JPS5923565A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5923565A
JPS5923565A JP13192982A JP13192982A JPS5923565A JP S5923565 A JPS5923565 A JP S5923565A JP 13192982 A JP13192982 A JP 13192982A JP 13192982 A JP13192982 A JP 13192982A JP S5923565 A JPS5923565 A JP S5923565A
Authority
JP
Japan
Prior art keywords
resist
pattern
coated
polymer resin
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13192982A
Other languages
Japanese (ja)
Other versions
JPH0358176B2 (en
Inventor
Masaru Miyazaki
勝 宮崎
Susumu Takahashi
進 高橋
Takahiro Kobashi
小橋 隆裕
Kiichi Kamiyanagi
喜一 上柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13192982A priority Critical patent/JPS5923565A/en
Priority to US06/517,409 priority patent/US4561169A/en
Priority to CA000433478A priority patent/CA1206626A/en
Priority to EP83107520A priority patent/EP0101960B1/en
Priority to KR1019830003551A priority patent/KR910006673B1/en
Priority to DE8383107520T priority patent/DE3378239D1/en
Publication of JPS5923565A publication Critical patent/JPS5923565A/en
Publication of JPH0358176B2 publication Critical patent/JPH0358176B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To accurately obtain an ultrafine semiconductor device by self-aligning by forming an inversion pattern by activating the pattern buried with high molecular resin on the part etched on the side surface. CONSTITUTION:Si is implanted in a semi-insulating GaAs substrate 11 to form an N type layer 12, and an N<+> type layer 13 is formed with laminated mask of SiO2 film 12 and Si 22. Then, only the film 21 is etched on the side surface, a positive type resist is thickly coated, exposed and developed to allow the unexposed part 31 to remain. AuGe alloy films 14, 42 are covered, the resist 31 is then removed, heat treated to perform an ohmic contact. A photoresist 51 is coated, ashed from the flat surface to expose the alloy 42. The layers 42, 22, 21 are removed by ion milling or dry etching to open a hole 61, and an inversion pattern is formed at the resist 51. Then, the prescribed gate matals 71, 72 are coated, resist 73 is thickly coated, ashed to allow the resist 82 to remain on the metal 81, and unnecessary metal 72 is removed by ion milling. When the resist 51 is eventually removed, an FET ultrafinely formed with the gate electrode 81 can be completed.

Description

【発明の詳細な説明】 本発明は、GaAS−FETとこれらを基本に集積した
半導体装置の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a GaAS-FET and a method for manufacturing a semiconductor device basically integrated therewith.

GaA8−FET(電界効果トランジスタ)やIC(集
積回路)の性能を向上するには、サブミクロン領域の加
工技術が必要となる。この目的のためには、電子線描画
による微細加工技術が検討されているが現状では、スル
ープットが上がらない欠点があった。従来の光露光技術
によシ、セルファラインによって加工精度を向上する試
みがあるが、従来の方法では、耐熱性が悪かったり、プ
ロセス加工上のマージンが小さかったりする欠点?有し
ていた。
In order to improve the performance of GaA8-FETs (field effect transistors) and ICs (integrated circuits), processing technology in the submicron region is required. For this purpose, microfabrication techniques using electron beam lithography are being considered, but at present they have the drawback of not increasing throughput. There have been attempts to improve the processing accuracy using Selfa Line using conventional light exposure technology, but traditional methods have drawbacks such as poor heat resistance and small processing margins. had.

本発明の目的は、耐熱性に優れ、かつプロセス歩留りの
向上をはかったセル7アライン技術による半導体装置の
製法を提供することにある。
An object of the present invention is to provide a method for manufacturing a semiconductor device using cell 7 alignment technology, which has excellent heat resistance and improves process yield.

GaAS−FETの基本構成図は第1図に示すようにG
aAS基板結晶4の表面にソース1、ドレイン2電極と
、この間隔にゲート3電極をもつ構造になっている。半
絶縁性GaA34内に、オーミックをとるためのn+層
5とFET動作をさせる能動層6の領域がある。性能向
上にはソース1、ドレイン2間の直列抵抗を下げ、ゲー
ト3電極の静喧容量全小さくする必要があシ、このため
プロセス上の加工技術では、サブミクロンの加工と重ね
合せ精度を向上させる必要がある。従来の光露光による
加工技術ではゲート長が1μm以上しか実現できず、重
ね合せ精度もあまりよくなかった。
The basic configuration diagram of GaAS-FET is shown in Figure 1.
The structure has a source 1 and a drain 2 electrodes on the surface of the aAS substrate crystal 4, and a gate 3 electrode at this interval. In the semi-insulating GaA 34, there are an n+ layer 5 for ohmic control and an active layer 6 for FET operation. In order to improve performance, it is necessary to lower the series resistance between source 1 and drain 2 and to reduce the total static capacitance of gate 3 electrode.For this reason, in process technology, submicron processing and overlay accuracy must be improved. It is necessary to do so. Conventional processing techniques using light exposure could only achieve a gate length of 1 μm or more, and the overlay accuracy was not very good.

本発明は、従来の光露光法によっても、セルファライン
技術によって、サブミクロンの加工と重ね合せ精度を同
時に向上した半導体製造装置の製法と提供したものであ
る。
The present invention provides a method for manufacturing a semiconductor manufacturing apparatus that simultaneously improves submicron processing and overlay accuracy using the conventional light exposure method and the Selfaline technology.

以下、第2図を用いて本発明の一実施例を説明すると共
に本発明の詳細な説明する。
Hereinafter, one embodiment of the present invention will be described using FIG. 2, and the present invention will be explained in detail.

第2図はGaAS−FE’l’の製造工程図である。FIG. 2 is a manufacturing process diagram of GaAS-FE'I'.

半絶縁性GaAS基板結晶11の所要部分にあらかじめ
ホトレジストをマスクとしてSiイオンと打込み、熱処
理してn形動作層12を形成する。
Using a photoresist as a mask, Si ions are implanted in advance into required portions of the semi-insulating GaAS substrate crystal 11, and heat treated to form the n-type active layer 12.

GaAS表面に5I02膜21と蒸着Si膜22を被着
してホトリングラフィ技術によってこれらの膜を加工す
る。各膜の厚さはそれぞれ数百nmで、5IOzとSi
膜はそれぞれリアクティブイオンエッチの反応ガスを選
別することで選択的にエツチングが可能である。パター
ン加工後、高濃度のSiイオンを打込んで熱処理によっ
てnゝ形ネオ−ミツ2層13形成する。この後、sio
、膜のみをサイドエッチしてパターンの断面形状を1字
形に加工する(第2図(a月。この構造は約900Cの
熱処理に対してQaAsの結晶性を劣化させることがな
いので、イオン打込み後のアニールにもパターンを残し
たまま処理できる特徴を有する。
A 5I02 film 21 and a vapor-deposited Si film 22 are deposited on the GaAS surface, and these films are processed by photolithography. The thickness of each film is several hundred nm, and 5IOz and Si
The films can be selectively etched by selecting reactive ion etching reaction gases. After patterning, a high concentration of Si ions is implanted and a heat treatment is performed to form an n-shaped neo-mitsu layer 13. After this, sio
, only the film is side-etched to make the cross-sectional shape of the pattern into a single character shape (Fig. It has the feature that it can be processed with the pattern left intact even during subsequent annealing.

つづいて、GaAS結晶11の表面にポジ形ホトレジス
ト(例えばAZ1350J)を2〜3μmの厚さに塗布
して、表面を平坦化させたあと、全面に紫外線と照射し
、現像する。この処理によって、サイドエッチされたパ
ターンの側面のみのレジス)31が未照射のため残る(
第2図の))。この工程は、平行平板形のアッシャ装置
によっても処理することができる。AuGeの合金41
.42を蒸着によって被着し、つづいてレジスト除去液
に浸し、サイドエッチされた側面に残したレジストを取
去る。約400Cの熱処理によってn”−GaAS13
とAuGe41  をオーミック接触させる(第2図(
C)〕。側面につけたレジスト31はA LI Q e
被着時の廻シ込みをさけるため有効である。つづいて、
この表面t−f、Qうように高分子樹脂51(例えばホ
トレジスト〕を塗布して、表面を平坦にする。このあと
アッシャ装置を用いて高分子樹脂をエツチングして、パ
ターン21,22.42の上面が露出した所で止める(
第2図(d))。イオンミリング装置を用いて表面から
不用のAuGe42を取去ったあと、ドライエツチング
でS+2Zおよび5i0221を取去シ、孔61をあけ
る(第2図(e))。ここまでの工程によって、最初に
形成されたパターンと同一寸法、同一形状をもつ反転パ
ターンが高分子樹脂51にレプリカされたことになる。
Subsequently, a positive photoresist (for example, AZ1350J) is applied to a thickness of 2 to 3 μm on the surface of the GaAS crystal 11 to flatten the surface, and then the entire surface is irradiated with ultraviolet rays and developed. By this process, the resist (31) only on the side surface of the side-etched pattern remains because it has not been irradiated (
)) in Figure 2). This step can also be performed using a parallel plate type asher device. AuGe alloy 41
.. 42 is deposited by vapor deposition and then immersed in a resist removal solution to remove the resist left on the side-etched sides. n”-GaAS13 by heat treatment at about 400C
and AuGe41 are brought into ohmic contact (Fig. 2 (
C)]. The resist 31 attached to the side is A LI Q e
This is effective in avoiding twisting when adhering. Continuing,
A polymer resin 51 (for example, photoresist) is coated on the surface t-f, Q to make the surface flat.After that, the polymer resin is etched using an asher device to form patterns 21, 22, 42. Stop when the top surface of is exposed (
Figure 2(d)). After removing unnecessary AuGe 42 from the surface using an ion milling device, S+2Z and 5i0221 are removed by dry etching, and a hole 61 is made (FIG. 2(e)). Through the steps up to this point, an inverted pattern having the same dimensions and shape as the initially formed pattern has been replicated on the polymer resin 51.

つづいてゲート金属(例えばTi/Pt/Auと連続的
に蒸着)71.72を被着したあと、再々度レジスト(
例えばAZ1350J )73を厚く塗布する(第2図
(f))。試料表面の一部にゲート金属720表面が現
われるまで、レジストをアッシャ装置を用いて一様に削
る。これによってゲート電極81上のみにレジスト82
が残され、つづいてイオンミリング装置を用いて、不用
のゲート金属を除去することができる(第2図(g))
。高分子樹脂51を取シ去ってソース82、ドレイン8
3およびゲート81電極をもつGaAS−FETが作成
されたく第2図小))。
Subsequently, after depositing the gate metal (e.g. sequentially deposited with Ti/Pt/Au) 71, 72, the resist (
For example, apply a thick coat of AZ1350J) 73 (Fig. 2(f)). The resist is uniformly scraped using an asher device until the surface of the gate metal 720 appears on a part of the sample surface. As a result, the resist 82 is formed only on the gate electrode 81.
is left behind, and then the unnecessary gate metal can be removed using an ion milling device (Figure 2 (g)).
. After removing the polymer resin 51, the source 82 and drain 8
A GaAS-FET with 3 and 81 gate electrodes was fabricated (Fig. 2, small)).

n+−オーミック層の形成に必要な熱処理に耐えるバク
ーン構造は、前記の実施例で述べた他に、S iCh 
t S’3N4 + S i、  Pso (リン含有
ガラス)、W、Ti、MOなどの材料全任意に組合せて
も可能である。また、二層の断面構造が丁字形であるこ
とも本質的なことでなく、例えば三層を用いた1字形の
断面であってもよいことは言うに及ばない。
The Bakun structure that can withstand the heat treatment necessary for forming the n+-ohmic layer can be used in addition to those described in the above embodiments.
Any combination of materials such as t S'3N4 + Si, Pso (phosphorus-containing glass), W, Ti, and MO is also possible. Further, it is not essential that the cross-sectional structure of the two layers be T-shaped, and it goes without saying that it may be a single-shaped cross-section using three layers, for example.

本発明によれば、ソースおよびドレイン電極に対してゲ
ート電極がセルフアラインメントで形成できるので、各
部分の寸法を従来法で作ったものより縮めることができ
、これによってFET%性の性能を向上できる効果があ
る。またソースおよびドレイン電極の直下にn+−オー
ミック層をイオン打込みで形成できるので、直列抵抗を
下げる効果がある。ソース、ドレインおよびゲート電極
の形成に本発明では、高分子樹脂で決める形状、寸法を
基本としているため、蒸着時の廻シ込みやプロセス上で
の加工精度の劣化といった問題点が一斉なく、また高分
子樹脂のため加工後の除去が容易であり、これに附ずい
したプロセス・マージンが向上できる効果がある。
According to the present invention, since the gate electrode can be formed in self-alignment with respect to the source and drain electrodes, the dimensions of each part can be made smaller than those made by conventional methods, thereby improving the FET performance. effective. Furthermore, since an n+-ohmic layer can be formed directly under the source and drain electrodes by ion implantation, the series resistance can be reduced. In the present invention, the shapes and dimensions of the source, drain, and gate electrodes are basically determined by the polymer resin, so there are no problems such as cutting in during vapor deposition or deterioration of processing accuracy during the process. Since it is a polymeric resin, it can be easily removed after processing, and has the effect of improving the associated process margin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はGaAS−FETの断面図、第2図は本発明゛
の一実施例によるF E Tの製造工程図である。 11・・・基板、13・・・不純物領域、41・・・絶
縁層、51・・・高分子樹脂層、81・・・ゲート電極
、82・・・第 1 目 ′vJ2
FIG. 1 is a sectional view of a GaAS-FET, and FIG. 2 is a manufacturing process diagram of an FET according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 11... Substrate, 13... Impurity region, 41... Insulating layer, 51... Polymer resin layer, 81... Gate electrode, 82... 1st eye'vJ2

Claims (1)

【特許請求の範囲】[Claims] 1、所定の半導体基板上にソースとドレイン電極を形成
してこの間にゲート電極を加工する際、ゲート電極に対
応する箇所に耐熱性の良い材料からなるパターンを形成
する工程と、前記半導体基板に、イオン打込みをして熱
処理する工程と、上記パターンの一部にサイドエッチを
施こす工程と、このサイドエッチされた側面に第1の高
分子樹脂を埋め、ソースおよびドレイン電極?形成する
工程と、前記第1の高分子樹脂を除去する工程と第2の
高分子樹脂をこれまで準備した半導体基板上に充てんし
て上記パターンの反転複製を作る工程と、ゲート金属を
被着して高分子樹脂をこの上面に覆う工程と、ゲート電
極?加工する工程と?有することを特徴とする半導体装
置の製法。
1. When forming source and drain electrodes on a predetermined semiconductor substrate and processing a gate electrode between them, a step of forming a pattern made of a material with good heat resistance at a location corresponding to the gate electrode, and a step of forming a pattern made of a material with good heat resistance on the semiconductor substrate. , a step of performing ion implantation and heat treatment, a step of performing side etching on a part of the pattern, and filling the side etched side surface with a first polymer resin to form source and drain electrodes. a step of forming the first polymer resin; a step of removing the first polymer resin; a step of filling the semiconductor substrate prepared so far with a second polymer resin to create an inverted copy of the pattern; and depositing a gate metal. The process of covering this top surface with polymer resin and the gate electrode? What is the processing process? A method for manufacturing a semiconductor device comprising:
JP13192982A 1982-07-30 1982-07-30 Manufacture of semiconductor device Granted JPS5923565A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP13192982A JPS5923565A (en) 1982-07-30 1982-07-30 Manufacture of semiconductor device
US06/517,409 US4561169A (en) 1982-07-30 1983-07-26 Method of manufacturing semiconductor device utilizing multilayer mask
CA000433478A CA1206626A (en) 1982-07-30 1983-07-28 Method of manufacturing semiconductor device
EP83107520A EP0101960B1 (en) 1982-07-30 1983-07-29 Method of manufacturing a semiconductor device having a self-aligned gate electrode
KR1019830003551A KR910006673B1 (en) 1982-07-30 1983-07-29 Manufacturing method of semiconductor device
DE8383107520T DE3378239D1 (en) 1982-07-30 1983-07-29 Method of manufacturing a semiconductor device having a self-aligned gate electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13192982A JPS5923565A (en) 1982-07-30 1982-07-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5923565A true JPS5923565A (en) 1984-02-07
JPH0358176B2 JPH0358176B2 (en) 1991-09-04

Family

ID=15069502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13192982A Granted JPS5923565A (en) 1982-07-30 1982-07-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5923565A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163662A (en) * 1985-01-14 1986-07-24 Agency Of Ind Science & Technol Manufacture of field-effect transistor
JP2014099463A (en) * 2012-11-13 2014-05-29 Mitsubishi Electric Corp Semiconductor device manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852880A (en) * 1981-09-25 1983-03-29 Oki Electric Ind Co Ltd Manufacture of semiconductor element
JPS5896769A (en) * 1981-12-04 1983-06-08 Oki Electric Ind Co Ltd Manufacture of semiconductor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852880A (en) * 1981-09-25 1983-03-29 Oki Electric Ind Co Ltd Manufacture of semiconductor element
JPS5896769A (en) * 1981-12-04 1983-06-08 Oki Electric Ind Co Ltd Manufacture of semiconductor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163662A (en) * 1985-01-14 1986-07-24 Agency Of Ind Science & Technol Manufacture of field-effect transistor
JP2014099463A (en) * 2012-11-13 2014-05-29 Mitsubishi Electric Corp Semiconductor device manufacturing method

Also Published As

Publication number Publication date
JPH0358176B2 (en) 1991-09-04

Similar Documents

Publication Publication Date Title
US4670090A (en) Method for producing a field effect transistor
US5387529A (en) Production method of a MESFET semiconductor device
US7838205B2 (en) Utilization of electric field with isotropic development in photolithography
JP2550412B2 (en) Method for manufacturing field effect transistor
US8709267B2 (en) Double patterning method using tilt-angle deposition
KR0163833B1 (en) Method of fabricating semiconductor device
US5114871A (en) Manufacturing diamond electronic devices
JP2000039717A (en) Resist pattern forming method and production of semiconductor device
JPS5923565A (en) Manufacture of semiconductor device
JP2002151381A (en) Method for forming pattern
JPH03278432A (en) Forming method for wiring of semiconductor device
JP2610402B2 (en) Method of manufacturing T-shaped gate by double exposure
JPH022175A (en) Manufacture of thin film transistor
JPH03147338A (en) Manufacture of semiconductor device
JPH0265139A (en) Method of forming electrode for semiconductor device
JPH08186128A (en) Gate formation of field-effect transistor
JPS63254728A (en) Forming method for resist pattern
RU2112300C1 (en) Protective mask manufacturing process for nanolithography
KR0137573B1 (en) Gate fabrication method of mosfet
JP2626238B2 (en) Method for manufacturing semiconductor device
JPH1041309A (en) Wiring formation method of semiconductor device
JPH0745639A (en) Method for manufacture of t-gate of 0.1 micrometer or lower for field-effect transistor
JPS60247948A (en) Manufacture of semiconductor device
JPS62219621A (en) Manufacture of semiconductor device
JPS60216551A (en) Ion beam etching method