JPS5924547B2 - nonvolatile memory transistor - Google Patents

nonvolatile memory transistor

Info

Publication number
JPS5924547B2
JPS5924547B2 JP13258176A JP13258176A JPS5924547B2 JP S5924547 B2 JPS5924547 B2 JP S5924547B2 JP 13258176 A JP13258176 A JP 13258176A JP 13258176 A JP13258176 A JP 13258176A JP S5924547 B2 JPS5924547 B2 JP S5924547B2
Authority
JP
Japan
Prior art keywords
silicon nitride
memory transistor
film
nitride layer
δvth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13258176A
Other languages
Japanese (ja)
Other versions
JPS5357771A (en
Inventor
英伸 望月
孝二 大津
喬 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP13258176A priority Critical patent/JPS5924547B2/en
Publication of JPS5357771A publication Critical patent/JPS5357771A/en
Publication of JPS5924547B2 publication Critical patent/JPS5924547B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Description

【発明の詳細な説明】 本発明は、不揮発性メモリトランジスタ特にMNOS(
金属−窒化物一酸化物一半導体)メモリトランジスタの
改良に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to non-volatile memory transistors, particularly MNOS (
Related to the improvement of memory transistors (metal-nitride monoxide-semiconductor).

MNOSメモリトランジスタは、周知の如くSi3N濃
及びSiO2膜界面に存在するトラップ準位と半導体基
板との間の電荷の交換により、Si3N4膜及びSiO
2膜界面に蓄積する電荷の変化量に対応するMNOSメ
モリトランジスタのしきい値電圧Vthの変化を゛1’
’及び゛o’’の情報に対応させている。
As is well-known, the MNOS memory transistor has a Si3N4 film and an SiO2 film due to charge exchange between the trap level existing at the Si3N-concentrated and SiO2 film interface and the semiconductor substrate.
The change in the threshold voltage Vth of the MNOS memory transistor corresponding to the amount of change in the charge accumulated at the interface between the two films is expressed as ``1''.
It corresponds to the information of ' and o''.

かかるMNOSメモリトランジスタの信頼性、即ちメモ
リの保持特性は、そのしきい値電圧Vthの変化量(シ
フト量)ΔVthに大きく依存し、一定の書込み電圧に
対してΔVthの大きいものほどメモリの保持時間が長
くなり信頼性が向上する。従来のMNOSメモリトラン
ジスタは、通常膜厚20A゜程度の薄いSiO2膜上に
膜厚500〜700A゜程度のSi3N4膜を形成し、
その上にゲート電極を形成した構造となつているが、こ
の場合にはΔVthが不十分で信頼性が低い。
The reliability of such an MNOS memory transistor, that is, the memory retention characteristic, largely depends on the amount of change (shift amount) ΔVth in its threshold voltage Vth, and the larger ΔVth is for a constant write voltage, the longer the memory retention time is. is longer and reliability is improved. Conventional MNOS memory transistors typically form a Si3N4 film with a thickness of about 500 to 700 A° on a thin SiO2 film with a thickness of about 20 A°.
The structure has a gate electrode formed thereon, but in this case, ΔVth is insufficient and reliability is low.

本発明は、しきい値電圧Vthの変化量ΔVthを大き
くしてメモリの保持時間を延ばし、且つ同時にゲート絶
縁層の耐圧をも高くして信頼性の高い不揮発性メモリト
ランジスタを提供するものである。実験によると、MN
OSメモリトランジスタにおけるしきい値電圧Vthの
変化量ΔVthは、ゲート部の窒化珪素(Si3N4)
膜の成長条件に大きく依存している。
The present invention provides a highly reliable nonvolatile memory transistor by increasing the amount of change ΔVth in the threshold voltage Vth to extend the memory retention time, and at the same time increasing the withstand voltage of the gate insulating layer. . According to experiments, MN
The amount of change ΔVth in the threshold voltage Vth in the OS memory transistor is
It is highly dependent on the film growth conditions.

すなわち、第1図に窒化珪素膜の成長条件の違いによる
ΔVthの変化及びそのメモリ保持特性を示すに、之は
ゲート部における酸化珪素(SiO2)膜の厚みを20
A゜、窒化珪素(Si3N4)膜の厚みを650A0と
したMNOSメモリトランジスタで、その書込み電圧を
−35V、100msecとした場合で、これから解る
ように窒化珪素膜の成長条件の違いによつてΔVthが
7.0V〜10.5V(室温)と変化する。図中、点線
aは読み出し電圧を示す。そして、この再現性は極めて
よく、各ロッド間でのΔVthのバラツキは±O、2V
程度である。窒化珪素膜はSiH4とNH。を用いたC
VD(化学気相成長)法により形成するが、その成長条
件のうちでもΔVthに最も大きな影響を与えるのはN
H3とSiH4の流量比である。すなわち、NH3/
SiH4二50〜150のときΔVthは略10.5V
程度(第1図の上限を示す曲線(D参照)となり、NH
3/5iH0>300のときΔVthは略7.0V程度
(第1図の下限を示す曲線()参照)となる。これを窒
化珪素膜の組成でみると、珪素(Si)を比較的多く含
む窒化珪素膜ではΔVthが大きく、窒素(N)を比較
的多く含む窒化珪素膜ではΔVthが小さくなる。従つ
て、ΔV,hの大きさ即ちメモリの保持特性からだけみ
ると、NH3/SiH4=50〜150の成長条件によ
る窒化珪素膜が良好であることが解る。しかるに、一方
において窒化珪素膜自体の安定性、すなわちB−Tテス
トの合格率、従つてゲート絶縁層としての絶縁耐圧につ
いてみると、珪素(Sl)の多い窒化珪素膜は絶縁耐圧
が低く、窒素(N)の多い窒化珪素膜の方が絶縁耐圧が
高く安定性がある。そこで、本発明によるMNOSメモ
リトランジスタは第2図に示すように第1導電形型例え
ばN形のシリコン半導体基板1の一主面に第2導電形即
ちP形のソース領域2及びドレイン領域3を形成し、こ
のソース領域2及びドレイン領域3間のゲート部に対応
する半導体表面に例えば熱酸化による薄い酸化珪素(S
iO2)膜4を被着形成した後、この酸化珪素膜4上に
成長条件を連続的に変えて組成を異ならしめた窒化珪素
(SiN4)膜5を形成する。
That is, Fig. 1 shows the change in ΔVth due to different growth conditions of the silicon nitride film and its memory retention characteristics.
A゜, In the case of an MNOS memory transistor with a silicon nitride (Si3N4) film thickness of 650A0 and a write voltage of -35V and 100msec, as will be seen, ΔVth varies depending on the growth conditions of the silicon nitride film. It changes from 7.0V to 10.5V (room temperature). In the figure, the dotted line a indicates the read voltage. The reproducibility is extremely good, and the variation in ΔVth between each rod is ±O, 2V.
That's about it. The silicon nitride film is made of SiH4 and NH. C using
It is formed using the VD (chemical vapor deposition) method, and among the growth conditions, the one that has the greatest effect on ΔVth is N.
This is the flow rate ratio of H3 and SiH4. That is, NH3/
When SiH42 is 50 to 150, ΔVth is approximately 10.5V
degree (curve showing the upper limit in Figure 1 (see D), NH
When 3/5iH0>300, ΔVth is about 7.0V (see the curve () indicating the lower limit in FIG. 1). Looking at this in terms of the composition of the silicon nitride film, a silicon nitride film containing a relatively large amount of silicon (Si) has a large ΔVth, and a silicon nitride film containing a relatively large amount of nitrogen (N) has a small ΔVth. Therefore, it can be seen that the silicon nitride film grown under the growth condition of NH3/SiH4=50 to 150 is good when looking only from the magnitude of ΔV, h, that is, the retention characteristics of the memory. However, on the other hand, when looking at the stability of the silicon nitride film itself, that is, the pass rate of the B-T test, and therefore the dielectric strength voltage as a gate insulating layer, the silicon nitride film with a large amount of silicon (Sl) has a low dielectric strength voltage, and A silicon nitride film containing more (N) has higher dielectric strength and stability. Therefore, as shown in FIG. 2, the MNOS memory transistor according to the present invention has a source region 2 and a drain region 3 of a second conductivity type, that is, P type, on one main surface of a silicon semiconductor substrate 1 of a first conductivity type, for example, N type. For example, a thin silicon oxide (S
After the iO2) film 4 is deposited, a silicon nitride (SiN4) film 5 whose composition is varied by continuously changing the growth conditions is formed on the silicon oxide film 4.

すなわち、先づ成長条件をNH3/SiH4−50〜1
50として珪素の比較的多く含む第1の窒化珪素層6を
成長し、次に成長条件をNH3/SiH4〉300とし
て窒素の比較的多く含む第2の窒化珪素層7を成長する
That is, first, the growth conditions were changed to NH3/SiH4-50~1.
50, a first silicon nitride layer 6 containing a relatively large amount of silicon is grown, and then a second silicon nitride layer 7 containing a relatively large amount of nitrogen is grown under growth conditions of NH3/SiH4>300.

酸化珪素膜4の厚さは、キヤリアがトンネル現象で通過
し得る厚さに選定するもので、例えば20A0程度がよ
い。又、第1の窒化珪素層6の厚みは比較的に薄く50
〜100A0程度、第2の窒化珪素層7の厚みは比較的
に厚く例えば500〜600A0程度とすることができ
る。なお、第1の窒化珪素層6における厚み50〜10
0A0というのは製造的に可能な値であつて、勿論50
A0以下の厚みとしてもよい。
The thickness of the silicon oxide film 4 is selected to be such that carriers can pass therethrough by a tunneling phenomenon, and is preferably about 20A0, for example. Further, the thickness of the first silicon nitride layer 6 is relatively thin at 50 mm.
The thickness of the second silicon nitride layer 7 can be relatively thick, for example, about 500 to 600 A0. Note that the thickness of the first silicon nitride layer 6 is 50 to 10
0A0 is a value that is possible in manufacturing, and of course 50
The thickness may be A0 or less.

次いで、第2の窒化珪素層7上にゲート電極Gを形成し
、ソース領域2及びドレイン領域3に夫夫ソース電極S
及びドレイン電極Dを形成してMNOSメモリトランジ
スタを構成する。尚、8はSiO2膜等よりなる表面保
護膜である。上述せる構成のMNOSメモリトランジス
タによれば、そのゲート部において酸化珪素膜4上に接
する窒化珪素膜ば珪素を多く含む窒化珪素層6であるた
めに、第2図の曲線(1)で示すように、そのしきい値
電圧Vthの変化量ΔVthが大きくなりメモリの保持
時間が長くなる。
Next, a gate electrode G is formed on the second silicon nitride layer 7, and a source electrode S is formed on the source region 2 and drain region 3.
and a drain electrode D to form an MNOS memory transistor. Note that 8 is a surface protection film made of a SiO2 film or the like. According to the MNOS memory transistor having the above-described configuration, the silicon nitride film in contact with the silicon oxide film 4 at the gate portion is the silicon nitride layer 6 containing a large amount of silicon, so that Furthermore, the amount of change ΔVth in the threshold voltage Vth increases, and the memory retention time becomes longer.

しかも、第1の窒化珪素層6上には絶縁耐圧の高い窒素
を多く含む第2の窒化珪素層7が形成され、且つ之が第
1の窒化珪素層6より十分厚く形成されているためにゲ
ート絶縁層の絶縁耐圧が高くなり、全体として信頼性の
高い斯種不揮発性メモリトランジスタが得られる。
Moreover, since the second silicon nitride layer 7 containing a large amount of nitrogen and having a high dielectric strength voltage is formed on the first silicon nitride layer 6, and is formed sufficiently thicker than the first silicon nitride layer 6, The dielectric breakdown voltage of the gate insulating layer is increased, and such a nonvolatile memory transistor with high reliability as a whole can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMNOSメモリトランジスタの窒化珪素膜の成
長条件の違いによるしきい値電圧の変化量ΔVthの変
化及びそのメモリ保持特性を示す特性図、第2図は本発
明による不揮発性のMNOSメモリトランジスタの一例
を示す断面図である。 1は半導体基板、2はソース領域、3はドレイン領域、
4は酸化珪素膜、5は窒化珪素膜、6は珪素の比較的多
く含む窒化珪素層、7は窒素の比較的多く含む窒化珪素
層、Gはゲート電極、Sはソース電極、Dはドレイン電
極である。
FIG. 1 is a characteristic diagram showing changes in threshold voltage variation ΔVth and its memory retention characteristics due to differences in the growth conditions of the silicon nitride film of an MNOS memory transistor, and FIG. 2 is a characteristic diagram showing the memory retention characteristics of the nonvolatile MNOS memory transistor according to the present invention. It is a sectional view showing an example. 1 is a semiconductor substrate, 2 is a source region, 3 is a drain region,
4 is a silicon oxide film, 5 is a silicon nitride film, 6 is a silicon nitride layer containing a relatively large amount of silicon, 7 is a silicon nitride layer containing a relatively large amount of nitrogen, G is a gate electrode, S is a source electrode, and D is a drain electrode. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 ソース及びドレイン間のゲート部に半導体表面より
順次キャリアがトンネル現象で通過し得る厚さの酸化膜
、珪素の比較的多く含まれた第1の窒化珪素層、窒素の
比較的多く含まれた第2の窒化珪素層及びゲート電極が
積層されて成る不揮発性メモリトランジスタ。
1 In the gate region between the source and the drain, an oxide film having a thickness that allows carriers to pass through sequentially from the semiconductor surface by a tunnel phenomenon, a first silicon nitride layer containing a relatively large amount of silicon, and a first silicon nitride layer containing a relatively large amount of nitrogen. A nonvolatile memory transistor formed by laminating a second silicon nitride layer and a gate electrode.
JP13258176A 1976-11-04 1976-11-04 nonvolatile memory transistor Expired JPS5924547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13258176A JPS5924547B2 (en) 1976-11-04 1976-11-04 nonvolatile memory transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13258176A JPS5924547B2 (en) 1976-11-04 1976-11-04 nonvolatile memory transistor

Publications (2)

Publication Number Publication Date
JPS5357771A JPS5357771A (en) 1978-05-25
JPS5924547B2 true JPS5924547B2 (en) 1984-06-09

Family

ID=15084666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13258176A Expired JPS5924547B2 (en) 1976-11-04 1976-11-04 nonvolatile memory transistor

Country Status (1)

Country Link
JP (1) JPS5924547B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186369A (en) * 1981-05-13 1982-11-16 Nec Corp Semiconductor device
JPS5867072A (en) * 1981-10-16 1983-04-21 Nec Corp Manufacture of semiconductor device
CA1188419A (en) * 1981-12-14 1985-06-04 Yung-Chau Yen Nonvolatile multilayer gate semiconductor memory device
JP2747556B2 (en) * 1986-03-31 1998-05-06 株式会社 半導体エネルギー研究所 Method for manufacturing insulated gate field effect semiconductor memory device
JPH0642550B2 (en) * 1987-08-10 1994-06-01 山形日本電気株式会社 MIS type nonvolatile memory and method of manufacturing the same
JPH0779138B2 (en) * 1987-08-31 1995-08-23 工業技術院長 Non-volatile semiconductor memory device
JP2003068893A (en) * 2001-08-28 2003-03-07 Hitachi Ltd Nonvolatile storage cell and semiconductor integrated circuit
WO2008123264A1 (en) 2007-03-23 2008-10-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP5408930B2 (en) 2007-08-31 2014-02-05 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPS5357771A (en) 1978-05-25

Similar Documents

Publication Publication Date Title
US7728626B2 (en) Memory utilizing oxide nanolaminates
US7358137B2 (en) Memory devices including barrier layers and methods of manufacturing the same
JPS5927111B2 (en) Manufacturing method for semiconductor devices
GB2207553A (en) Nonvolatile semiconductor memory
JPS5924547B2 (en) nonvolatile memory transistor
JP3103385B2 (en) Polysilicon thin film semiconductor device
JPS58502126A (en) Non-volatile semiconductor memory device and its manufacturing method
JPH08255878A (en) Floating gate transistor and fabrication thereof
JPH10189780A (en) Nonvolatile semiconductor memory and fabrication thereof
JPS6320387B2 (en)
JPS5948557B2 (en) Structure with dual electron injectors
JP2002261175A (en) Nonvolatile semiconductor memory and its manufacturing method
US6518617B1 (en) Nonvolatile semiconductor memory device
US4057821A (en) Non-volatile semiconductor memory device
JP2001189390A (en) Method for fabricating semiconductor nonvolatile memory
CA2001682C (en) Thin film transistor having memory function and method for using thin film transistor as memory element
JPH01268060A (en) Thin film transistor
JPS59188977A (en) Manufacture of semiconductor non volatile memory device
JPS60161674A (en) Semiconductor memory device
JP2003068892A (en) Method for manufacturing nonvolatile semiconductor memory device
JPS6060770A (en) Semiconductor memory device
JPH0422031B2 (en)
JP3546644B2 (en) Nonvolatile semiconductor memory device
JPH05129632A (en) Charge trap film
JPS6059779A (en) Manufacture of semiconductor memory