JPS59216475A - Controlling method of power converter - Google Patents

Controlling method of power converter

Info

Publication number
JPS59216475A
JPS59216475A JP8891083A JP8891083A JPS59216475A JP S59216475 A JPS59216475 A JP S59216475A JP 8891083 A JP8891083 A JP 8891083A JP 8891083 A JP8891083 A JP 8891083A JP S59216475 A JPS59216475 A JP S59216475A
Authority
JP
Japan
Prior art keywords
control
angle
control circuit
constant
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8891083A
Other languages
Japanese (ja)
Inventor
Shunichi Hirose
広瀬 俊一
Kazuaki Kimura
一秋 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8891083A priority Critical patent/JPS59216475A/en
Publication of JPS59216475A publication Critical patent/JPS59216475A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

PURPOSE:To reduce a disorder at the starting or at the control switching time of a power converter by setting the output value, the primary delay item of a control circuit at the timing of this time as an initial value at the next timing when the abrupt variation of a control angle is required. CONSTITUTION:A control circuit executes a control arithmetic program at every sampling pulse of the prescribed timing, inputs a DC current set value and a DC current, executes a constant current control calculation 80, a constant voltage control calculation 81 and a constant margin angle control calculation 82, selects the minimum of the resultant control angle in the minimum value selector 90, and outputs a control angle (alpha). When the abrupt variation of the control angle is required, the output value and the primary delay item of the control circuit of this timing are set as initial values at the next timing.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は直流送電や周波数変換等に用いる電力変換装
置の制御方法にかかり、特にこの電力変換装置の起動時
や定電流制御を定電圧制御へ切替える等の制御の切替え
をおこ寿う際におこる動揺を押えることのできる制御方
法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for controlling a power converter used for DC power transmission, frequency conversion, etc., and particularly when starting up the power converter and changing constant current control to constant voltage control. The present invention relates to a control method capable of suppressing oscillations that occur when switching control such as switching.

〔発明の技術的背景〕[Technical background of the invention]

第1図は電力変換装置の一列としての直流2端子送電系
統図である。直流系統10からの変流電力が変圧器20
を介して変換器3oに供給され、直流電力に変換された
のち直流リアクトル40を介して直流線路(資)、51
に供給される。一方面流線路50.51を流れる直流重
力は直流リアクトル41を介して変換器31に入力され
、逆変換されて変流電力となり変圧器21を介して交流
系統11に供給される。このように変換器30は順変換
をおこない変換器31は逆変換をおこなう場合を考え、
以後変換器3oは順変換器とよび変換器31は逆変換器
とよぶことにする。
FIG. 1 is a DC two-terminal power transmission system diagram as a row of power converters. Transformed power from the DC system 10 is transferred to the transformer 20
is supplied to the converter 3o via the converter 3o, and after being converted into DC power, it is passed through the DC reactor 40 to the DC line (equipment), 51
supplied to The DC gravity flowing through the one-sided flow line 50 , 51 is input to the converter 31 via the DC reactor 41 , where it is inversely converted into transformed power and supplied to the AC system 11 via the transformer 21 . Considering the case where the converter 30 performs forward conversion and the converter 31 performs inverse conversion in this way,
Hereinafter, the converter 3o will be referred to as a forward converter, and the converter 31 will be referred to as an inverse converter.

従来、順変換器30は定電流制御によシ運転をおこない
直流線@50の電流工dを決定し、逆変換器31は定電
圧制御または定余裕制御により運転をおこ力い直流線路
50の直流電圧va 2決定していた。
Conventionally, the forward converter 30 is operated by constant current control to determine the current value d of the DC line @50, and the inverse converter 31 is operated by constant voltage control or constant margin control to determine the current value d of the DC line 50. The DC voltage va 2 was determined.

第2図は上記の制御をおこなっている場合の制御特性図
を示したものである。1−iと1−2とは順変換器30
0制御特性を示し、l−1と■−2は逆変換器31の制
御特性を示している。
FIG. 2 shows a control characteristic diagram when the above control is performed. 1-i and 1-2 are forward converters 30
0 control characteristics are shown, and l-1 and -2 show control characteristics of the inverse converter 31.

第8図は第2図の制御特性をつくり出す制御装置の要部
を示す機能ブロック図である。加算器70には直流電流
設定直重dpと直流電流工dとが人力し、その偏差信号
が定電流制御回路80に入力される。さらに加算器70
には′市流マージンΔ工dpがスイッチ60を介して印
加されている。加算器71には直流型圧設定直■dpと
直流電圧Vaとが入力し、その偏差信号は定電圧制御回
路81に入力される。
FIG. 8 is a functional block diagram showing the main parts of a control device that creates the control characteristics shown in FIG. 2. The adder 70 inputs the DC current setting direct weight dp and the DC current value d, and the deviation signal thereof is input to the constant current control circuit 80. Further adder 70
A commercial margin Δwork dp is applied through the switch 60 to . The adder 71 receives the DC type pressure setting value dp and the DC voltage Va, and its deviation signal is input into the constant voltage control circuit 81.

さらに直流重流工dと交流電圧Vacとは定余裕角制御
回路82に人力している。定電流制御回路80゜定電圧
制御回路81及び定余裕角制御回路82の各出力はそれ
ぞれ最小直選択回路90に入力され、この最小匝選択回
路90の出力として制御角αが定められる。
Furthermore, the DC heavy current voltage d and the AC voltage Vac are manually supplied to a constant margin angle control circuit 82. The outputs of the constant current control circuit 80, the constant voltage control circuit 81, and the constant margin angle control circuit 82 are respectively input to the minimum direct selection circuit 90, and the control angle α is determined as the output of the minimum direct selection circuit 90.

第1図に示した順変換器30と逆変換器31とはそれぞ
れこの第8図に示した制御装置により制御されている。
The forward converter 30 and inverse converter 31 shown in FIG. 1 are controlled by the control device shown in FIG. 8, respectively.

しかし順変換器300制御装置ではスイッチ601は開
かれておシ、逆変換器31の制御装置ではスイッチ60
は閉じられている。これにより逆変換器310制御装置
では、加算器70によシ直流電流設定直重apが電流マ
ージン△ICupだけ減じられたことになシ、定電流制
御回路80は第2図のll−2の特性を生じ、順変換器
30の定電流制御回路80によって生ずるI−2の特性
とは電流マージン△工dpの差をもつことになる。順変
換器30の1−iの制御特性は順変換器の特性で決る制
御角の最小直で運転をおこなう場合の特性である。
However, in the forward converter 300 controller, switch 601 is open, and in the inverse converter 31 controller, switch 601 is open.
is closed. As a result, in the inverter 310 control device, the adder 70 realizes that the direct current setting weight ap has been reduced by the current margin ΔICup, and the constant current control circuit 80 This characteristic is different from the characteristic of I-2 generated by the constant current control circuit 80 of the forward converter 30 by a current margin Δwork dp. The control characteristic 1-i of the forward converter 30 is the characteristic when operating at the minimum straightness of the control angle determined by the characteristics of the forward converter.

定電圧制御回路81は加算器71からの偏差信号にし よって制御をおこなうが、順変換器30では第1図の直
流電圧Vdの向きを負の直とみるため、定電圧制御回路
8!からの制御角は定電圧制御回路81で決る最大直と
なっている。一方逆変換器31では第1図の直流電圧V
(1の向きを正の値とみるため、定電圧制御回路81か
ら定電圧制御によって決る制御角とな9、第2図のIt
−2の特性が作られる。
The constant voltage control circuit 81 performs control based on the deviation signal from the adder 71, but since the forward converter 30 considers the direction of the DC voltage Vd in FIG. 1 to be negative direct, the constant voltage control circuit 8! The control angle from is the maximum angle determined by the constant voltage control circuit 81. On the other hand, in the inverter 31, the DC voltage V in FIG.
(In order to regard the direction of 1 as a positive value, the control angle determined by constant voltage control from the constant voltage control circuit 81 is 9, It
−2 characteristics are created.

定余裕角制御回路82は正言運転時に逆変換器81が転
流失敗をおこさないよう一定の余裕角rを確保させるだ
めの制御角を発生させるだめの回路であシ、自流電流1
dと交流電圧Vacとがら、−hv’Tx工d 制御角=cos  (−−cosr )  =  (1
)ac で決定される制御角を算出している。
The constant margin angle control circuit 82 is a circuit that generates a control angle to ensure a constant margin angle r so that the inverse converter 81 does not cause commutation failure during positive operation, and has a self-current current of 1.
d and AC voltage Vac, -hv'Tx d Control angle = cos (--cosr) = (1
) ac is calculated.

以上説明した定電流回路8oと定電圧回路81と定余裕
角回路82とから出力される制御角のうち、最小の制御
角を最小1直選択回路9oで選択し、制御角αとして順
変換器3oと逆変倹器31とを運転する。
Among the control angles outputted from the constant current circuit 8o, constant voltage circuit 81, and constant margin angle circuit 82 described above, the minimum control angle is selected by the minimum one direct selection circuit 9o, and the control angle is set as the control angle α to the forward converter. 3o and the reverse transformer 31 are operated.

これによシj険変換器3oでは、第2図1−11とニー
2の制御特性が得られ、逆変換器31ではl−1と11
−2の制御特性が得られて、第1図の直流送電系統は第
2図の4点で運転されることになる。すなわち順変換器
3oは定電流回路8oで決定された制御角で制御され、
逆変換器31は定電圧制御回路81または定余裕角制御
回路82で決定された制御角で制御されることになる。
As a result, the safety converter 3o obtains the control characteristics of 1-11 and knee 2 in FIG. 2, and the inverse converter 31 obtains the control characteristics of l-1 and 11
-2 control characteristics are obtained, and the DC power transmission system shown in FIG. 1 is operated at the four points shown in FIG. 2. That is, the forward converter 3o is controlled by the control angle determined by the constant current circuit 8o,
The inverse converter 31 is controlled by the control angle determined by the constant voltage control circuit 81 or the constant margin angle control circuit 82.

〔背景技術の問題点〕[Problems with background technology]

以上説明した第8図の制御回路は従来アナログ回路とし
て構成されていた。したがって定電流制御回路80や定
電圧制御回路81は第4図に示すような1次遅れ進み回
路で構成されることが多かった。
The control circuit shown in FIG. 8 described above has conventionally been configured as an analog circuit. Therefore, the constant current control circuit 80 and the constant voltage control circuit 81 are often constructed of first-order delay/lead circuits as shown in FIG.

第4図中R1# ”S e R4は抵抗を、Cはコンデ
ンサf:b  Aは演算増巾器をそれぞれ示している。
In FIG. 4, R1#"S e R4 represents a resistor, C represents a capacitor f:b, and A represents an operational amplifier.

第4図の1次遅れ進み回路の伝達関数は(2)式のごと
くなる。
The transfer function of the first-order lag/lead circuit shown in FIG. 4 is as shown in equation (2).

ここで(2)式を伝達関数のブロック図として表わした
のが第4図である。第4図に示すようなアナログ回路で
構成した1次遅れ進み回路で第3図に示す定電流制御回
路8oや定電圧制御回路81を構成した場合、次のよう
な不具合があった。
FIG. 4 shows equation (2) as a block diagram of a transfer function. When the constant current control circuit 8o and the constant voltage control circuit 81 shown in FIG. 3 are constructed with a first-order delay/lead circuit constructed from an analog circuit as shown in FIG. 4, the following problems occur.

電力変換装置の起動時に特定の制御角α、から電力変換
装置を起動する目的で、第8図に示す最小(直選択回路
90の出力αを起動時のみ制御角α1に設定して制御を
開始しても、(2)式のT1に相当する時定数でしか定
電流制御回路80と定電圧制御回路81とが応答しない
ため、最小値選択回路90は起動時に設定した制御角α
、とはかけ離れた定電流制御回路80または定電圧制御
回路81の出力を制御角最小瞳として選択して出力して
しまう。このため電力変換装置の起動に擾乱を与えてし
まう。
In order to start the power converter from a specific control angle α when starting the power converter, control is started by setting the output α of the minimum (direct selection circuit 90) to the control angle α1 only at the time of starting as shown in FIG. Even if the constant current control circuit 80 and the constant voltage control circuit 81 respond only with a time constant corresponding to T1 in equation (2), the minimum value selection circuit 90 uses the control angle α set at startup.
, the output of the constant current control circuit 80 or the constant voltage control circuit 81, which is far from , is selected and outputted as the control angle minimum pupil. This causes disturbance in the startup of the power conversion device.

さらにたとえば第1図の系統構成において、順変換器3
0と逆変換器31との運転を逆にする潮流反転をおこな
うため、順変換器30の側の制御装置のスイッチ60を
閉じ、逆変換器31の側の制御装置のスイッチ60を開
いた場合、今まで順変換をおこなっていた変換器30の
制御装置の定電圧制御回路81の出力は最大制御角18
0°から第2図に示すA点に相当する運転制御角である
140°付近まで(2)式のT、で定まる時定数で動い
て・くる。逸散定電圧制御回路81の時定数TIは1秒
程度と遅く、定電流制御回路80の時定数TIは数10
0ミlJ秒程度と高速に設定しである。このため潮流反
転開始直後は、順変換から逆変換になろうとする変圧器
30の制御角は時間的にみれば、定電流制御回路80、
定余裕角制御回路82、定電圧制御回路81の出力の順
に最小値選択回路90で選択されて出力される。定余裕
角制御回路82の出力が選択されるのは、定電圧制御回
路81の出力が最大制御角の180°から1秒程度とい
うおそい時定数T1で140°付近1でゆっくり動くか
らである。このため順変換から逆変換へと移行した変換
器30は制御角αとして定余裕角制御回路82の出力が
選択されている間に過電圧となってしまう。このような
不具合は第4図に示す回路でコンデンサOの充放電を加
減することにより防ぐことができるが、アナログ回路で
これを実現することは非常に困難である。
Furthermore, for example, in the system configuration shown in FIG.
When the switch 60 of the control device on the side of the forward converter 30 is closed and the switch 60 of the control device on the side of the inverse converter 31 is opened in order to perform a power flow reversal that reverses the operation of the zero and inverse converter 31. , the output of the constant voltage control circuit 81 of the control device of the converter 30, which has been performing forward conversion, is the maximum control angle of 18
It moves from 0° to around 140°, which is the operation control angle corresponding to point A shown in FIG. 2, with a time constant determined by T in equation (2). The time constant TI of the dissipation constant voltage control circuit 81 is as slow as about 1 second, and the time constant TI of the constant current control circuit 80 is several tens of seconds.
It is set at a high speed of about 0 milJ seconds. Therefore, immediately after the start of power flow reversal, the control angle of the transformer 30, which is about to change from forward conversion to inverse conversion, is determined by the constant current control circuit 80,
The outputs of the constant margin angle control circuit 82 and the constant voltage control circuit 81 are selected in this order by the minimum value selection circuit 90 and output. The output of the constant margin angle control circuit 82 is selected because the output of the constant voltage control circuit 81 moves slowly from the maximum control angle of 180° to around 140°1 with a slow time constant T1 of about 1 second. For this reason, the converter 30 that has transitioned from forward conversion to inverse conversion becomes overvoltage while the output of the constant margin angle control circuit 82 is selected as the control angle α. Although such a problem can be prevented by controlling the charging and discharging of the capacitor O using the circuit shown in FIG. 4, it is extremely difficult to realize this using an analog circuit.

〔発明の目的〕[Purpose of the invention]

この発明は上述のごとき不具合を解決するためになされ
たもので、その目的は、−力変換装兜の起動時や制御切
多換え時に生ずる擾乱を少くすることのできる電力変換
装置の制御方法を提供するにある。
This invention was made in order to solve the above-mentioned problems, and its purpose is to provide a control method for a power conversion device that can reduce disturbances that occur when starting a force conversion device or switching control. It is on offer.

〔発明の概要〕[Summary of the invention]

この発明では上記目的を達成するために、所定のタイミ
ング毎に1次遅れ進み回路を有する制御回路の演算全実
行して制御角を算出し、前記制御角に基づいて電力変換
装置の制御をおこなうに際し、前記重力変換装置が前記
制御角の急変を要求する場合には、今回のタイミングに
おける前記制御回路の出力呟と1次遅れ項とを次のタイ
ミングにおける初期呟として設定することを特徴として
いる。
In order to achieve the above object, the present invention calculates a control angle by executing all calculations of a control circuit having a first-order lag/lead circuit at each predetermined timing, and controls a power conversion device based on the control angle. In this case, when the gravity conversion device requests a sudden change in the control angle, the output pulse of the control circuit at the current timing and the first-order lag term are set as the initial pulse at the next timing. .

実施例 以下この発明の実施列を図面に基づいて詳細に説明する
EXAMPLES Below, embodiments of the present invention will be explained in detail based on the drawings.

第6図はこの発明の詳細な説明するための機能ブロック
図であり、第7図および第8図はその動作t−説明する
fcめのフローチャートである。第7図に示すフローチ
ャートは第8図に示す制御回路をディジタル制御回路と
して具現した場合の動作を示している。す々わち所定の
タイミングごとのサンプリングパルスごとに制御演算プ
ログラムを実行し、直流電流設定値工dp、直流電流工
d等を人力して定電流制御演算(AOR)と定電圧制御
演算(AV4)と定電圧制御演算(axC)とを実行し
、その結果制御角として最小となるものを選択したのち
、制御角αとして出力する。このような演算動作をサン
プリングパルスを受は取るたびに実行する。
FIG. 6 is a functional block diagram for explaining the present invention in detail, and FIGS. 7 and 8 are flowcharts for explaining its operation. The flowchart shown in FIG. 7 shows the operation when the control circuit shown in FIG. 8 is implemented as a digital control circuit. In other words, a control calculation program is executed for each sampling pulse at a predetermined timing, and the DC current setting value dp, DC current value d, etc. are manually calculated to perform constant current control calculation (AOR) and constant voltage control calculation (AV4). ) and a constant voltage control calculation (axC), and after selecting the minimum control angle as a result, it is output as the control angle α. Such a calculation operation is executed every time a sampling pulse is received or taken.

第6図は第4図に示す1次遅れ進み回路の伝達関数を表
わす(2)式を変形してブロック図として表わしたもの
である。すなわち(2)式は、と表わせるため、人カニ
と(3)式のに1との積であるTJK &D項と、へカ
ニとに、との積であるI、()項に1次遅れ項1/(1
+T、−s)  をかけたLAG項の加算値が出力石と
なっていることを示している。
FIG. 6 is a modified block diagram of equation (2) representing the transfer function of the first-order lag/lead circuit shown in FIG. In other words, since equation (2) can be expressed as Delay term 1/(1
+T, -s) indicates that the added value of the LAG term is the output stone.

第4図の回路をプログラムによるデジタル演算として実
現するためには、サンプリング信号の度毎に差分方程式
(4)を演算するプログラムを作ればここで添字nは今
回のサンプリング時の値であることを示し、n−1は前
回のサンプリング時の[直であることを示している。ま
たT8はサンプリング信号の周期である。ただし差分方
程式(4)をそのまま実行した場合には、前述したアナ
ログ回路の場合と同様に起動時におこる不具合がそのま
ま解消されないで残ってしまう。そこで第8図にフロー
チャートで示すように、サンプリング信号ごとに定電流
制御演算や定電圧制御演算として1次遅れ進み演算を(
4)式の差分方程式に基づいて■の部分のプログラムと
して実行するが、変換器の起動開始時には今回の出力直
方nと遅れ項’LAG、−1とを次回のサンプリング時
に使用する初期1直として起動位相の制御角と同じ直に
制御する■の部分のプログラムを実行する。このように
することにより定電流制御回路の出力は、所定の制御角
から時定数T、に相当する時間遅れを持って移行制御さ
れる。したがって起動時に電力変換装置が発生する擾乱
を少なくできる。
In order to realize the circuit shown in Figure 4 as a digital calculation by a program, create a program that calculates the difference equation (4) every time the sampling signal is obtained. , and n-1 indicates [direct] at the time of the previous sampling. Further, T8 is the period of the sampling signal. However, if the differential equation (4) is executed as is, the problem that occurs at startup will remain unresolved, as in the case of the analog circuit described above. Therefore, as shown in the flowchart in Figure 8, first-order lag/lead calculations are performed as constant current control calculations and constant voltage control calculations for each sampling signal (
4) The part (■) is executed as a program based on the difference equation in Equation 4). At the start of converter startup, the current output rectangular n and the delay term 'LAG, -1 are used as the initial 1st shift to be used at the next sampling time. Execute the program in the part (■) that directly controls the control angle of the starting phase. By doing so, the output of the constant current control circuit is controlled to shift from a predetermined control angle with a time delay corresponding to the time constant T. Therefore, disturbances generated by the power converter during startup can be reduced.

第9図のフローチャートはこの発明の能の実施列を説明
するためのものであって、第8図のフローチャートに比
較して■で示した部分が異っている。このフローチャー
トは第1図の直流送電装置で潮流反転をおこそうとする
場合に用いられる。
The flowchart of FIG. 9 is for explaining the implementation sequence of the functions of the present invention, and is different from the flowchart of FIG. 8 in the parts indicated by ■. This flowchart is used when attempting to cause power flow reversal in the DC power transmission device shown in FIG.

す彦わち潮流反転をおこなう場合、定電圧制御回路の時
定数が遅いため、定電圧制御回路の出力が所定の制御角
に到達するまでに長時間を有し、このため定電圧制御回
路が、一定時間働くことになり、順変換から逆変換に移
った変換器は過電圧となる不具合があったが、この発明
のように潮流反転信号とともに定電圧制御回路の出力を
所定の制御角になるように設定するため、変換器は過電
圧を発生しにくくなる。
In other words, when performing power flow reversal, the time constant of the constant voltage control circuit is slow, so it takes a long time for the output of the constant voltage control circuit to reach the predetermined control angle. , the converter works for a certain period of time, and the converter that moves from forward conversion to inverse conversion has a problem of overvoltage, but as in this invention, the output of the constant voltage control circuit is adjusted to a predetermined control angle along with the power flow reversal signal. This setting makes the converter less likely to generate overvoltage.

〔発明の効果〕〔Effect of the invention〕

以上実姉列に基づいて詳細に説明したように、この発明
はデジタル制御装置として構成される′電力変換装置を
制御するにさいして定電流制御や定電圧制御等でおこな
う一次進み遅れ演算や比的積分演算等の制御演算をプロ
グラムで構成し、制御の切シ換え時に制御演算の遅れ分
に相当する演算の途中結果を排塵演算の最終結果が所定
の演算結果となるように設定したので、制御の切り換え
時に電力変換装置が発生する擾乱を少なくできるという
利点がある。
As explained above in detail based on the actual series, the present invention is capable of performing primary lead/lag calculations and relative Control calculations such as integral calculations are configured in a program, and when the control is switched, the intermediate results of the calculations corresponding to the delay in the control calculations are set so that the final result of the dust removal calculation becomes the predetermined calculation result. This has the advantage that disturbances generated by the power converter device during control switching can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電力変換装置の一列としての直流2端子送邂系
統図、第2図は第1図の制御特性図、第8図は電力変換
装置の制御回路の一列を示すブロック図、第4図はアナ
ログ回路による1次遅れ進み回路の一列を示す回路図、
第5図は第4図の伝達関数を示すブロック図、第6図は
第5図を変形して示したブロック図、第7図は第3図に
示す制御口[−ディジタル演算として実行するための動
作を示すフローチャート、第8図はこの発明の一実施例
の動作を説明するだめのフローチャート、第9図はこの
発明の能の実施列の動作を説明するためのフローチャー
トである。 α・・・最小匝制御角、LAG・・・1次遅れ項、■・
・・入力1直、石・・・出力1直。 出願人代理人  猪  股     清第3図 第4図 免6図 第9図
Fig. 1 is a DC two-terminal feed system diagram as a line of power converters, Fig. 2 is a control characteristic diagram of Fig. 1, Fig. 8 is a block diagram showing a line of control circuits of the power converter, and Fig. The figure is a circuit diagram showing a line of first-order delay/lead circuits using analog circuits.
5 is a block diagram showing the transfer function of FIG. 4, FIG. 6 is a block diagram showing a modification of FIG. 5, and FIG. 7 is a block diagram showing the control port shown in FIG. FIG. 8 is a flowchart for explaining the operation of an embodiment of the present invention, and FIG. 9 is a flowchart for explaining the operation of an embodiment of the present invention. α...Minimum control angle, LAG...1st order lag term, ■・
...1 shift of input, stone...1 shift of output. Applicant's Representative Kiyoshi Inomata Figure 3 Figure 4 Figure 6 Figure 9

Claims (1)

【特許請求の範囲】 (1)所定のタイミング毎K1次遅れ進み回路を有する
制御回路の演算を実行して制御角を算出し、前記制御角
に基づいて電力変換装置の制御をおこなうに際し、前記
重力変換装置が前記制御角の急変を要求する場合には、
今回のタイミングにおける前記制御回路の出力1tf(
On)と1次遅れ項(LA()n、 )とを次のタイミ
ングにおける初期匝として設定することを特徴とする電
力変換装置の制御方法。 ■)前記制御角の急変を要求する場合が電力変換装置の
起動時であることを特徴とする特許請求の範囲第(1)
項記載の電力変換装置の制御方法。 (8)前記制御角の急変を要求する場合が前記制御回路
の制御の切替時であることを特徴とする特許請求の範囲
第(1)項記載の電力変換装置の制御方法。
[Scope of Claims] (1) When calculating a control angle by calculating a control circuit having a K1-order lag/lead circuit at every predetermined timing, and controlling the power conversion device based on the control angle, If the gravity conversion device requires a sudden change in the control angle,
The output 1tf of the control circuit at this timing (
1. A method for controlling a power conversion device, characterized in that a first-order lag term (LA()n, ) is set as an initial value at the next timing. ■) Claim (1) characterized in that the case where the sudden change of the control angle is requested is when the power conversion device is started up.
A method for controlling a power converter according to section 1. (8) The method for controlling a power conversion device according to claim (1), wherein the sudden change in the control angle is requested when the control of the control circuit is switched.
JP8891083A 1983-05-20 1983-05-20 Controlling method of power converter Pending JPS59216475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8891083A JPS59216475A (en) 1983-05-20 1983-05-20 Controlling method of power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8891083A JPS59216475A (en) 1983-05-20 1983-05-20 Controlling method of power converter

Publications (1)

Publication Number Publication Date
JPS59216475A true JPS59216475A (en) 1984-12-06

Family

ID=13956093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8891083A Pending JPS59216475A (en) 1983-05-20 1983-05-20 Controlling method of power converter

Country Status (1)

Country Link
JP (1) JPS59216475A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009217762A (en) * 2008-03-13 2009-09-24 Hitachi Ltd Controller of power transducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009217762A (en) * 2008-03-13 2009-09-24 Hitachi Ltd Controller of power transducer

Similar Documents

Publication Publication Date Title
US7239043B2 (en) Power conversion apparatus and methods using an adaptive waveform reference
JPH01209928A (en) Method and apparatus for controlling active and reactive power between electric system
JPS59216475A (en) Controlling method of power converter
US4420719A (en) Cross-tied current regulator for load commutated inverter drives
CN113852067A (en) On-grid and off-grid seamless switching control method, system, storage medium and equipment
US7233081B2 (en) Power-supply device
CN110838792A (en) IPOS direct current converter self-adaptive variable parameter output voltage-sharing control method
JPH07203672A (en) Power supply employing pwm control system
JPH11285299A (en) Vector controller of induction motor, and its vector control method
CN110943620A (en) Phase-shifting sliding mode control method and system of LLC resonant DC converter
CN112600446B (en) Voltage source rectifier current control method of frequency conversion system
Burgos et al. A simple adaptive fuzzy logic controller for three-phase PWM boost rectifiers
JPH05316644A (en) Method for controlling power converter
JPS5941004A (en) Process control device
JPS6082030A (en) Constant power controlling method of power converter
JPH1075586A (en) Dead-time compensator for synchronous pwm
JPH07115770A (en) Control system for power converter
JP2582915B2 (en) Variable speed controller for wound induction machine
JPH02184266A (en) Restraining system of input voltage unbalance in multi-dc/dc converter device
JPS63245268A (en) Controlling method for current type pwm converter
JP2816202B2 (en) Control circuit and control method for power supply device and power supply device
JPH05300674A (en) Superconducting energy storage device and control method for superconducting energy storage device
JPS59201635A (en) Method of starting power converter
JPS5999975A (en) Control system for power converter
JPS5812572A (en) Controlling circuit for chopper