メツキにより、ニツケル、コバ
ルト、銅、金の金属電極を形成するものであり、
本発明の方法によつて得られたセラミツク電子部
品は非常に良好な特性を有し、充分な機能を得る
ことができるものである。 以下、本発明の実施例について更に詳しく説明
する。 機能特性を利用したセラミツクとして、
BaTiO3−BaZrO3系、TiO2系、SrTiO3系などの
セラミツク素体で厚み0.3mm、形状12mm〓の基板を
用い、この基板の表面にニツケル、コバルト、鉄
などの硝酸塩を含む溶液を塗布乾燥して、基板表
面にNi、Co、Feの硝酸塩を付着させた。基板の
両面に1mmの縁が残る様なマスクを用い吹付もし
くは印刷方法によつて、エツチングレジストを塗
布し、乾燥硬化した。次にレジスト部以外の金属
成分を酸および水を用いてエツチング除去した
後、350〜900℃の温度範囲の熱処理により、レジ
ストを燃焼消失せしめ、必要な部分にニツケル、
コバルト、鉄などの金属微粒子を析出させた。そ
の後この基板をPdイオンを含む溶液でニツケル、
コバルト、鉄などの金属微粒子表面をPdに置換
する置換処理した後硫酸ニツケルに次亜リン酸ナ
トリウムを含む無電解メツキ液に浸漬して、ニツ
ケル膜を形成した。次にリード端子付けとして、
Pb−Sn系主体の半田材料を用い、浸漬法により
リード線を取付け、その後フエノール系樹脂被
覆、ワツクス含浸を行ない完成品とした。 第1表は、上記した方法によつて製造した誘電
体コンデンサーの特性を示したものである。な
お、第1表において、希酸としては塩酸を用いて
いる。
The present invention relates to a method for manufacturing ceramic electronic components, and an object of the present invention is to provide ceramic electronic components that are easy to manufacture, inexpensive, and have stable characteristics. Conventionally, electrodes of ceramic electronic components that utilize the functional characteristics of dielectric elements, piezoelectric elements, etc. have been coated with metals, mainly noble metals such as Ag, Ag-Pd, Ag-Pt, and Ag-Ni, on the surface of the ceramic material. A baked mixture is used, but various plating methods are being developed in response to the recent rise in the price of precious metals. However, these methods have many drawbacks; for example, it is possible to form baked silver electrodes on the surface of the porcelain body and then provide metal electrodes by electrolytically plating nickel electrodes and silver electrodes; In this method, the surface of the baked metal layer is rough and has many small pores, so the plating liquid penetrates into the small holes during the plating process, which reduces the adhesion strength between the baked metal layer and the porcelain body. Ta. Another method used is electroless plating, and in the case of nickel plating, it is common to first perform a catalyst activation treatment by a chemical reaction between stannous chloride and palladium chloride. However, there are many problems when using this method as a method for forming electrodes for ceramic electronic components such as dielectric elements, piezoelectric elements, and semiconductor elements. In other words, the tensile strength, capacitance, loss angle, dielectric constant, etc. may decrease depending on the type of electrode material and related materials and the mounting method, and the change rate of capacitance temperature characteristics, moisture resistance load life characteristics, etc. may vary as piezoelectric elements or capacitors. This is due to the deterioration of the characteristics of the For example, in the case of the electroless nickel plating method, due to the nature of the method, a metal film is likely to be formed on the entire circumferential surface of the substrate, so the film on the circumferential side surface must be ground away to form a counter capacitor electrode. In this case, since the creepage withstand voltage distance is determined by the thickness of the substrate, dielectric breakdown is likely to occur due to a short circuit at the peripheral edge of the electrode, and the thickness of the substrate cannot be made very thin. In contrast to these methods, a partial plating method involves applying a plating resist to the required locations on the porcelain surface in advance when forming a metal layer with a desired pattern on the porcelain surface, and then removing the plating resist after activating the porcelain. However, various methods are known, such as applying electroless plating to form a metal layer on the porcelain surface, vacuum evaporation method, and photo-etching method. As an electrode, satisfactory results could not be obtained.
That is, these conventionally known plating methods have poor plating adhesion and poor mass productivity. Taking a capacitor as an example, a small, large capacity capacitor has an element thickness of 0.1 mm to 0.3 mm.
It is as thin as 1.0 mm and comes in various shapes ranging from 4.5 mm to 16 mm, making it difficult to mass-produce it. Furthermore, when electrodes are formed on the entire surface in order to increase the capacitance value even slightly, the life characteristics become extremely poor as described above, and there are many problems in terms of reliability. The present invention eliminates many of the above-mentioned drawbacks and provides a method for manufacturing ceramic electronic components having extremely stable properties. That is, in the manufacturing method of the present invention, a solution containing a metal component composed of at least one of a metal compound and a fine metal powder is applied to a ceramic substrate and dried, and a resist is applied to the required areas of this substrate and dried and hardened. After removing metal components other than the resist area, the substrate is heat-treated at a temperature range of 350 to 900°C to deposit metal fine particles at the required locations on the substrate, and then electroless plating is performed to deposit nickel, cobalt, copper, and gold. It forms a metal electrode,
The ceramic electronic component obtained by the method of the present invention has very good characteristics and can provide sufficient functionality. Examples of the present invention will be described in more detail below. As a ceramic that utilizes functional characteristics,
A substrate made of ceramic material such as BaTiO 3 -BaZrO 3 , TiO 2 , or SrTiO 3 with a thickness of 0.3 mm and a shape of 12 mm is used, and a solution containing nitrates such as nickel, cobalt, and iron is applied to the surface of this substrate. After drying, nitrates of Ni, Co, and Fe were deposited on the substrate surface. Etching resist was applied by spraying or printing using a mask that left a 1 mm edge on both sides of the substrate, and was dried and hardened. Next, metal components other than the resist area are removed by etching using acid and water, and then the resist is burnt off by heat treatment in the temperature range of 350 to 900°C, and nickel is added to the necessary areas.
Fine particles of metals such as cobalt and iron were precipitated. This substrate was then treated with nickel in a solution containing Pd ions.
After performing a substitution treatment to replace the surface of metal fine particles such as cobalt and iron with Pd, they were immersed in an electroless plating solution containing nickel sulfate and sodium hypophosphite to form a nickel film. Next, as a lead terminal attachment,
Lead wires were attached using a dipping method using a Pb-Sn based solder material, and then coated with a phenol resin and impregnated with wax to create a finished product. Table 1 shows the characteristics of dielectric capacitors manufactured by the above method. Note that in Table 1, hydrochloric acid is used as the dilute acid.

【表】【table】

【表】 第1表において、No.1〜No.6は金属成分を一定
としてレジスト焼付温度を変化させたものであ
り、No.7〜No.9はレジストの焼付温度を一定とし
て金属成分の種類を変えたものである。表より明
らかなようにレジストの焼付温度が本発明の範囲
内にあるものは良好な誘電特性を持つことが判
る。またNo.7〜No.9は金属成分の種類が変つた場
合であるがそれぞれ良好な結果を示している。 なお上記実施例では金属成分としてNi、Co、
Feの硝酸塩を用いたが、金属成分としてはPd、
Pt、Ag、Au、Rh、Ru、Ir、Osなどの貴金属、
Ni、Co、Fe、Cu、Zn、Cd、Mg、In、Sn、Pb、
Bi、Cr、Mnなどの卑金属の金属化合物および金
属微粉末の少くとも1種から構成されたものであ
ればよい。更に本発明では金属成分を含む溶液を
用いたが、焼付後金属微粒子が基板表面に残る方
法であればどんな方法でもよい。なお、上記実施
例において無電解メツキ前にPdイオンを含む溶
液に浸漬し、置換処理を行つたが、これは焼付で
析出した金属微粒子に触媒作用をもたせ、また触
媒作用を強めるものであり、特に、Zn、Cd、
Mg、In、Sn、Pb、Bi、Cr、Mnなどの卑金属で
は必ず必要とする。 また本発明において、350〜900℃の温度範囲で
熱処理するのは、熱処理により、基板表面に金属
微粒子を密着性よく析出させるとともにレジスト
有機皮膜を燃焼除去するためであり、350℃以下
では樹脂成分が残つてメツキ後引張強度が低下
し、さらに圧電特性、抵抗特性、誘電特性、バリ
スタ特性の諸特性が悪化する。900℃以上では圧
電特性、抵抗特性、誘電特性、バリスタ特性の低
下、および寿命特性が悪化する。 なお、金属成分を含む溶液をセラミツク基板に
塗布乾燥後、200〜900℃の温度で熱処理し、金属
微粒子をセラミツク基板上に析出焼付する処理を
すると、パターン精度、密着強度が更に良好にな
る。 更に、本発明においては、機能特性を利用した
セラミツク電子部品に適用した場合について説明
したが、他にセラミツクを始めとする350℃以上
に耐える絶縁基板の導体回路形成方法に使うこと
も有効である。 以上詳細な説明から明らかなように、本発明は
セラミツク電子部品に無電解メツキによつて電極
を形成する際、金属化合物および金属微粉末の少
くともいずれか一方から構成された金属成分を含
む溶液をセラミツク基板に塗布乾燥し、レジスト
を用いて必要な部分以外の金属成分を除去した
後、基板を350〜900℃の温度範囲で熱処理して基
板の必要箇所に金属微粒子を析出させ、その後無
電メツキによつて金属電極を形成するものであ
り、従来の方法に比べ全く遜色のない特性を持
ち、価格的にも大きなメリツトを持ち、工業的量
産化に適合する等、産業上多くの価値を有するも
のである。
[Table] In Table 1, No. 1 to No. 6 are results in which the resist baking temperature is changed while keeping the metal component constant, and No. 7 to No. 9 are results in which the resist baking temperature is kept constant and the metal component is changed. It is a different type. As is clear from the table, resists whose baking temperatures are within the range of the present invention have good dielectric properties. In addition, No. 7 to No. 9 are cases in which the type of metal component was changed, but each showed good results. In the above example, the metal components are Ni, Co,
Fe nitrate was used, but the metal components were Pd,
Precious metals such as Pt, Ag, Au, Rh, Ru, Ir, Os,
Ni, Co, Fe, Cu, Zn, Cd, Mg, In, Sn, Pb,
It may be made of at least one of a metal compound of a base metal such as Bi, Cr, and Mn, and a fine metal powder. Furthermore, although a solution containing a metal component is used in the present invention, any method may be used as long as the metal fine particles remain on the substrate surface after baking. In addition, in the above examples, before electroless plating, the metal particles were immersed in a solution containing Pd ions to perform a substitution treatment, but this gives a catalytic effect to the metal fine particles deposited by baking, and also strengthens the catalytic effect. In particular, Zn, Cd,
It is always required for base metals such as Mg, In, Sn, Pb, Bi, Cr, and Mn. In addition, in the present invention, the reason why heat treatment is performed in the temperature range of 350 to 900°C is to precipitate fine metal particles on the substrate surface with good adhesion and burn off the resist organic film. remains, resulting in a decrease in tensile strength after plating, and further deterioration of various properties such as piezoelectric properties, resistance properties, dielectric properties, and varistor properties. At temperatures above 900°C, piezoelectric properties, resistance properties, dielectric properties, varistor properties deteriorate, and life characteristics deteriorate. Furthermore, if a solution containing a metal component is applied to a ceramic substrate, dried, and then heat treated at a temperature of 200 to 900°C to precipitate and bake metal fine particles onto the ceramic substrate, the pattern accuracy and adhesion strength will be even better. Furthermore, although the present invention has been described in the case where it is applied to ceramic electronic components that take advantage of its functional characteristics, it is also effective to use it in a method for forming conductor circuits on insulating substrates that can withstand temperatures of 350°C or higher, including ceramics. . As is clear from the above detailed description, the present invention provides a method for forming electrodes on ceramic electronic components by electroless plating, using a solution containing a metal component consisting of at least one of a metal compound and a fine metal powder. is applied to a ceramic substrate and dried, and after removing metal components other than the necessary parts using a resist, the substrate is heat-treated at a temperature range of 350 to 900°C to deposit metal fine particles at the necessary parts of the board, and then electroless This method forms metal electrodes by plating, and has many industrial values, such as having properties comparable to those of conventional methods, having great cost advantages, and being compatible with industrial mass production. It is something that you have.

Claims (1)

【特許請求の範囲】 1 金属化合物および金属微粉末の少くともいづ
れか一方から構成された金属成分を含む溶液をセ
ラミツク基板に塗布乾燥し、この基板の必要個所
にレジストを塗布乾燥硬化し、レジスト部以外の
金属成分を除去した後、前記基板を350〜900℃の
温度範囲で熱処理して基板の必要な個所に金属微
粒子を析出させ、その後無電解メツキにより金属
電極を形成することを特徴とするセラミツク電子
部品の製造方法。 2 金属成分を含む溶液をセラミツク基板に塗布
乾燥後、200〜900℃の温度で熱処理する特許請求
の範囲第1項記載のセラミツク電子部品の製造方
法。
[Scope of Claims] 1. A solution containing a metal component composed of at least one of a metal compound and a metal fine powder is applied to a ceramic substrate and dried, and a resist is applied to the required portions of this substrate and dried and hardened to form a resist portion. After removing other metal components, the substrate is heat-treated in a temperature range of 350 to 900°C to deposit metal fine particles at necessary locations on the substrate, and then metal electrodes are formed by electroless plating. Method of manufacturing ceramic electronic components. 2. The method of manufacturing a ceramic electronic component according to claim 1, wherein a solution containing a metal component is applied to a ceramic substrate, dried, and then heat-treated at a temperature of 200 to 900°C.
JP11457680A 1980-08-19 1980-08-19 Method of producing ceramic electronic part Granted JPS5737817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11457680A JPS5737817A (en) 1980-08-19 1980-08-19 Method of producing ceramic electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11457680A JPS5737817A (en) 1980-08-19 1980-08-19 Method of producing ceramic electronic part

Publications (2)

Publication Number Publication Date
JPS5737817A JPS5737817A (en) 1982-03-02
JPS634338B2 true JPS634338B2 (en) 1988-01-28

Family

ID=14641289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11457680A Granted JPS5737817A (en) 1980-08-19 1980-08-19 Method of producing ceramic electronic part

Country Status (1)

Country Link
JP (1) JPS5737817A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608854U (en) * 1983-06-29 1985-01-22 株式会社クボタ Pipe penetration micro defect inspection device
JPH084159B2 (en) * 1986-12-26 1996-01-17 オリンパス光学工業株式会社 Piezoelectric bimorph and manufacturing method thereof
JPS63221226A (en) * 1987-03-10 1988-09-14 Tokyo Gas Co Ltd Liquid leakage detecting method
JPH01197687A (en) * 1988-02-03 1989-08-09 Power Reactor & Nuclear Fuel Dev Corp Remote detecting method for liquid leakage

Also Published As

Publication number Publication date
JPS5737817A (en) 1982-03-02

Similar Documents

Publication Publication Date Title
JPH0837127A (en) Monolithic ceramic capacitor and its production
JPS634338B2 (en)
JPS5926662B2 (en) Electroless plating active metal material paste and plating method using the same
JPH0136243B2 (en)
JPS63104314A (en) Method of forming electorode terminal of chip capacitor
JPH0266101A (en) Electric conductive particles and manufacture thereof
JPS634327B2 (en)
JPS634332B2 (en)
JPS629204B2 (en)
JPS634329B2 (en)
JPS634330B2 (en)
JPH04208591A (en) Ceramic printed circuit board
JP2000306763A (en) Laminated ceramic capacitor and manufacture thereof
JPS631726B2 (en)
JPS5926661B2 (en) Electroless plating active metal material paste and plating method using the same
JPS634331B2 (en)
JPS631729B2 (en)
JPH03215916A (en) Method for formation of electrode and electronic part using it
JPH027167B2 (en)
JPS634328B2 (en)
JPS634694B2 (en)
JPS5948950B2 (en) Active metal material paste for electroless plating and plating method using it
JPS634336B2 (en)
JPS6316897B2 (en)
JP2574383B2 (en) Electrode forming method for ceramic electronic parts