JPS59212819A - Optical control element - Google Patents

Optical control element

Info

Publication number
JPS59212819A
JPS59212819A JP8638983A JP8638983A JPS59212819A JP S59212819 A JPS59212819 A JP S59212819A JP 8638983 A JP8638983 A JP 8638983A JP 8638983 A JP8638983 A JP 8638983A JP S59212819 A JPS59212819 A JP S59212819A
Authority
JP
Japan
Prior art keywords
substrate
axis
light
electrode
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8638983A
Other languages
Japanese (ja)
Inventor
Akira Miura
明 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP8638983A priority Critical patent/JPS59212819A/en
Publication of JPS59212819A publication Critical patent/JPS59212819A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/05Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect with ferro-electric properties

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To control selectively the change-over of a light direction and the passage of light by impressing an electric field to a Z-cut single crystal substrate of gadolinium molybdate in a heated state thereby inverting the Z-axis of the base plate. CONSTITUTION:A Z-cut single crystal substrate 11 of gadolinium molybdate which is so Z-cut as to make the X-axis and Y-axis orthogonal with the diagonal line direction and has the film thickness corresponding to the wavelength of the light to be controlled is used. Transparent electrodes 12, 13 are provided by vacuum deposition, etc. and lead-out electrodes 14-16 are provided as well. +Va is impressed on the electrode 14, and +Vb or -Vb is impressed on the electrode 16 as well. The electrode 15 is grounded. When an electric field is impressed on the substrate 11 having such constitution, the Z-axis of the substrate 11 inverts according to the polarity thereof, by which the switching action to change over the X-axis and the Y-axis is accomplished.

Description

【発明の詳細な説明】 本発明は、光制御素子に関するものであって、光信号を
所定の方向に切り換えて送出したり、光通 の通弊を選択的に制御する装置に好適な固体化された素
子を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light control element, which is a solid-state device suitable for a device that switches and sends an optical signal in a predetermined direction or selectively controls the passage of light. The present invention provides a device that is

光信号伝送系においても、電気信号伝送系の切換スイッ
チと同様に、光信号を所定の方向に切り換えて送出する
光切換スイッチが用いられている2このような光切換ス
イッチとして、たとえば第1図に示寸ように、2個の三
角プリズムPA、Pnと1個の平行四辺形プリズムPC
七を組み合りせ、Bから入射される光をAあるいはCに
切り換えて送出するように構成されたものがある、第1
図において、三角プリズムPA’、 PRは底辺が同一
線になるように配置され、平行四辺形プリズムpcは三
角フ。
In optical signal transmission systems, an optical changeover switch is used that switches an optical signal in a predetermined direction and sends it out, similar to the changeover switch in an electrical signal transmission system.2 An example of such an optical changeover switch is shown in Fig. 1. Two triangular prisms PA, Pn and one parallelogram prism PC as shown in
There is one that is configured to combine light from B to switch to A or C and send it out.
In the figure, the triangular prisms PA' and PR are arranged so that their bases are on the same line, and the parallelogram prism pc is arranged in a triangular shape.

リズムPA、PBの底辺に対して平行に移動で鎗ろよう
に配置されている。なお、LA、 LB、 LOはレン
ズである。このような構成において、平行四辺形プリズ
ムpcが実線で示す位置にある場合には、Bから入射さ
れる光は平行四辺形プリズムPCを介して三角プリズム
PHに入射さねて光路0[送出されろう一方、平行四辺
形プリズムPCが破線で示す位置にある場合には、Bか
ら入射される光は直接三角プリズムPAに入射されて光
路Aに送出される。
The rhythms are arranged like a spear by moving parallel to the bottom of the rhythms PA and PB. Note that LA, LB, and LO are lenses. In such a configuration, when the parallelogram prism pc is at the position shown by the solid line, the light incident from B passes through the parallelogram prism PC and enters the triangular prism PH, and is directed to the optical path 0 [sent out. On the other hand, when the parallelogram prism PC is in the position shown by the broken line, the light incident from B is directly incident on the triangular prism PA and sent out to the optical path A.

しかし、このような構成によれば、平行四辺形プリズム
l)Oを機械的に移動させて光路を切り換えているので
、切換速度は比較的低速(数ms)となり、信頼性にも
欠ける。また、移動要素を含んでいるので、光路体とし
て比較的細径(g6 TOO7+m程度)の光7フイバ
ーを用いる場合には、構成要素間の位置調整がむずかし
くなろう 一方、他の光制御装置として、光の通過を選択的に制御
するように構成されたものがある1、このような装置は
、表示装置や光書込装置等に有効である。
However, according to such a configuration, since the optical path is switched by mechanically moving the parallelogram prism l)O, the switching speed is relatively slow (several ms), and reliability is also lacking. In addition, since it includes moving elements, when using a relatively small diameter optical fiber (about g6 TOO7 + m) as an optical path body, it will be difficult to adjust the position between the components, while it is difficult to adjust the position between the components. Some devices are configured to selectively control the passage of light.1 Such devices are effective for display devices, optical writing devices, and the like.

従来、こい種の装置と1.て、たとえば液晶板を用いた
ものが提案されているが、比較的寿命が短見・こと、動
作速度が遅いこと、構成要素が流動素子であって組立に
相当の工数を要すること、温度変化の影響が大きいこと
−などの欠点がある。
Conventionally, this type of device and 1. For example, devices using liquid crystal plates have been proposed, but they have relatively short lifespans, slow operating speeds, require a considerable amount of man-hours to assemble as the components are fluid elements, and are susceptible to temperature changes. There are disadvantages such as the large influence of

本発明は、これら従来の欠点を解決するために、Zカッ
トモリブデン酸ガドリニウム単結晶基板と、この基板の
両面に被着された透明電極と、これら透明電極間に任意
の極性の電界を選択的圧加える手段と、前記基板を選択
的に加熱する手段とを具備し、前記基板を加熱した状態
で電界を加えて基板のY軸を反転させることを特徴とす
る光制御素子を実現したものである、 以下、図面を用いて詳細に説明する。
In order to solve these conventional drawbacks, the present invention provides a Z-cut gadolinium molybdate single crystal substrate, transparent electrodes deposited on both sides of this substrate, and an electric field of arbitrary polarity between these transparent electrodes. A light control element is realized, comprising means for applying pressure and means for selectively heating the substrate, and applying an electric field while the substrate is heated to invert the Y axis of the substrate. Yes, this will be explained in detail below using the drawings.

第2図は、本発明の一実施例を示す構成説明図であって
、11は2カツトモリブデン酸ガドリニウム単結晶基板
(以下基板といつL 12.13は基板11の両面に被
着された透明電極、14〜16は透明電極12.+3を
外部と接続するための取出電極である。
FIG. 2 is a configuration explanatory diagram showing an embodiment of the present invention, in which 11 is a two-gadolinium cut molybdate single crystal substrate (hereinafter referred to as "substrate"). Electrodes 14 to 16 are extraction electrodes for connecting the transparent electrodes 12.+3 to the outside.

基板11としては、第5図て示すようにY軸とY軸とが
対角線方向に直交するようにしてZ力、トされた対象と
する光の波長に応じた膜厚のものを用いる。透明電極+
2.L5は、例えばTn20s −5n2o、をスパッ
タリングあるいは真空蒸着により形成する。
As shown in FIG. 5, the substrate 11 used has a film thickness that corresponds to the wavelength of the light to which the Z force is applied so that the Y axes are orthogonal to each other in the diagonal direction. Transparent electrode +
2. L5 is formed of, for example, Tn20s-5n2o by sputtering or vacuum deposition.

取出電極14〜16は、例えばCr及びAuをスノくツ
タリングにより積層形成する。なお、取出電極14には
+Vaを印加し、取出電極15は接地し、取出電極16
には+vbまたは−Vbを印加する。
The extraction electrodes 14 to 16 are formed by laminating, for example, Cr and Au by slatting. Note that +Va is applied to the extraction electrode 14, the extraction electrode 15 is grounded, and the extraction electrode 16
+vb or -Vb is applied to.

このような構成において、基板11に電界を加えること
により、その極性に応じて第3図(al、(blのよう
に基板11の2軸が反転してY軸とY軸とが切り換わる
スイッチング動作を行う。例えば、Na−D線(波長5
895 A’ )に対するY軸、Y軸間の複屈折率Δn
は4X10−’であるが、スイッチング動作時にはΔn
の絶対値(主変化オろことなく符号のみが変化すること
になる。すなわち、Y軸、Y軸に対して45度傾斜した
状態の直線偏光を入射すると、Y軸。
In such a configuration, by applying an electric field to the substrate 11, the two axes of the substrate 11 are reversed and switched between the Y-axis and the Y-axis as shown in FIGS. For example, Na-D rays (wavelength 5
Birefringence Δn between Y-axis and Y-axis for 895 A')
is 4X10-', but during switching operation Δn
Absolute value (only the sign changes, not the main change. In other words, when linearly polarized light is incident at a 45 degree angle to the Y axis, the Y axis.

Y軸に泊−た2成分間には、基板11の厚さIと複屈折
率Δnに比例した位相差Fが生じる。これらは次式で表
わさねろ。
A phase difference F proportional to the thickness I of the substrate 11 and the birefringence Δn occurs between the two components located on the Y axis. These can be expressed by the following formula.

F−(2πΔ1.1)/λII なお、λυは波長であろう 従、て、位相差Fがπ/2になるように基板11の厚さ
lを調整し、この基板11の両面に透明電極12゜13
を形成してこれら透明電極12.13に印加する電圧の
極性を切り換えることにより、波長λ0の光のY軸、Y
軸に沿った2成分間の位相差を+π/2 と−π/2の
間でスイッチングさせることができる。
F-(2πΔ1.1)/λII Note that λυ is the wavelength. Therefore, the thickness l of the substrate 11 is adjusted so that the phase difference F becomes π/2, and transparent electrodes are placed on both sides of the substrate 11. 12°13
By forming λ0 and switching the polarity of the voltage applied to these transparent electrodes 12 and 13,
The phase difference between the two components along the axis can be switched between +π/2 and −π/2.

そして、この光路にπ/2だけ光に対して位相バイアス
を与えるλ/4板を設けることにより、前述の2成分間
の位相差をπとOの間でスイッチングさせることができ
る。このよりなπと0との間のスイッチングは、互いに
直交する直線偏光間のスイッチングと等価の作用シそる
ことに?C;l)。
By providing a λ/4 plate that gives a phase bias to the light by π/2 in this optical path, the phase difference between the two components described above can be switched between π and O. Does this switching between π and 0 have an effect equivalent to switching between mutually orthogonal linear polarizations? C;l).

ところで、第2図のよつt「基板11にパルス状の電圧
+Vt>または−vbを印加して駆動−Fノ)ためては
、基板11の厚さを0.5mmとすると、常T局状態で
は+00V、1ms以上の電圧が必要であった。そこで
、本発明では、透明電極12.43間に任意の極性の電
界を選択的に加える手段と共番(、基板11を選択的に
加熱する手段を設け、基板11を加熱した状態で電界を
加えて基板11のY軸を反転させるようにしている。
By the way, as shown in FIG. Therefore, in the present invention, a voltage of +00 V for 1 ms or more is required.Therefore, in the present invention, a means for selectively applying an electric field of arbitrary polarity between the transparent electrodes 12 and 43 (and a means for selectively heating the substrate 11) is used. The Y-axis of the substrate 11 is reversed by applying an electric field while the substrate 11 is heated.

第2区の突施例では、透明電極′I2をヒータとしても
用いている。すな:))ち、透明τ11棲12の取出電
極14にパルス状の信号+Vi、を加気て透明電極12
を発熱させ、基板11をギー +j一点(約+6o’C
)を越える温度まで加熱する。そして、他方の透明電極
13の取出電極16に一トVl)または−vbを加えた
状態で信号十Vaをオフにする。これにより、各スイッ
チング動作毎にいわゆる電界冷却が行われることになり
、常温状態での駆動電圧に比べて十分低い電圧(10V
程度)でスイッチング動作を行ノっせることがで艦る5
第4図はこのような一連の動作の説明図であ−、て、(
a)は取出電極14に印加する信号Vaの波形、(b)
は基板11の温度変化Tの波形、(C)は取出電極16
に印加する信号九の波形を示して℃・る、このような構
成によれば、素子が固体化されているので、各種の光制
御装置の構成要素として用いることにより、装置の小型
化が図れ、信頼性を高めることができる。
In the second embodiment, the transparent electrode 'I2 is also used as a heater. Suna:)) Then, a pulsed signal +Vi is applied to the extraction electrode 14 of the transparent τ11 electrode 12, and the transparent electrode 12
generate heat and heat the board 11 to one point (approximately +6o'C).
). Then, with Vl) or -vb applied to the extraction electrode 16 of the other transparent electrode 13, the signal Va is turned off. As a result, so-called electric field cooling is performed for each switching operation, and the voltage is sufficiently low (10V) compared to the drive voltage at room temperature.
It is possible to carry out the switching operation with a degree of
Figure 4 is an explanatory diagram of such a series of operations.
a) is the waveform of the signal Va applied to the extraction electrode 14, (b)
is the waveform of the temperature change T of the substrate 11, and (C) is the waveform of the temperature change T of the substrate 11.
With this configuration, the device is solid-state, so it can be used as a component of various optical control devices to reduce the size of the device. , reliability can be increased.

第5図は、第1図と同等の機能を有する光切換スイッチ
の構成例を示す構成説明図であって、10は本発明に係
る光制御素子、20は偏光ビームスプリッタ、30はプ
リズム、40はλ/4板である。このような構成におい
て、偏光ビームヌブリノタ20に入射された光1rNは
互いに直交する2つの直綜偏光a、bに分解され、一方
の光aはプリズム301→プリズム302→λ/4板4
02→光制御素子102よりなる経路を通って偏光ビー
ムスプリッタ202に加えられ、他方の光すはλ/4板
401→光制御素子1nはりなる経路を通って偏光ビー
ムスプリッタ202に加えられる。
FIG. 5 is a configuration explanatory diagram showing an example of the configuration of an optical changeover switch having the same function as that in FIG. is a λ/4 plate. In such a configuration, the light 1rN incident on the polarization beam nubrinotor 20 is decomposed into two orthogonally polarized lights a and b, and one light a is transmitted through the prism 301 → prism 302 → λ/4 plate 4
The light is applied to the polarizing beam splitter 202 through a path consisting of 02→light control element 102, and the other light beam is applied to the polarizing beam splitter 202 through a path consisting of λ/4 plate 401→light control element 1n.

そして、側光ビームスプリッタ202かりは、光制御素
子10.、1[12のスイッヂング状態に応じて出力光
が互いに直交するOUT、または0UT2に選択的に送
出されることになる。すなわち、光制御素子10.、 
+112が一λ/4の位相差を与えるように設定されて
いる場合圧はλ/4板40と光制御素子10との組み合
わせを通る光に与えられる位相差は0となり、光aは偏
光ビームスプリッタ202で反射されてOUT+から出
射し、光すは偏光ビームスプリッタ202を通過して光
aと同様にou’r、から出射する。一方、光制御素子
101゜102が+λ/4の位相差を与えるように設定
されている場合にはλ/4板40と光制御素子10との
組み合わせを通る光に与えられる位相差はπとなり、光
aは偏光ビームスプリッタ202を通過して0UT2か
ら出射し、光すは偏光ビームスプリ、り202で反射さ
れて光aと同様に0LIT2から出射する。これらから
明らかなように、第5図の構成によれば、可動部品を用
いることなく、光の出射端を切り換えることができる。
The side light beam splitter 202 is connected to the light control element 10. , 1[12, the output lights are selectively sent to OUT or 0UT2, which are perpendicular to each other. That is, the light control element 10. ,
When +112 is set to give a phase difference of one λ/4, the phase difference given to the light passing through the combination of the λ/4 plate 40 and the light control element 10 is 0, and the light a becomes a polarized beam. The light is reflected by the splitter 202 and exits from OUT+, and the light passes through the polarizing beam splitter 202 and exits from ou'r, similar to light a. On the other hand, when the light control elements 101 and 102 are set to give a phase difference of +λ/4, the phase difference given to the light passing through the combination of the λ/4 plate 40 and the light control element 10 is π. , light a passes through the polarizing beam splitter 202 and exits from 0UT2, and the light is reflected by the polarizing beam splitter 202 and exits from 0LIT2 in the same way as light a. As is clear from these, according to the configuration shown in FIG. 5, the light output end can be switched without using any moving parts.

なお、上記実施例では、基板の全面に透明電極を設けた
単一要素の例を示したが、基板の表面に離散的VCQi
数の透明電極を設けて2次元的に複敬の要素を配列して
もよく、これにより2次元面上で光の通過を選択的に制
御でき、表示装置や光書込装置等圧有効である。
In addition, in the above embodiment, an example of a single element in which transparent electrodes were provided on the entire surface of the substrate was shown, but discrete VCQi
A number of transparent electrodes may be provided to arrange double-sided elements two-dimensionally, thereby making it possible to selectively control the passage of light on a two-dimensional surface, making it possible to effectively control equal pressure in display devices and optical writing devices. be.

また 上記実施例では、加熱手段として一方の透明基板
を用いる例を示したが、両方の透明基板を用いるように
してもよい。
Further, in the above embodiment, an example was shown in which one of the transparent substrates was used as the heating means, but both transparent substrates may be used.

また、レーザ等の加熱手段を別途設けるようにしてもよ
い。
Further, a heating means such as a laser may be provided separately.

以上説明したように、本発明によれば、各種の光制御装
荷に好適な固体化された光制御素子が実現でき、実用上
の効果は太きい。
As described above, according to the present invention, a solidified light control element suitable for various light control devices can be realized, and the practical effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光切換スイッチの一例を示す構成説明図
、第2図は本発明の一実施例を示す構成説明図、第5図
および第4図は動作説明図、第5図は本発明に係る素子
を用いた装置の具体例図である。 11・・Zツノ、トモリブデン酸ガドリニウム単結晶基
板、+2.+3・・透明基板、14〜16・・・取出電
極。 第 11石 第 3 ((L〕 第2 」 )Z (F))
FIG. 1 is a configuration explanatory diagram showing an example of a conventional optical changeover switch, FIG. 2 is a configuration explanatory diagram showing an embodiment of the present invention, FIGS. 5 and 4 are operation explanatory diagrams, and FIG. FIG. 3 is a diagram showing a specific example of a device using an element according to the invention. 11...Z horn, gadolinium tomolybdate single crystal substrate, +2. +3...Transparent substrate, 14-16...Takeout electrode. 11th stone 3rd ((L) 2nd ”)Z (F))

Claims (1)

【特許請求の範囲】[Claims] Z力、トモリプデン酸ガドリニウム単結晶基板と、この
基板の両面に被着された透明電極と、これら透明電極間
に任意の極性の電界を選択的に加える手段と、前記基板
を選択的に加熱する手段とを具備し、前記基板を加熱し
た状態で電界を加えて基板のZ軸を反転させることを特
徴とする光制御素子。
Z force, a gadolinium tomolybdate single crystal substrate, transparent electrodes attached to both sides of this substrate, means for selectively applying an electric field of arbitrary polarity between these transparent electrodes, and selectively heating the substrate. 1. A light control element comprising means for applying an electric field to the substrate in a heated state to invert the Z-axis of the substrate.
JP8638983A 1983-05-17 1983-05-17 Optical control element Pending JPS59212819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8638983A JPS59212819A (en) 1983-05-17 1983-05-17 Optical control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8638983A JPS59212819A (en) 1983-05-17 1983-05-17 Optical control element

Publications (1)

Publication Number Publication Date
JPS59212819A true JPS59212819A (en) 1984-12-01

Family

ID=13885513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8638983A Pending JPS59212819A (en) 1983-05-17 1983-05-17 Optical control element

Country Status (1)

Country Link
JP (1) JPS59212819A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250613A (en) * 1985-04-26 1986-11-07 テクトロニツクス・インコ−ポレイテツド Stereoscopic display unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022413A (en) * 1973-07-05 1975-03-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022413A (en) * 1973-07-05 1975-03-10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250613A (en) * 1985-04-26 1986-11-07 テクトロニツクス・インコ−ポレイテツド Stereoscopic display unit

Similar Documents

Publication Publication Date Title
US4474434A (en) Polarization-insensitive optical switch apparatus
US3838906A (en) Optical switch
US4514046A (en) Polarization-insensitive optical switch and multiplexing apparatus
JPS6197629A (en) Optical switch
JPS59212819A (en) Optical control element
JPH085976A (en) Variable wavelength optical filter
US3953108A (en) Digital beam deflector
JPH05323265A (en) Polarization non-dependency type wavelength variable filter
JPS6257973B2 (en)
JPH085977A (en) Variable wavelength liquid crystal optical filter
JP2980996B2 (en) Light switch
JPH03105310A (en) Optical delay device
JPS61282824A (en) Optical switch
JPS6318171B2 (en)
JPS5936226A (en) Optical switch
JPS63129325A (en) Optical switch network
JPS624687B2 (en)
JP3999875B2 (en) Optical device
JPS6012610B2 (en) Optical path switching device
JPS60247228A (en) Optical fiber switch
JPS6141120A (en) Optical switch
JPH0756118A (en) Optical variable delay line
JPS62220919A (en) Light quantity controller
JPH0253035A (en) Plane microlens
JPS63183402A (en) Polarized light separating and synthesizing prism for optical device