JPS6082030A - Constant power controlling method of power converter - Google Patents

Constant power controlling method of power converter

Info

Publication number
JPS6082030A
JPS6082030A JP58187914A JP18791483A JPS6082030A JP S6082030 A JPS6082030 A JP S6082030A JP 58187914 A JP58187914 A JP 58187914A JP 18791483 A JP18791483 A JP 18791483A JP S6082030 A JPS6082030 A JP S6082030A
Authority
JP
Japan
Prior art keywords
power
constant
converter
control
setting value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58187914A
Other languages
Japanese (ja)
Inventor
広瀬 俊一
清司 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58187914A priority Critical patent/JPS6082030A/en
Publication of JPS6082030A publication Critical patent/JPS6082030A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、順変換器と逆変換器の協調をとりながら運転
を行なう直流送電や周波数変換装置等の電力変換装置の
定電力制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a constant power control method for a power conversion device such as a DC power transmission or frequency conversion device, which operates while coordinating a forward converter and an inverse converter.

[発明の技術的背景] 第1図はこの種の従来の電力変換装置の一例としての直
流2端子送電系統図である。
[Technical Background of the Invention] FIG. 1 is a DC two-terminal power transmission system diagram as an example of this type of conventional power conversion device.

10と11は交流系統、20と21は変圧器、30と3
1は変換器、40と41は直流り乃りトル、50と51
は直流線路である。
10 and 11 are AC systems, 20 and 21 are transformers, 30 and 3
1 is a converter, 40 and 41 are DC converters, 50 and 51
is a DC line.

変換器30は順変換を行ない、変換器31は逆変換を行
なう場合を考え、変換器30は順変換器、変換器31は
逆変換器とする。
Considering the case where the converter 30 performs forward conversion and the converter 31 performs inverse conversion, the converter 30 is assumed to be a forward converter, and the converter 31 is assumed to be an inverse converter.

一般に、順変換器30は定電流制御により運転し、直流
線路50の電流idを決定し、逆変換器31は定電圧制
御または定余裕角制御により運転し直流線路50の直流
電圧Vdを決定している。
Generally, the forward converter 30 is operated by constant current control to determine the current id of the DC line 50, and the inverse converter 31 is operated by constant voltage control or constant margin angle control to determine the DC voltage Vd of the DC line 50. ing.

このような制御を行なっている場合の制御特性図を第2
図に示す。
The control characteristic diagram when such control is performed is shown in the second diagram.
As shown in the figure.

I−1と1−2は順変換器30の制御特性を表わし、l
l−1とIf−2は逆変換器31の制御特性を示す。
I-1 and 1-2 represent the control characteristics of the forward converter 30, and l
l-1 and If-2 indicate control characteristics of the inverse converter 31.

順および逆変換器において第2図の制御特性を作りだす
制御装置のブロック図が第3図である。
FIG. 3 is a block diagram of a control device that produces the control characteristics shown in FIG. 2 in the forward and inverse converters.

60はスイッチ、70と71は加算器、80は定電流制
御回路、81は定電圧制御回路、82は定余裕角制御回
路、90は最小値選択回路で、順変換器30と逆変換器
31はそれぞれこの第3図の制御装置の出力の制御角α
によって制御され、その入力が正の最大値で制御角αが
最小となりその入力が負の最小値(絶対値は最大となる
)のとき制御角αが最大として演算を行なう。
60 is a switch, 70 and 71 are adders, 80 is a constant current control circuit, 81 is a constant voltage control circuit, 82 is a constant margin angle control circuit, 90 is a minimum value selection circuit, a forward converter 30 and an inverse converter 31 are the control angle α of the output of the control device in Fig. 3, respectively.
When the input is the maximum positive value, the control angle α is the minimum, and when the input is the negative minimum value (the absolute value is the maximum), the control angle α is the maximum and calculation is performed.

スイッチ60は、順変換器30では解放し、逆変換器3
1では開成されている。
The switch 60 is opened in the forward converter 30 and opened in the inverse converter 3.
1 has been opened.

したがって、逆変換器31の制御装置では加算器70に
より直流電流設定値Idpが電流マージンΔIdpだけ
減じられたことになり、定電流制御回路80は第2図の
ll−2の特性を生じ、順変換器30の定電流制御回路
80により生じるI−2の特性とは電流マージンΔId
pの差を持つことになる。
Therefore, in the control device of the inverter 31, the DC current setting value Idp is reduced by the current margin ΔIdp by the adder 70, and the constant current control circuit 80 produces the characteristic ll-2 in FIG. The characteristic of I-2 generated by the constant current control circuit 80 of the converter 30 is the current margin ΔId.
There will be a difference of p.

順変換器30のI−1の制御特性は順変換器の特性で決
まる制御角αの最小値で運転を行なう場合の特性である
The I-1 control characteristic of the forward converter 30 is the characteristic when operating at the minimum value of the control angle α determined by the characteristics of the forward converter.

定電圧制御回路81は加算器71からの直流電圧設定値
Vdpと直流電圧Vdの差によって制御されるが、順変
換器30では第1図の直流電圧VC+の向きを負の値と
みるため定電圧制御回路81がらの制御角は定電圧制御
回路81で決まる最大値となっているから、定電流制御
回路80からの制御角αによって制御される。
The constant voltage control circuit 81 is controlled by the difference between the DC voltage setting value Vdp and the DC voltage Vd from the adder 71, but in the forward converter 30, the direction of the DC voltage VC+ in FIG. Since the control angle of the voltage control circuit 81 is the maximum value determined by the constant voltage control circuit 81, it is controlled by the control angle α from the constant current control circuit 80.

一方、逆変換器31では第1図の直流電圧Vdの向きを
正の値とみるため定電圧制御回路81から定電圧制御(
条件によっては定余裕角制御回路82)によって決まる
制御角αとなり、第2図のll−1の特性がつくられる
On the other hand, in the inverter 31, since the direction of the DC voltage Vd in FIG. 1 is regarded as a positive value, the constant voltage control circuit 81 controls the constant voltage (
Depending on the conditions, the control angle α is determined by the constant margin angle control circuit 82), and the characteristic ll-1 in FIG. 2 is created.

定余裕角制御回路82は正常運転時に逆変換器31が転
流失敗を起こさぬよう一定の余裕角Yを確保ざぜるため
の制御角を発生する回路であり、直流電流Idと交流電
圧Vacから で決定された制御角を算出している。Xは転流リアクタ
ンスである。
The constant margin angle control circuit 82 is a circuit that generates a control angle to ensure a constant margin angle Y to prevent commutation failure of the inverter 31 during normal operation. The control angle determined by is calculated. X is commutation reactance.

以上説明した定電流回路80と定電圧回路81と定余裕
角回路82とから出力される制御角のうち最小の制御角
を最小値選択回路90で選択し、制御角αとして順変換
器30と逆変換器31とを運転する。
Among the control angles output from the constant current circuit 80, constant voltage circuit 81, and constant margin angle circuit 82 described above, the minimum control angle is selected by the minimum value selection circuit 90, and the control angle is selected by the forward converter 30 as the control angle α. The inverter 31 is operated.

これにより、順変換器30では第2図I−1とI−2の
制御特性が得られ、逆変換器31では■−1とI−2の
制御特性が得られて、第1図の直流送電系統は第2図上
のA点で運転されることになる。
As a result, the forward converter 30 obtains the control characteristics shown in FIG. 2, I-1 and I-2, and the inverse converter 31 obtains the control characteristics shown in FIG. The power transmission system will be operated at point A on Figure 2.

なお、第2図の逆変換器31の制御特性ll−1は、例
えば、交流電圧Vacが低い場合とが直流電流Idが大
きい場合は定電圧制御回路81がらの制御角よりも定余
裕角制御回路82がらの制御角の方が小さくなることに
より、定余裕角制御回路からの制御角によって決定され
ることもある。
Note that the control characteristic ll-1 of the inverter 31 in FIG. Since the control angle from the circuit 82 is smaller, it may be determined by the control angle from the constant margin angle control circuit.

これまでは、変換器30を順変換器とし変換器31を逆
変換器として説明してきたが、第3図のスイッチ60を
変換器30では開き、変換器31では閉じると、変換器
30は順変換器、変換器31は逆変換器となることはあ
きらがである。第1図の直流2端子系統の順変換器3o
と逆変換器31を上記の動作により運転中に逆変換器3
o、順変換器31とすることもでき、この場合、直流電
圧Vdが逆極性となるとともに、変換器3oがら変換器
31へ送電されていた電力が、逆に変換器31から変換
器30へ送電されることになる。
Up to now, we have described the converter 30 as a forward converter and the converter 31 as an inverse converter, but when the switch 60 in FIG. 3 is opened in the converter 30 and closed in the converter 31, the converter 30 is It is clear that the converter, converter 31, is an inverse converter. Forward converter 3o of DC 2-terminal system in Figure 1
and the inverter 31 are operated by the above operation.
o, it is also possible to use a forward converter 31, in which case the DC voltage Vd becomes reverse polarity and the power that was being transmitted from the converter 3o to the converter 31 is reversely transferred from the converter 31 to the converter 30. Electricity will be transmitted.

これは潮流反転と呼ばれている。This is called a tide reversal.

しかして上述の直流端子送電系統で送電電力を一定にす
る定電力制御には、従来、第4図の定電力制御装置に第
5図の1次遅れ制御演算回路を用いて行なわれている。
Conventionally, constant power control for keeping the transmitted power constant in the above-mentioned DC terminal power transmission system has been performed using the constant power control device shown in FIG. 4 and the first-order lag control calculation circuit shown in FIG. 5.

第4図の101.102は加算器、110は1次遅れ制
御演算回路である。第5図の120゜121は演算増幅
器、131,132.133はそれぞれ抵抗R1,R2
、R3を表ワt、、140はコンデンサCを表わしてい
る。
In FIG. 4, 101 and 102 are adders, and 110 is a first-order delay control calculation circuit. 120° 121 in Figure 5 is an operational amplifier, 131, 132, and 133 are resistors R1 and R2, respectively.
, R3 are represented by t, , 140 represents the capacitor C.

第4図の定電力制御装置の動作を説明する。加算器10
1では電力設定値Pdpと直流送電の送電電力Pとの差
が取られ誤差信号ERRとして出力される。
The operation of the constant power control device shown in FIG. 4 will be explained. Adder 10
1, the difference between the power setting value Pdp and the transmitted power P of DC power transmission is taken and output as an error signal ERR.

ERR=Pdp−Pd (1) ここで送電電力Pdは第1図の直流電圧Vdと直流電流
1dの積の絶対値であり Pd = I Vd¥ldl (2) としてめられている。加算器101からの誤差信号ER
Rは1次遅れ制御演算回路110に入力され1次遅れ制
御演算をほどこされた後、補正信号DPとして出力され
る。加算器102では補正信号DPと電力設定値Pdp
が加算され直流電流設定値Idpが出力される。一般に
、直流送電では、直流電圧設定値Vdpは一定値とする
ため、直流送電電力の増減は直流電流設定値1dpを増
減させて行なうことが知られている。このため電力設定
値Pdpの100%を直流電流設定値1−d、pの10
0%に相当するように電力設定値Pdpが決められてい
る。それ故、第4図の加算器102から出力される直流
電流設定値Idpを第3図の直流電流設定値Idpとす
ることにより直流送電の送電電力Pdが決定される。第
4図の一次遅れ制御演算回路110は、外乱等により直
流2端子送電の送電電力Pdが電力設定値Pdpとは異
、なる送電電力になったときこれを補正するためのもの
である。第5図は1次遅れ制御演算回路110に用いる
1次遅れ制御回路の従来例である。
ERR=Pdp-Pd (1) Here, the transmitted power Pd is the absolute value of the product of the DC voltage Vd and the DC current 1d in FIG. 1, and is determined as Pd=I Vd\ldl (2). Error signal ER from adder 101
R is input to the first-order lag control calculation circuit 110, subjected to first-order lag control calculation, and then output as a correction signal DP. The adder 102 uses the correction signal DP and the power setting value Pdp.
are added and a DC current setting value Idp is output. Generally, in DC power transmission, since the DC voltage setting value Vdp is set to a constant value, it is known that the DC transmission power is increased or decreased by increasing or decreasing the DC current setting value 1dp. Therefore, 100% of the power setting value Pdp is converted to the DC current setting value 1-d, 10% of p.
The power setting value Pdp is determined to correspond to 0%. Therefore, by setting the DC current setting value Idp output from the adder 102 in FIG. 4 to the DC current setting value Idp in FIG. 3, the transmitted power Pd of DC power transmission is determined. The primary lag control calculation circuit 110 in FIG. 4 is for correcting when the transmitted power Pd of DC two-terminal power transmission becomes a transmitted power different from the power setting value Pdp due to disturbance or the like. FIG. 5 shows a conventional example of a first-order lag control circuit used in the first-order lag control calculation circuit 110.

第5図の回路の伝達関数G(s)は に 0(” ”’ 1 +T 1 * S (3)但し 2 K = −T = C* R2(4) Rし である。一般にKは利得、T1は遅れ時定数と呼ばれて
いる。Sはラプラスの演算子である。
The transfer function G(s) of the circuit in FIG. T1 is called a delay time constant. S is Laplace's operator.

[背景技術の問題点] 以上、第4図と第5図で説明した従来の定電力制御装置
には次のような不具合があった。すなわち、 (イ) 第1図の直流送電系統の起動時には直流電圧V
dは零電圧から定格電圧まで立ち上がるのに長時間を要
し、(2)式でめられる送電電力Pdはある一定時間、
電力設定値Pdpよりも大幅に少なくなる。それ故、(
1)式で表わされる誤差信号ERRが大きくなって、−
次遅れ制御演算回路110の出力である補正信号DPが
大きくなる。この状態で第1図の直流送電系統の逆変換
器31の定電圧制御回路81の働きにより直流電圧Vd
が直流電圧設定値Vd1)に等しくなり、直流電流設定
値ldpが直流電力設定値Pdpになることで直流電力
Pdが直流電力設定値Pdpに等しくなる状態になって
も、誤差信号DPが第5図の一次遅れ制御演算回路で決
定される遅れ時定数T1=C*R2で決定される時間で
しか零にならない。このため、直流電流設定値1dpが
Pdpに等しくなるのに時間がかかり、第4図の定電力
制御装置を第1図の直流送電系統に適用すると起動時の
送電電力の動揺が大きくなるという不具合である。第6
図は第4図と第5図で説明した定電力制御装置を用いた
場合の直流電流設定値1dpの動きを説明する図である
。第6図を用いて上記不具合を説明する。時間t=tO
で第1図の直流送電系統が起動されると時間t =t 
1まで送電電力Pdが電力設定値Pdpまで立あがらな
いため、第5図の一次遅れ回路で決定される時定数T1
に応じて第4図の定電力制御装置から出力される直流電
流設定値1dpがI dplまで大きくなる。その後、
送電電力Pdが電力設定値以上になると、第5図の一次
遅れ回路で決定される時定数Ttにより、時間t=t2
までに直流電圧設定値IdpはPdpになる。逆変換器
31では第3図の定電流制御回路80の応答は定電圧制
御回路81の応答に比べて速いため、時間t=t1の時
点で第1図の直流送電系統の直流電圧Vdが直流電圧設
定値Vdpにほぼ等しくなっている。時間t1とt2の
間は第1図の直流送電系統が電力設定値Pdpの指示通
り電力を送電できるにもかかわらず、第5図の一次遅れ
回路を使用したため、電力設定値Pdpの指示通り電力
を送電できない期間となっている。
[Problems with Background Art] The conventional constant power control device described above with reference to FIGS. 4 and 5 has the following problems. In other words, (a) When the DC transmission system shown in Figure 1 starts up, the DC voltage V
d takes a long time to rise from zero voltage to the rated voltage, and the transmitted power Pd calculated by equation (2) is for a certain period of time,
It is significantly smaller than the power setting value Pdp. Therefore,(
1) The error signal ERR expressed by equation becomes larger, and -
The correction signal DP, which is the output of the next delay control calculation circuit 110, increases. In this state, the constant voltage control circuit 81 of the inverter 31 of the DC power transmission system shown in FIG.
becomes equal to the DC voltage setting value Vd1), and the DC current setting value ldp becomes the DC power setting value Pdp, so that the DC power Pd becomes equal to the DC power setting value Pdp. It becomes zero only at the time determined by the delay time constant T1=C*R2 determined by the first-order delay control calculation circuit in the figure. For this reason, it takes time for the DC current setting value 1dp to become equal to Pdp, and when the constant power control device shown in Figure 4 is applied to the DC transmission system shown in Figure 1, there is a problem that fluctuations in the transmitted power at startup become large. It is. 6th
The figure is a diagram illustrating the movement of the DC current setting value 1dp when the constant power control device explained in FIGS. 4 and 5 is used. The above problem will be explained using FIG. 6. Time t=tO
When the DC transmission system shown in Figure 1 is activated, time t = t
1, the transmitted power Pd does not rise to the power set value Pdp, so the time constant T1 determined by the first-order lag circuit in FIG.
Accordingly, the DC current setting value 1 dp output from the constant power control device of FIG. 4 increases to I dpl. after that,
When the transmitted power Pd exceeds the power setting value, the time constant Tt determined by the first-order lag circuit in FIG.
By then, the DC voltage setting value Idp becomes Pdp. In the inverter 31, the response of the constant current control circuit 80 in FIG. 3 is faster than the response of the constant voltage control circuit 81, so at time t=t1, the DC voltage Vd of the DC transmission system in FIG. It is approximately equal to the voltage setting value Vdp. Between times t1 and t2, even though the DC transmission system in Figure 1 can transmit power as instructed by the power set value Pdp, because the first-order lag circuit in Figure 5 was used, the power was transmitted as instructed by the power set value Pdp. There is a period when electricity cannot be transmitted.

(ロ) また、第1図の直流送電系統で潮流反転を行な
う場合、潮流反転の開始から終了までの間、直流電圧V
dの絶対値が直流電圧設定値Vdp以下になり、送電電
力Pdが大きく変動する。このため起動時と同様に第4
図の定電力制御装置から出力される直流電流設定値1d
pが動揺し、潮流反転終了後、第4図の定電力制御が早
急に適正動作を行なわないという不具合がある。
(b) In addition, when performing power flow reversal in the DC transmission system shown in Figure 1, the DC voltage V
The absolute value of d becomes less than or equal to the DC voltage setting value Vdp, and the transmitted power Pd fluctuates greatly. Therefore, the fourth
DC current setting value 1d output from the constant power control device in the figure
There is a problem in that the constant power control shown in FIG. 4 does not perform proper operation immediately after the current reversal is completed due to fluctuations in the current.

[発明の目的] 従って、本発明は、従来装置の不具合を解決するために
なされたもので、直流送電の起動、潮流反転等で送電電
力を大きく変動させる一定時間の間、定電力制御装置が
決定する直流電流設定値の変動を規制することにより、
定電力制御装置の応答を速くするように構成した電力変
換装置の定電力制御方法を提供することを目的とする。
[Purpose of the Invention] Therefore, the present invention was made to solve the problems of conventional devices, and the constant power control device does not operate for a certain period of time when the transmitted power fluctuates greatly due to startup of DC power transmission, power flow reversal, etc. By regulating the fluctuation of the determined DC current setting value,
It is an object of the present invention to provide a constant power control method for a power conversion device configured to speed up the response of the constant power control device.

[発明の概要コ 本発明は、順変換器と逆変換器の協調をとりながら運転
を行なう直流送電や周波数変換装置等の電力変換装置に
用いる定電力制御装置において、電力変換装置の起動や
潮流反転等で送電電力を変化させる際に、一定時間の量
定電力制御装置の制御演算の時定数を定常運転中に用い
る時定数とは異なる時定数に切換えるようにしたことを
特徴と[発明の実施例] 以下、本発明による電力変換装置の定電力制御装置の一
実施例を第7図と第8図で説明する。
[Summary of the Invention] The present invention provides a constant power control device used for a power conversion device such as a DC power transmission or a frequency conversion device that operates while coordinating a forward converter and an inverse converter. A feature of the present invention is that when changing the transmitted power by reversing or the like, the time constant of the control calculation of the constant power control device for a certain period of time is switched to a time constant different from the time constant used during steady operation. Embodiment] Hereinafter, an embodiment of a constant power control device for a power conversion device according to the present invention will be described with reference to FIGS. 7 and 8.

第7図と第8図において、第5図および第6図と同一符
号は同一もしくは相当部分を示す。
In FIGS. 7 and 8, the same reference numerals as in FIGS. 5 and 6 indicate the same or corresponding parts.

第7図中134は抵抗R4であり、150と151はス
イッチである。スイッチ150とスイッチ151は連動
しており、スイッチ150がa側に閉じているときはス
イッチ151もa側に閉じており、スイッチ150がb
側に閉じているときはスイッチ151もb側に閉じてい
る。第7図は一次遅れ制御演算回路である。スイッチ1
50と151がa側に閉じている時には、この伝達関数
は(3)式および(4)式で表わされ、第5図の一次遅
れ制御演算回路と同じ伝達関数となる。しかし、スイッ
チ1’50と151がb側に閉じている時には、この伝
達関数は(3)式と以下の(5)式で表わされる。
In FIG. 7, 134 is a resistor R4, and 150 and 151 are switches. The switch 150 and the switch 151 are interlocked, and when the switch 150 is closed to the a side, the switch 151 is also closed to the a side, and the switch 150 is closed to the b side.
When the switch 151 is closed to the b side, the switch 151 is also closed to the b side. FIG. 7 shows a first-order delay control calculation circuit. switch 1
When 50 and 151 are closed on the a side, this transfer function is expressed by equations (3) and (4), and is the same transfer function as the first-order lag control calculation circuit shown in FIG. However, when the switches 1'50 and 151 are closed to the b side, this transfer function is expressed by equation (3) and equation (5) below.

(4)式と(5)式から分かる様に、第5図のスイッチ
150ど151がa側に閉じている時とb側に閉じてい
る時とでは、伝達関数の利得には同じで、遅れ時定数T
Iが異っている。
As can be seen from equations (4) and (5), the gain of the transfer function is the same when the switches 150 and 151 in FIG. 5 are closed to the a side and when they are closed to the b side, delay time constant T
I is different.

ここで抵抗R4134は抵抗R2132より大きくして
いる。
Here, the resistor R4134 is made larger than the resistor R2132.

R4>R2(6) このため、スイッチ150と151がb側に閉じている
時の遅れ時定数TI =C*R4は、a側に閉じている
時の遅れ時定数T1=C*R2よりも大きくなっている
R4>R2 (6) Therefore, the delay time constant TI = C*R4 when the switches 150 and 151 are closed to the b side is smaller than the delay time constant T1 = C*R2 when they are closed to the a side. It's getting bigger.

本発明は、第7図の一次遅れ制御演算回路を第4図の一
次遅れ制御演算回路110として用いるもので、起動時
あるいは副流反転時等で第1図の直流送電の送電電力を
変化させようとするときには、スイッチ150と151
をa側に閉じておき、送電電力が電力設定値Pdpにほ
ぼ等しくなった時点で、スイッチ150と151をb側
に切換えるよう構成されている。
The present invention uses the first-order lag control calculation circuit shown in FIG. 7 as the first-order lag control calculation circuit 110 shown in FIG. 4, and changes the transmitted power of the DC power transmission shown in FIG. When attempting to use switches 150 and 151
is closed to the a side, and when the transmitted power becomes approximately equal to the power setting value Pdp, the switches 150 and 151 are switched to the b side.

第81図は、第7図の一次遅れ制御演算回路を第4図の
一次遅れ制御演算回路110とした本発明による定電力
制御回路から出力される直流電流設定値1dpの動きを
説明する図である。時間[−toで第1図の直流送電系
統を起動する時には、□第7図のスイッチ150と15
1はl)側に閉じられており、第7図の一次遅れ制御回
路の時定数71=C*R4は第5図の一次遅れ時定数T
1=C* R2よりも大きくなっている。このため第7
図の補正信号DPは、時間t=t’1の間でさほど大き
くはならない。
FIG. 81 is a diagram illustrating the movement of the DC current setting value 1 dp output from the constant power control circuit according to the present invention in which the first-order lag control calculation circuit 110 of FIG. 4 is replaced with the first-order lag control calculation circuit 110 of FIG. be. When starting the DC transmission system in Figure 1 at time [-to, □Switches 150 and 15 in Figure 7
1 is closed to the l) side, and the time constant 71=C*R4 of the first-order lag control circuit in FIG. 7 is the first-order lag time constant T in FIG.
1=C* is larger than R2. For this reason, the seventh
The correction signal DP in the figure does not become very large during time t=t'1.

すなわち、第1図の直流送電系統の送電電力Pdが電力
設定値Pdpまで立上がる時間1=1゜から1 =1 
、の間で第4図の定電力制御装置からの直流電流設定値
1dpはI dp2となり、第6図で説明した時間t 
=t 1での直流電流設定値1 dplよりも小さくな
る。第8図の時間t =t 1で第7図のスイッチ15
0と151をa側からb側に切換えると第7図の遅れ時
定数はTl=C*R4がらTL=C*R,2と切替わり
時定数は第5図の一次遅れ制御演算回路と同じものにな
り、時定数T1は時間t=t1を境にして大きくなる。
That is, the time for the transmitted power Pd of the DC transmission system in Fig. 1 to rise to the power setting value Pdp from 1 = 1° to 1 = 1
, the DC current setting value 1dp from the constant power control device in FIG. 4 becomes Idp2, and the time t explained in FIG.
= smaller than the DC current setting value 1 dpl at t1. At time t = t 1 in FIG. 8, switch 15 in FIG.
When 0 and 151 are switched from the a side to the b side, the delay time constant in Figure 7 changes from Tl=C*R4 to TL=C*R,2, and the time constant is the same as the first-order lag control calculation circuit in Figure 5. The time constant T1 increases after time t=t1.

それ故、直流電流設定値ldpは時間t=t3でPdp
に等しくなり、第4図の定電力制御回路は第6図で説明
した時間t=t2よりもずっと速い時間で適正な制御を
始められることになる。
Therefore, the DC current setting value ldp is Pdp at time t=t3.
Therefore, the constant power control circuit shown in FIG. 4 can start proper control much faster than the time t=t2 explained in FIG.

次に潮流反転時の本発明による定電力制御装置の動作を
説明する。潮流反転を開始する前は、第7図のスイッチ
150と151はa側に閉じており、第5図の一次遅れ
制御回路と同じ動作をしているが、潮流反転を開始する
時点で第7図のスイッチ150と151をb側に閉じ、
潮流反転が終了した時点でスイッチ150と151を再
びa側に閉じる。これにより、潮流反転を行っている一
定時間の間は遅れ時定数がT1=C*R2からT1=C
*R4と大きくなり、潮流反転にともなう送電電力Pd
の変動による第4図の定電力制御装置からの直流電流設
定値Idpの増大が抑制されるとともに、潮流反転終了
後、遅れ時定数がT1=C*R4からTt=C*R2と
なるので、第4図の直流電流設定値Idpがすぐに電力
設定値Pdpに近い値となり、定電力制御装置は早急に
適正な制御ができるようになる。
Next, the operation of the constant power control device according to the present invention when the power flow is reversed will be explained. Before starting power flow reversal, switches 150 and 151 in FIG. Close the switches 150 and 151 in the figure to the b side,
When the current reversal is completed, the switches 150 and 151 are closed again to the a side. As a result, the delay time constant changes from T1=C*R2 to T1=C during a certain period of time when the power flow is reversed.
*Transmission power Pd increases as R4 increases and the power flow reverses
The increase in the DC current setting value Idp from the constant power control device shown in FIG. 4 due to fluctuations in is suppressed, and after the power flow reversal is completed, the delay time constant changes from T1=C*R4 to Tt=C*R2. The DC current setting value Idp in FIG. 4 quickly becomes a value close to the power setting value Pdp, and the constant power control device can quickly perform appropriate control.

ところで、以上では第4図の定電力制御装置と第7図の
一次遅れ制御演算回路をハードウェアで構成するよう説
明したが、コンピュータを使用すればソフトウェアで実
現できることは明らかである。
Incidentally, although the constant power control device shown in FIG. 4 and the first-order lag control calculation circuit shown in FIG. 7 are constructed by hardware, it is clear that they can be realized by software using a computer.

[発明の効果] 以上のように本発明によれば、順変換器と逆変換器の協
調をとりながら運転を行なう直流送電や周波数変換装置
等の電力変換装置に用いる定電力制御装置において、制
御演算回路の時定数を、上記電力変換装置の起動あるい
は潮流反転等を行なう一定時間の間、定常運転中に用い
る時定数とは異なる時定数に切替えて使用するよう構成
したので、電力変換装置の起動あるいは潮流反転時等で
電力設定値と送電電力が大幅に異なる場合があっても、
定電力制御装置の応答を調節できるため、直流送電や周
波数変換装置に与える擾乱を少なくすることが出来る。
[Effects of the Invention] As described above, according to the present invention, in a constant power control device used for a power conversion device such as a DC power transmission or a frequency conversion device, which operates while coordinating a forward converter and an inverse converter, control is possible. The time constant of the arithmetic circuit is switched to a time constant different from the time constant used during normal operation during a certain period of time when the power converter is started or the power flow is reversed, so that the time constant of the power converter is Even if the power setting value and the transmitted power differ significantly due to startup or power flow reversal,
Since the response of the constant power control device can be adjusted, disturbances to DC power transmission and frequency conversion devices can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電力変換装置の一例としての直流2端子送電系
統図、第2図はその制御特性図、第3図はその制御装置
のブロック図、第4図は定電力制御装置の一例を説明す
る図、第5図は第4図に用いる1次遅れ制御回路の従来
回路図、第6図(ま第5図の従来例による第4図の定電
力制御装置の動作を説明する図、第7図は本発明による
定電力$制御回路の一実施例を示す1次遅れ制御回路図
、第8図は本発明による定電力制御装面の動作を説明す
る図である。 120.121・・・演算増幅器、131〜134・・
・抵抗器、140・・・コンデンサ、150,151・
・・スイッチ。 出願人代理人 弁理士 鈴江武彦 第1図 ( 第2図 d op 第3図 第4図 d 第5図
Fig. 1 is a DC two-terminal power transmission system diagram as an example of a power conversion device, Fig. 2 is its control characteristic diagram, Fig. 3 is a block diagram of the control device, and Fig. 4 is an example of a constant power control device. 5 is a conventional circuit diagram of the first-order lag control circuit used in FIG. 4, and FIG. 6 is a diagram illustrating the operation of the constant power control device of FIG. 7 is a first-order lag control circuit diagram showing an embodiment of the constant power $ control circuit according to the present invention, and FIG. 8 is a diagram explaining the operation of the constant power control device according to the present invention. 120.121...・Operation amplifier, 131-134...
・Resistor, 140... Capacitor, 150, 151・
··switch. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 ( Figure 2 d op Figure 3 Figure 4 d Figure 5

Claims (1)

【特許請求の範囲】[Claims] 順変換器と逆変換器の協調をとりながら運転を行なう、
直流送電や周波数変換装置等の電力変換装置に用いる定
電力制御装置において、電力設定値と送電電力との偏差
を検出して送電電力が電力設定値に等しくなるように制
御する制御演算回路の時定数を、上記電力変換装置の起
動あるいは潮流反転等で電力設定値と送電電力との偏差
が大きくなる一定時間の間、定常運転中に用いる時定数
とは異なる時定数に切換えることを特徴とする電力変換
装置の定電力制御方法。
Operation is performed while coordinating the forward converter and inverse converter.
In constant power control devices used in power converters such as DC power transmission and frequency converters, when the control calculation circuit detects the deviation between the power setting value and the transmitted power and controls the transmitted power to be equal to the power setting value. The constant is switched to a time constant different from the time constant used during steady operation during a certain period of time when the deviation between the power setting value and the transmitted power increases due to startup of the power converter or power flow reversal, etc. Constant power control method for power converter.
JP58187914A 1983-10-07 1983-10-07 Constant power controlling method of power converter Pending JPS6082030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58187914A JPS6082030A (en) 1983-10-07 1983-10-07 Constant power controlling method of power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58187914A JPS6082030A (en) 1983-10-07 1983-10-07 Constant power controlling method of power converter

Publications (1)

Publication Number Publication Date
JPS6082030A true JPS6082030A (en) 1985-05-10

Family

ID=16214410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58187914A Pending JPS6082030A (en) 1983-10-07 1983-10-07 Constant power controlling method of power converter

Country Status (1)

Country Link
JP (1) JPS6082030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009217762A (en) * 2008-03-13 2009-09-24 Hitachi Ltd Controller of power transducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009217762A (en) * 2008-03-13 2009-09-24 Hitachi Ltd Controller of power transducer

Similar Documents

Publication Publication Date Title
US3764872A (en) Stabilizing means for an a-c motor drive
JPS6146186A (en) Speed controlling method
JPS6082030A (en) Constant power controlling method of power converter
JP3235331B2 (en) Current control circuit
JPS62107635A (en) Constant voltage control of electric power converter
JPH07203672A (en) Power supply employing pwm control system
JPS6122557B2 (en)
JP3284613B2 (en) Control circuit of PWM converter
JPH0417570A (en) Voltage control method for inverter
JPH04265682A (en) Servo amplifier provided with function for limiting upper limit rotational speed
JP2781145B2 (en) Power transmission control device
JPS59169373A (en) Speed controller of dc motor
JPS62201068A (en) Controller for inverter
JPS59216475A (en) Controlling method of power converter
JP2816202B2 (en) Control circuit and control method for power supply device and power supply device
JP3061917B2 (en) Converter control device
JPH05316644A (en) Method for controlling power converter
JPH0612959B2 (en) Induction motor controller with pulse width modulation inverter
JPS5812572A (en) Controlling circuit for chopper
JPS6162102A (en) Control arithmetic unit
JPS61244286A (en) Feedback speed control system for motor
JPS61128303A (en) Proportional integrating device
JPH03207283A (en) Method of generating signal of input setting controller
JPS61227672A (en) Overvoltage suppressing control circuit of ac/dc converter
JPS6392292A (en) Operation control method of dc motor