JPH04349147A - Radiation-resistant optical fiber and its production - Google Patents

Radiation-resistant optical fiber and its production

Info

Publication number
JPH04349147A
JPH04349147A JP3146932A JP14693291A JPH04349147A JP H04349147 A JPH04349147 A JP H04349147A JP 3146932 A JP3146932 A JP 3146932A JP 14693291 A JP14693291 A JP 14693291A JP H04349147 A JPH04349147 A JP H04349147A
Authority
JP
Japan
Prior art keywords
optical fiber
radiation
sio2
preform
geo2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3146932A
Other languages
Japanese (ja)
Inventor
Kazuo Sanada
和夫 真田
Katsuyuki Seto
克之 瀬戸
Naoki Shamoto
尚樹 社本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP3146932A priority Critical patent/JPH04349147A/en
Publication of JPH04349147A publication Critical patent/JPH04349147A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/01453Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering for doping the preform with flourine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/32Non-halide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To expand the transmission band of an optical fiber and to improve its radiation resistance by incorporating the SiO2 free of Cl and having a specified content of F into the fiber. CONSTITUTION:The alkoxysilane such as Si(CH3O)4. and alkoxygermanium such as Ge(CH3O)4 as the glass material are heated in a hydrogen flame to form a soot preform. The particle of SiO2 coated with GeO2 is deposited on the lower surface of the preform and grown to obtain a parabolic soot preform. The preform is dehydrated and sintered in the He and SiF6 atmospheres by an electric furnace, etc., the vitrified preform is drawn in a drawing furnace kept at high temp., and a radiation-resistant optical fiber free of Cl and with the core consisting of GeO2 and SiO2 contg. >=0.1wt.% F and the clad consisting of the SiO3 contg. F is produced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は耐放射線性を有する光フ
ァイバとその製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber having radiation resistance and a method for manufacturing the same.

【0002】0002

【従来の技術】従来より、耐放射線性に優れた光ファイ
バとして、純石英からなるコアと、屈折率を下げ、かつ
耐放射線性を向上せしめるドーパントであるFが添加さ
れたクラッドとから形成されたステップインデックス(
SI)形光ファイバが用いられていた。しかしこのSI
形光ファイバは伝送帯域が小さいため、その適用範囲が
限られていた。
[Prior Art] Conventionally, optical fibers with excellent radiation resistance have been formed from a core made of pure silica and a cladding doped with F, a dopant that lowers the refractive index and improves radiation resistance. Step index (
SI) type optical fiber was used. However, this SI
Because the transmission band of shaped optical fiber is small, its range of application has been limited.

【0003】そこで、SiO2に屈折率を上げるドーパ
ントであるGeO2を添加することによって屈折率プロ
ファイルが制御されたグレーデッドインデックス(GI
)形光ファイバが放射線雰囲気下で用いられるようにな
った。このGI形光ファイバは伝送帯域が大きいため、
広い範囲に適用することができる。
[0003] Therefore, graded index (GI), in which the refractive index profile is controlled by adding GeO2, which is a dopant that increases the refractive index, to SiO2 is used.
)-shaped optical fibers have come to be used in radiation atmospheres. This GI type optical fiber has a large transmission band, so
Can be applied to a wide range.

【0004】そして、このものは一般にVAD法によっ
て以下のようにして製造される。まず、バーナに原料と
なるSiCl4およびGeCl4、燃料となる水素およ
び酸素を供給する。水素は燃焼して火炎となり、その火
炎中で、火炎加水分解反応および酸化反応によりSiO
2とGeO2が生成する。生成したSiO2の粒子はス
ートプリフォームの下面に堆積するとともに、この中に
GeO2が取り込まれる。このスートプリフォームはそ
の中心軸を回転軸として回転するとともに、上方に引き
上げられつつ成長し、所望の長さのスートプリフォーム
が形成される。得られたスートプリフォームはCl等の
ハロゲン雰囲気中で脱水され、さらに高温で焼結されて
透明なプリフォームとなる。このプリフォームは高温の
線引炉で溶融状態とされ、線引されて光ファイバが形成
される。
[0004] This product is generally manufactured by the VAD method as follows. First, SiCl4 and GeCl4 as raw materials and hydrogen and oxygen as fuel are supplied to the burner. Hydrogen burns to form a flame, and in the flame, SiO is produced by flame hydrolysis and oxidation reactions.
2 and GeO2 are generated. The generated SiO2 particles are deposited on the lower surface of the soot preform, and GeO2 is taken into them. The soot preform rotates about its central axis and grows while being pulled upward, forming a soot preform of a desired length. The obtained soot preform is dehydrated in a halogen atmosphere such as Cl, and further sintered at a high temperature to become a transparent preform. This preform is molten in a high temperature drawing furnace and drawn to form an optical fiber.

【0005】[0005]

【発明が解決しようとする課題】このような、SiO2
にGeO2が添加されたGI形光ファイバは、SiCl
4およびGeCl4を原料として製造され、またCl雰
囲気中で脱水されるため数百ppmのClを含有してお
り、これが原因となって放射線雰囲気下において伝送損
失の増加が起こるという問題があった。したがって、こ
のGI形光ファイバは、放射線の照射線量が105R程
度以下の放射線環境下においてしか使用することができ
なかった。
[Problem to be solved by the invention] Such SiO2
GI type optical fiber doped with GeO2 is SiCl
Since it is manufactured using 4 and GeCl4 as raw materials and is dehydrated in a Cl atmosphere, it contains several hundred ppm of Cl, which causes a problem of increased transmission loss in a radiation atmosphere. Therefore, this GI type optical fiber could only be used in a radiation environment where the radiation dose was about 105R or less.

【0006】この発明は前記事情に鑑みてなされたもの
で、広い伝送帯域を有し、かつ耐放射線性に優れた光フ
ァイバの提供を目的とする。
The present invention was made in view of the above circumstances, and an object thereof is to provide an optical fiber having a wide transmission band and excellent radiation resistance.

【0007】[0007]

【課題を解決するための手段】この発明の請求項1記載
の耐放射線性光ファイバは、Clを含有せず、かつFが
0.1重量%以上添加されたSiO2からなることを前
記課題の解決手段とした。また、請求項2記載の耐放射
線性光ファイバは上記請求項1記載の光ファイバであっ
て、GeO2およびFが添加されたSiO2からなるコ
アと、Fが添加されたSiO2からなるクラッドを有す
ることを前記課題の解決手段とした。また、請求項3記
載の耐放射線性光ファイバの製法は、ガラス原料として
アルコキシシランとアルコキシゲルマンを用いてスート
プリフォームを形成し、これをSF6雰囲気中で加熱す
ることによって、請求項1または2に記載の耐放射線性
光ファイバを製造することを前記課題の解決手段とした
[Means for Solving the Problems] The radiation-resistant optical fiber according to claim 1 of the present invention is made of SiO2 that does not contain Cl and has 0.1% by weight or more of F added thereto. It was used as a solution. Furthermore, the radiation-resistant optical fiber according to claim 2 is the optical fiber according to claim 1, and has a core made of SiO2 doped with GeO2 and F, and a cladding made of SiO2 doped with F. was used as a means of solving the above problem. Further, the method for producing a radiation-resistant optical fiber according to claim 3 is performed by forming a soot preform using alkoxysilane and alkoxygermane as glass raw materials and heating this in an SF6 atmosphere. The solution to the above problem was to manufacture the radiation-resistant optical fiber described in .

【0008】[0008]

【作用】本発明において、放射線雰囲気下において伝送
損失を増大させる原因となるClが添加されることなく
光ファイバを形成するとともに、耐放射線性を向上せし
めるドーパントであるFを添加することにより、耐放射
線性に優れた光ファイバを得ることができる。また屈折
率を上げるドーパントであるGeO2をコアに添加して
屈折率を制御することによって、伝送帯域が大きいGI
形光ファイバを得ることができる。また、上記Fの添加
量は0.1重量%以上に設定され、光ファイバの屈折率
分布に影響しない範囲で、好ましくは0.1〜1.0重
量%とすることができる。またこのような光ファイバは
、ガラス原料としてアルコキシシランとアルコキシゲル
マンを用いてスートプリフォームを形成し、これをSF
6雰囲気中で加熱することによって製造することができ
る。
[Operation] In the present invention, an optical fiber is formed without adding Cl, which causes increased transmission loss in a radiation atmosphere, and by adding F, which is a dopant that improves radiation resistance. An optical fiber with excellent radiation properties can be obtained. In addition, by controlling the refractive index by adding GeO2, a dopant that increases the refractive index, to the core, a GI with a large transmission band can be used.
shaped optical fiber can be obtained. Further, the amount of F added is set to 0.1% by weight or more, and preferably 0.1 to 1.0% by weight within a range that does not affect the refractive index distribution of the optical fiber. In addition, such optical fibers are produced by forming a soot preform using alkoxysilane and alkoxygermane as glass raw materials, and then fabricating this with SF.
It can be manufactured by heating in a 6 atmosphere.

【0009】[0009]

【実施例】以下、本発明の一実施例を示し、詳しく説明
する。
[Example] Hereinafter, an example of the present invention will be shown and explained in detail.

【0010】本発明の耐放射線性光ファイバは原料とし
てSi(CH3O)4、Si(C2H5O)4等のアル
コキシシラン、およびGe(CH3O)4、Ge(C2
H5O)4等のアルコキシゲルマンを用い、通常のVA
D法によって製造することができる。まず、バーナに原
料となるSi(CH3O)4およびGe(CH3O)4
、燃料となる水素、および酸素を供給し、水素火炎中で
GeO2およびSiO2を生成した。スートプリフォー
ムをその中心軸を回転軸として回転させつつ上方に引き
上げ、このスートプリフォームの下面に、GeO2がド
ープされたSiO2の粒子を堆積、成長させた。このと
き、バーナの数、形状、原料の流し方等のスート堆積条
件を適宜設定することによってGeO2の添加量を制御
し、この屈折率プロファイルを放物線状に形成した。
The radiation-resistant optical fiber of the present invention uses alkoxysilanes such as Si(CH3O)4, Si(C2H5O)4, Ge(CH3O)4, Ge(C2
Using an alkoxygermane such as H5O)4, normal VA
It can be manufactured by method D. First, the raw materials Si(CH3O)4 and Ge(CH3O)4 are added to the burner.
, hydrogen as a fuel, and oxygen were supplied to generate GeO2 and SiO2 in a hydrogen flame. The soot preform was pulled upward while rotating about its central axis, and SiO2 particles doped with GeO2 were deposited and grown on the lower surface of the soot preform. At this time, the amount of GeO2 added was controlled by appropriately setting the soot deposition conditions such as the number and shape of burners, and the method of flowing the raw material, and the refractive index profile was formed into a parabolic shape.

【0011】得られたスートプリフォームを電気炉等の
任意の加熱手段を用いて、HeおよびSF6雰囲気中で
脱水、焼結するとともに、このスートプリフォームにF
を添加した。このときSF6の流量は0.2  l/m
in、Heの流量は3  l/minとし、Fの添加量
は0.3重量%とした。ここで、SF6の流量を適宜設
定することによってFの添加量を制御することができる
The obtained soot preform is dehydrated and sintered in an atmosphere of He and SF6 using any heating means such as an electric furnace, and the soot preform is heated with F.
was added. At this time, the flow rate of SF6 is 0.2 l/m
In, the flow rate of He was 3 l/min, and the amount of F added was 0.3% by weight. Here, the amount of F added can be controlled by appropriately setting the flow rate of SF6.

【0012】このようにして透明ガラス化されたプリフ
ォームを高温の線引炉で線引することによって、コアが
GeO2およびFが添加されたSiO2からなり、クラ
ッドがFが添加されたSiO2からなり、かつClを含
有しないGI形光ファイバが得られた。
By drawing the transparent vitrified preform in a high-temperature drawing furnace, the core is made of SiO2 to which GeO2 and F are added, and the cladding is made of SiO2 to which F is added. A GI optical fiber containing no Cl was obtained.

【0013】得られた光ファイバにγ線を照射線量が1
07Rとなるまで照射したが、損失増加は非常に小さく
、実用においては無視できる程度であった。
The obtained optical fiber was irradiated with gamma rays at a dose of 1
Although irradiation was performed until the temperature reached 07R, the increase in loss was very small and could be ignored in practical use.

【0014】[0014]

【発明の効果】以上説明したように、この発明の耐放射
線性光ファイバは、Clを含有せず、かつ少なくともF
が0.1重量%以上添加されたSiO2からなるもので
ある。したがって、従来の光ファイバに含有されていた
Clによる伝送損失の増加を防止するとともに、Fを添
加することによって耐放射線性を向上させることができ
る。
Effects of the Invention As explained above, the radiation-resistant optical fiber of the present invention does not contain Cl and contains at least F.
It is made of SiO2 to which 0.1% by weight or more of is added. Therefore, an increase in transmission loss due to Cl contained in conventional optical fibers can be prevented, and radiation resistance can be improved by adding F.

【0015】また、本発明の耐放射線性光ファイバをG
eO2およびFが添加されたSiO2からなるコアとF
が添加されたSiO2からなるクラッドとによって形成
することによって、光ファイバの屈折率プロファイルを
容易に制御することができ、伝送帯域が大きいGI形光
ファイバを形成することができ、放射線雰囲気下におけ
る光ファイバの適用範囲を増大させることができる。
Furthermore, the radiation-resistant optical fiber of the present invention is
A core made of SiO2 doped with eO2 and F and F
The refractive index profile of the optical fiber can be easily controlled by forming a cladding made of SiO2 doped with Fiber coverage can be increased.

【0016】さらに、ガラス原料としてアルコキシシラ
ンとアルコキシゲルマンを用いてスートプリフォームを
形成し、これをSF6雰囲気中で加熱することによって
、Fの添加を行うと同時に、Clを用いることなくスー
トプリフォームの脱水を行うことができる。
Furthermore, by forming a soot preform using alkoxysilane and alkoxygermane as glass raw materials and heating it in an SF6 atmosphere, a soot preform can be formed without using Cl while simultaneously adding F. can be dehydrated.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  Clを含有せず、かつ少なくともFが
0.1重量%以上添加されたSiO2からなることを特
徴とする耐放射線性光ファイバ。
1. A radiation-resistant optical fiber characterized in that it is made of SiO2 that does not contain Cl and has at least 0.1% by weight of F added thereto.
【請求項2】  GeO2およびFが添加されたSiO
2からなるコアと、Fが添加されたSiO2からなるク
ラッドを有することを特徴とする請求項1記載の耐放射
線性光ファイバ。
[Claim 2] SiO added with GeO2 and F
2. The radiation-resistant optical fiber according to claim 1, having a core made of SiO2 and a cladding made of F-doped SiO2.
【請求項3】  ガラス原料としてアルコキシシランと
アルコキシゲルマンを用いてスートプリフォームを形成
し、これをSF6雰囲気中で加熱することを特徴とする
請求項1または2記載の耐放射線性光ファイバの製法。
3. The method for producing a radiation-resistant optical fiber according to claim 1 or 2, characterized in that a soot preform is formed using alkoxysilane and alkoxygermane as glass raw materials, and this is heated in an SF6 atmosphere. .
JP3146932A 1991-05-22 1991-05-22 Radiation-resistant optical fiber and its production Pending JPH04349147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3146932A JPH04349147A (en) 1991-05-22 1991-05-22 Radiation-resistant optical fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3146932A JPH04349147A (en) 1991-05-22 1991-05-22 Radiation-resistant optical fiber and its production

Publications (1)

Publication Number Publication Date
JPH04349147A true JPH04349147A (en) 1992-12-03

Family

ID=15418835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3146932A Pending JPH04349147A (en) 1991-05-22 1991-05-22 Radiation-resistant optical fiber and its production

Country Status (1)

Country Link
JP (1) JPH04349147A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0888398A1 (en) * 1996-12-16 1999-01-07 Corning Incorporated Germanium doped silica forming feedstock and method
WO1999002459A1 (en) * 1997-07-08 1999-01-21 Corning Incorporated Germanium chloride and siloxane feedstock for forming silica glass and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163543A (en) * 1984-09-01 1986-04-01 Showa Electric Wire & Cable Co Ltd Quartz-based optical fiber
JPS61222940A (en) * 1985-03-29 1986-10-03 Furukawa Electric Co Ltd:The Optical fiber
JPS62143845A (en) * 1985-12-18 1987-06-27 Mitsubishi Cable Ind Ltd Light-transmission path having radiation resistance
JPH0214850A (en) * 1988-06-29 1990-01-18 Mitsubishi Cable Ind Ltd Radiation-resistant multiple fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163543A (en) * 1984-09-01 1986-04-01 Showa Electric Wire & Cable Co Ltd Quartz-based optical fiber
JPS61222940A (en) * 1985-03-29 1986-10-03 Furukawa Electric Co Ltd:The Optical fiber
JPS62143845A (en) * 1985-12-18 1987-06-27 Mitsubishi Cable Ind Ltd Light-transmission path having radiation resistance
JPH0214850A (en) * 1988-06-29 1990-01-18 Mitsubishi Cable Ind Ltd Radiation-resistant multiple fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0888398A1 (en) * 1996-12-16 1999-01-07 Corning Incorporated Germanium doped silica forming feedstock and method
EP0888398A4 (en) * 1996-12-16 1999-09-29 Corning Inc Germanium doped silica forming feedstock and method
WO1999002459A1 (en) * 1997-07-08 1999-01-21 Corning Incorporated Germanium chloride and siloxane feedstock for forming silica glass and method

Similar Documents

Publication Publication Date Title
Blankenship et al. The outside vapor deposition method of fabricating optical waveguide fibers
KR890001125B1 (en) Optical fifer
JPH05351B2 (en)
JPH0380740B2 (en)
US4298366A (en) Graded start rods for the production of optical waveguides
JPH0764578B2 (en) Manufacturing method of base material for single mode optical fiber
JPH04349147A (en) Radiation-resistant optical fiber and its production
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
JPS6131324A (en) Production of base material for optical fiber
JPS60251142A (en) Manufacture of base material for optical fiber
US5641333A (en) Increasing the retention of Ge02 during production of glass articles
JPH0463365B2 (en)
US4804393A (en) Methods for producing optical fiber preform and optical fiber
JPH01111747A (en) Production of optical fiber preform
JPH0551542B2 (en)
JPS596819B2 (en) Method for manufacturing doped quartz glass rod
JPH0327491B2 (en)
JPS63162538A (en) Production of quartz rod lens
AU698054B2 (en) Increasing the retention of GeO2 during production of glass articles
JPS6140843A (en) Optical fiber
JPS5734033A (en) Preparation of glass preform for optical fiber
JP3953855B2 (en) Method for producing porous base material
JPH0383830A (en) Optical fiber base material and preparation its
JPS63285128A (en) Production of optical fiber preform
JPH0733460A (en) Optical fiber preform and its production

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19961119