JP3999875B2 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
JP3999875B2
JP3999875B2 JP10625198A JP10625198A JP3999875B2 JP 3999875 B2 JP3999875 B2 JP 3999875B2 JP 10625198 A JP10625198 A JP 10625198A JP 10625198 A JP10625198 A JP 10625198A JP 3999875 B2 JP3999875 B2 JP 3999875B2
Authority
JP
Japan
Prior art keywords
liquid crystal
phase modulation
modulation element
light
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10625198A
Other languages
Japanese (ja)
Other versions
JPH11306583A (en
Inventor
信幸 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP10625198A priority Critical patent/JP3999875B2/en
Publication of JPH11306583A publication Critical patent/JPH11306583A/en
Application granted granted Critical
Publication of JP3999875B2 publication Critical patent/JP3999875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は収差の良く補正された光学系の理論限界付近の解像度を更に向上させる技術、特に光ディスクやマスク露光装置などに応用される超解像光学技術を応用した光学装置に関する。
【0002】
【従来の技術】
従来技術の理解を容易にするため、光学系の理論解像限界ついて簡単に説明する。幾何光学的にほぼ無収差で設計された光学系においては点像は無限小のスポットで結像されるが、実際は光の波動性による回折の影響でスポットは有限の広がりを持つ。この時、結像もしくは集光に寄与する光学系の開口数をNAとすると、スポットの広がりの物理的定義はk×λ÷NAで表される。ここでλは光の波長、kは光学系に定まる定数で普通は1から2前後の値をとる。NAは光学系の有効入射瞳直径D(一般的には有効光束の直径)と焦点距離fの比D/fに比例する。この式で表されるスポットの広がりが理論解像限界となり回折限界といわれる。
【0003】
次に従来技術である位相シフト法を用いた光学系の超解像効果について図5を用いて簡単に説明する。図5に示すように収差のよく補正された集光光学系501に波長λのレーザー光502が入射し、集光光学系501の光軸503上のP点に点像504を結ぶ。このとき前述したように点像504は波動光学的な広がりを持ち、その広がりはkλf/d表される。これが波動光学的に決定される理論限界である。ここでkは光学系に固有の定数、fは集光光学系501から点像504までの距離、dはレーザー光502の光束径である。ただしdは集光レンズ502の有効径以下でなくてはならない。また簡単のためレーザー光502は平行光とした。
【0004】
ここで位相板505を集光光学系501の手前に設置する。位相板505の機能は位相板505の中央の円形領域(図5で斜線部分)506を通過した光と円形領域506以外を通過した光の波面の相対位相差をλ/2とするものである。また位相板505は光軸503に対して軸対称に設置するのが普通である。このとき超解像現象が生じ点像504の広がりは前述した回折限界より小さくなることが知られている。またこの小さくなる割合は円形領域506の大きさに比例する事が知られる。しかし余りに大きくすると点像504に大きなサイドバンドが発生し三つ山のスポットになり不都合が多い。また当然のことながら円形領域506が大きくなりすぎてレーザー光502がすべて円形領域506を通過しては超解像現象は生じない。普通はレーザー光502の光束径dに対する円形領域506の断面割合(図5でr/d)が20%程度であるとき点像504は理論限界より15%程度小さくなる。
【0005】
【発明が解決しようとする課題】
しかしながら固定の位相板を設置する事は常に超解像を行う事になる。この事は必要に応じて通常解像が必要な場合、すなわち光ディスクなどの規格にのとった装置において、規格である通常解像とその規格を越えた超解像を備えた光学装置を実現する場合は2種類の光学系を用意するかあるいは機械的に位相板を抜き差しする必要が生じ光学系の機器構成が複雑になってしまう。更に、正確に半波長の位相差を削り出すのは容易ではなく、また波長変動にも対応できない。
【0006】
そこで本発明においてはレーザー光を出射するレーザー光源とレーザー光を集光する集光光学系とから構成される光学装置において、光路の途中に位相変調素子を設置し、位相変調素子の機能は電気信号で制御可能とし、電気的に簡単に通常解像と超解像を切り替え可能でかつ光源の波長変動にも対応できる光学装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明における光学装置は、少なくともレーザー光を出射するレーザー光源とレーザー光の位相を変調する位相変調素子と位相変調素子で変調された光束を集光する集光光学系とから構成される光学装置で、位相変調素子の機能は電気信号で制御され、かつ位相変調素子は集光光学系で集光される光束に対し光軸を中心としたほぼ円形領域とそれ以外の領域あるいは長方形領域とそれ以外の領域とに独立して機能する二ヶ所の部位から構成され、かつ位相変調素子の位相変調量はレーザー光のほぼ半波長程度もしくは半波長プラス波長の整数倍程度である事を特徴とする。
【0008】
またレーザー光として直線偏光レーザー光を、位相変調素子として液晶位相変調素子を用い、かつ液晶位相変調素子は平行配向型液晶素子から構成され、直線偏光レーザー光の偏光軸方向は平行配向型液晶素子の液晶分子配向軸の方向とほぼ一致するように構成されている事を特徴とする。
【0009】
【発明の実施の形態】
(第一の実施の形態)
次に本発明による第一の実施形態を図1に示す。レーザー光源101から出射し、コリメートレンズ102で平行平面波にされたレーザー光103は位相変調素子104を通過後、集光光学系105により集光され点像106を結ぶ。位相変調素子104は光軸107を中心とした円形領域108(図斜線部分)と円形領域108を除いた部分である輪帯領域109が独立して電気的に制御される。電源から電気信号が加えられないときは円形領域108と輪帯領域109を透過するレーザー光103の相対位相差は0であり超解像は生じない。
【0010】
次に電源から電気信号を与え円形領域108と輪帯領域109を透過するレーザー光103の相対位相差をλ/2とする。ここでλはレーザー光103の波長である。このときは前述したように超解像が生じる。従って電気信号により通常解像と超解像を切り替えた事になる。
【0011】
(第二の実施の形態)
次に、図2に本発明における第二の実施形態を説明する。基本的には図1に示した第一の実施形態と同様であるが、電気信号で容易に制御可能な位相変調素子として平行配向型液晶からなる液晶位相変調素子204を用いている。最初に本実施例の理解を容易にするため、平行配向型液晶の動作、位相変調現象について簡単に説明する。
【0012】
図3(a)(b)は電気的に制御可能な一般的な平行配向型液晶素子の構造と作用を模式的に表したものである。透明電極がコートされたガラス基盤301に液晶分子302が挟まれている。入射側及び出射側ガラス基盤は配向軸303の方向がY軸方向となっている。液晶分子302はその長軸方向を配向軸方向にそろえる性質と、連続体として振る舞う性質とから図3(a)に示す様に、液晶分子302は平行に並びこれを平行配向もしくはホモジェニアス配向という。
【0013】
この平行配向型液晶素子に直線偏光304が入射すると、その偏光軸が配向軸303と同方向のときは、液晶分子302の誘電異方性のため直線偏光304は直線偏光を保ったまま液晶分子302の長軸方向に沿って伝搬する。このさい液晶分子302の長軸方向の屈折率をn1、液晶層厚をLとすると液晶層内を進む直線偏光304の光路長はn1×Lとなる。
【0014】
次にガラス基盤301にコートされた透明電極を介して液晶分子にZ軸方向の電界を加えると、図3(b)に示す様に液晶分子302の長軸が電界の方向であるZ軸方向に並んで静止する。この状態をホメオトロピックという。このときは液晶層内を進む直線偏光304はやはり直線偏光を保持したまま伝搬する。このとき液晶分子302の短軸方向の屈折率をn2とすると液晶層内を進む直線偏光304の光路長はn2×Lとなる事がわかる。即ち電圧を加える前後で直線偏光304に対する屈折率をn1からn2に、よって光路長を(n1−n2)×Lだけ変えたことになる。この光路長がλであれば電圧を加える前後で光に対し位相をλだけ変調した事になる。また加える電圧を制御することでこれらの中間状態をつくる事も可能である。また理想的に近いホモジェニアス状態にするには液晶層に液晶が電界で動き始める直前の微小な電圧を加えておくと良いことも知られている。
【0015】
ここから図2に示す第二の実施形態について説明する。電気的に制御可能な位相変調素子として平行配向型液晶から構成される液晶位相変調素子204が用いられ、その基本的な構造及び動作は図3と同じである。直線偏光であるレーザー光203の偏光軸の方向と液晶位相変調素子205の液晶配向軸の方向はほぼ一致している。
【0016】
直線偏光レーザー光源201から出射し、コリメートレンズ202で平行平面波にされたレーザー光203は液晶位相変調素子204を通過後、集光光学系205により集光され点像206を結ぶ。液晶位相変調素子204は光軸207を中心とした円形領域208(図斜線部分)と円形領域208を除いた部分である輪帯領域109が独立して電気的に制御される。電源から電気信号が加えられないときは円形領域208と輪帯領域209を透過するレーザー光203の相対位相差は0であり超解像は生じない。
【0017】
次に電源から電気信号を輪帯領域209に与え液晶分子をほぼホメオトロピックの状態にし、円形領域208と輪帯領域209を透過するレーザー光203の相対位相差をλ/2とする。ここでλはレーザー光203の波長である。このときは前述したように超解像が生じる。従って電気信号により通常解像と超解像を切り替えた事になる。
【0018】
図4に使用した液晶位相変調素子204の透明電極パターンを示す。輪帯領域401と円形領域402とからなり、輪帯領域401から引き出し電極線403が電極404に向けて引き出される。対向側の透明電極パターンは普通の単純マトリクス型液晶素子と同様に全面ベタ(分割されない一様)パターンでよい。超解像を行うさいは電極404を介して輪帯部分401に電圧を加え輪帯部分の液晶分子を動作させる。
【0019】
図2において円形領域208は透明電極がなくても、または単にくり貫かれていても構わない。しかしこのときは輪帯領域209に電気信号を与えていないときにも輪帯領域209と円形領域208を透過するレーザー光203に相対位相差が発生してしまい、集光光学系205あるいは別の光学系で補正する必要が生じる。また円形領域208のみに電気信号を加える事で超解像を起こす事も可能だが、この場合は輪帯領域209を避けながら電極を引き出す必要が生じる。
【0020】
また、本実施形態においては電気制御可能な位相変調素子として液晶素子を使用した例で説明したが、この他にビスマスシリコンオキサイド(BSO)やニオブ酸リチウムなどの固体結晶、あるいはPLZTなどの電気光学セラミクスを用いてもよい。しかしこれらの物質は有効動作電圧が数百から数千ボルトもあり、有効動作電圧が数ボルトである液晶素子の方が駆動の点で好ましい。
【0021】
【発明の効果】
今までの説明から明らかなように本発明における液晶位相変調素子を用いた光学装置は簡単な構成で通常解像と超解像を切り替える事ができる。すなわち通常解像モードで規格化された光ディスク装置の記録密度に対応し、超解像モードで独自の高密度化光ディスク装置に切り替わる光ディスク装置が提供できる。また液晶に加える電圧を制御することで光路長すなわち位相変調量を制御可能であるため、光源の波長が変わってもある程度は対応可能となる。またガラスエッチングなどで作られる通常の位相板では正確に半波長の相対位相差を作るように研磨するのは困難な作業である。しかし本方法では加える電圧を微調することで簡単に位相変調量を制御でき容易に正確な半波長の相対位相差を得られる。この事は温度変化等による位相変化にも容易に対応できる事も示している。
【0022】
また、本発明における液晶位相変調素子は現在の複雑なマトリクス画素構造を持ったパソコン用等の液晶表示パネルと比べ、サイズも小さく構造も非常に簡単なため製造も容易である。更に、本発明においては電気制御可能な位相変調素子として有効動作電圧が数ボルトである液晶素子を使用しているため双補型MOS半導体装置(CMOS−IC)で直接駆動が可能となり、低消費電力で、小型の光学装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の第一の実施形態における光学装置の構成例である。
【図2】本発明の第二の実施形態における光学装置の構成例である。
【図3】本発明の第二の実施形態において、電気的に制御可能な平行配向型液晶素子の作用を表した図である。
【図4】本発明の第二の実施形態における液晶位相変調素子の透明電極形状を表した図である。
【図5】従来の一般的な位相シフト法による超解像を説明する図である。
【符号の説明】
101、レーザー光源
102、202、コリーメートレンズ
103、203、502、レーザー光
104、位相変調素子
105、205、501、集光光学系
106、206、504、点像
107、207、503、光軸
108、208、402、506、円形領域
109、209、401、507、輪帯領域
201、直線偏光レーザー光源
204、液晶位相変調素子
301、ガラス基盤
302、液晶分子
303、配向軸
304、直線偏光
403、引き出し電極線
404、電極
505、位相板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for further improving the resolution near the theoretical limit of an optical system whose aberration is well corrected, and more particularly to an optical apparatus using a super-resolution optical technique applied to an optical disc, a mask exposure apparatus and the like.
[0002]
[Prior art]
In order to facilitate understanding of the prior art, the theoretical resolution limit of the optical system will be briefly described. In an optical system designed with almost no aberration in terms of geometric optics, a point image is formed with an infinitely small spot, but in reality, the spot has a finite extent due to the influence of diffraction due to the wave nature of light. At this time, if the numerical aperture of the optical system that contributes to image formation or condensing is NA, the physical definition of the spread of the spot is expressed by k × λ ÷ NA. Here, λ is the wavelength of light, and k is a constant determined by the optical system, and usually takes a value of about 1 to 2. NA is proportional to the ratio D / f of the effective entrance pupil diameter D (generally the diameter of the effective light beam) of the optical system and the focal length f. The spread of the spot expressed by this equation becomes the theoretical resolution limit and is called the diffraction limit.
[0003]
Next, the super-resolution effect of the optical system using the phase shift method as the prior art will be briefly described with reference to FIG. As shown in FIG. 5, laser light 502 having a wavelength λ is incident on a condensing optical system 501 whose aberration is well corrected, and a point image 504 is formed at point P on the optical axis 503 of the condensing optical system 501. At this time, as described above, the point image 504 has a wave optical spread, and the spread is represented by kλf / d. This is the theoretical limit determined by wave optics. Here, k is a constant specific to the optical system, f is a distance from the condensing optical system 501 to the point image 504, and d is a beam diameter of the laser beam 502. However, d must be smaller than the effective diameter of the condenser lens 502. For simplicity, the laser beam 502 is parallel light.
[0004]
Here, the phase plate 505 is installed in front of the condensing optical system 501. The function of the phase plate 505 is to set the relative phase difference between the wavefront of the light that has passed through the central circular area (shaded area in FIG. 5) 506 and the light that has passed through other than the circular area 506 to λ / 2. . In general, the phase plate 505 is installed symmetrically with respect to the optical axis 503. At this time, it is known that a super-resolution phenomenon occurs and the spread of the point image 504 is smaller than the diffraction limit. Further, it is known that the rate of reduction is proportional to the size of the circular region 506. However, if it is too large, a large side band is generated in the point image 504, resulting in three mountain spots, which is inconvenient. As a matter of course, the super-resolution phenomenon does not occur when the circular region 506 becomes too large and all the laser light 502 passes through the circular region 506. Normally, when the cross-sectional ratio (r / d in FIG. 5) of the circular region 506 with respect to the beam diameter d of the laser beam 502 is about 20%, the point image 504 is about 15% smaller than the theoretical limit.
[0005]
[Problems to be solved by the invention]
However, installing a fixed phase plate always results in super-resolution. This means that when normal resolution is required, that is, in an apparatus that complies with a standard such as an optical disc, an optical apparatus having a standard normal resolution and a super-resolution exceeding the standard is realized. In this case, it is necessary to prepare two types of optical systems or to mechanically insert and remove the phase plate, which complicates the equipment configuration of the optical system. Further, it is not easy to accurately cut out the half-wave phase difference, and it cannot cope with wavelength fluctuations.
[0006]
Therefore, in the present invention, in an optical device composed of a laser light source that emits laser light and a condensing optical system that condenses the laser light, a phase modulation element is installed in the middle of the optical path, and the function of the phase modulation element is electrical. It is an object of the present invention to provide an optical device that can be controlled by a signal, can be easily switched between normal resolution and super resolution electrically, and can cope with wavelength fluctuations of a light source.
[0007]
[Means for Solving the Problems]
An optical apparatus according to the present invention includes at least a laser light source that emits laser light, a phase modulation element that modulates the phase of the laser light, and a condensing optical system that collects a light beam modulated by the phase modulation element. Thus, the function of the phase modulation element is controlled by an electrical signal, and the phase modulation element has a substantially circular area centered on the optical axis with respect to the light beam condensed by the condensing optical system and other areas or rectangular areas. It is composed of two parts that function independently from other regions, and the phase modulation amount of the phase modulation element is approximately half the wavelength of the laser light or an integral multiple of the half wavelength plus wavelength. .
[0008]
Also, a linearly polarized laser beam is used as the laser beam, a liquid crystal phase modulation element is used as the phase modulation element, and the liquid crystal phase modulation element is composed of a parallel alignment type liquid crystal element, and the polarization axis direction of the linear polarization laser beam is a parallel alignment type liquid crystal element It is characterized by being configured to substantially coincide with the direction of the liquid crystal molecular alignment axis.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
Next, a first embodiment according to the present invention is shown in FIG. The laser beam 103 emitted from the laser light source 101 and converted into a parallel plane wave by the collimator lens 102 passes through the phase modulation element 104 and is then condensed by the condensing optical system 105 to form a point image 106. In the phase modulation element 104, a circular area 108 (shaded area in the figure) centered on the optical axis 107 and a ring zone area 109 excluding the circular area 108 are electrically controlled independently. When no electrical signal is applied from the power source, the relative phase difference between the laser light 103 transmitted through the circular region 108 and the annular region 109 is 0, and super-resolution does not occur.
[0010]
Next, the relative phase difference between the laser light 103 that is supplied with an electric signal from the power source and passes through the circular region 108 and the annular region 109 is λ / 2. Here, λ is the wavelength of the laser beam 103. At this time, super-resolution occurs as described above. Therefore, the normal resolution and the super resolution are switched by the electric signal.
[0011]
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. Although basically the same as that of the first embodiment shown in FIG. 1, a liquid crystal phase modulation element 204 made of parallel alignment type liquid crystal is used as a phase modulation element that can be easily controlled by an electric signal. First, in order to facilitate understanding of the present embodiment, the operation of the parallel alignment type liquid crystal and the phase modulation phenomenon will be briefly described.
[0012]
3A and 3B schematically show the structure and operation of a general parallel alignment type liquid crystal element that can be electrically controlled. Liquid crystal molecules 302 are sandwiched between glass substrates 301 coated with transparent electrodes. The direction of the orientation axis 303 is the Y-axis direction on the entrance side and exit side glass substrates. The liquid crystal molecules 302 are arranged in parallel as shown in FIG. 3A due to the property of aligning the major axis direction with the alignment axis direction and the property of acting as a continuum, and this is called parallel alignment or homogeneous alignment.
[0013]
When linearly polarized light 304 is incident on the parallel alignment type liquid crystal element, when the polarization axis is the same as the alignment axis 303, the linearly polarized light 304 remains linearly polarized due to the dielectric anisotropy of the liquid crystal molecules 302. It propagates along the major axis direction of 302. At this time, when the refractive index in the major axis direction of the liquid crystal molecules 302 is n1 and the thickness of the liquid crystal layer is L, the optical path length of the linearly polarized light 304 traveling in the liquid crystal layer is n1 × L.
[0014]
Next, when an electric field in the Z-axis direction is applied to the liquid crystal molecules through the transparent electrode coated on the glass substrate 301, the long axis of the liquid crystal molecules 302 is the direction of the electric field as shown in FIG. 3B. Stand still side by side. This state is called homeotropic. At this time, the linearly polarized light 304 traveling in the liquid crystal layer propagates while maintaining the linearly polarized light. At this time, when the refractive index in the minor axis direction of the liquid crystal molecules 302 is n2, it can be seen that the optical path length of the linearly polarized light 304 traveling in the liquid crystal layer is n2 × L. That is, the refractive index for the linearly polarized light 304 is changed from n1 to n2 before and after the voltage is applied, and thus the optical path length is changed by (n1−n2) × L. If this optical path length is λ, it means that the phase is modulated by λ before and after the voltage is applied. It is also possible to create these intermediate states by controlling the applied voltage. It is also known that a minute voltage just before the liquid crystal starts to move by an electric field should be applied to the liquid crystal layer in order to achieve an ideally homogeneous state.
[0015]
From here, a second embodiment shown in FIG. 2 will be described. A liquid crystal phase modulation element 204 composed of a parallel alignment type liquid crystal is used as an electrically controllable phase modulation element, and its basic structure and operation are the same as those in FIG. The direction of the polarization axis of the laser beam 203 that is linearly polarized light and the direction of the liquid crystal alignment axis of the liquid crystal phase modulation element 205 are substantially the same.
[0016]
The laser light 203 emitted from the linearly polarized laser light source 201 and converted into a parallel plane wave by the collimator lens 202 passes through the liquid crystal phase modulation element 204 and is condensed by the condensing optical system 205 to form a point image 206. In the liquid crystal phase modulation element 204, a circular region 208 (shaded portion in the figure) centering on the optical axis 207 and a ring zone region 109 excluding the circular region 208 are electrically controlled independently. When no electrical signal is applied from the power source, the relative phase difference between the laser light 203 transmitted through the circular region 208 and the annular region 209 is 0, and super-resolution does not occur.
[0017]
Next, an electric signal is supplied from the power source to the annular region 209 to bring the liquid crystal molecules into a nearly homeotropic state, and the relative phase difference between the laser light 203 transmitted through the circular region 208 and the annular region 209 is λ / 2. Here, λ is the wavelength of the laser beam 203. At this time, super-resolution occurs as described above. Therefore, the normal resolution and the super resolution are switched by the electric signal.
[0018]
FIG. 4 shows a transparent electrode pattern of the liquid crystal phase modulation element 204 used. It consists of an annular region 401 and a circular region 402, and an extraction electrode line 403 is extracted from the annular region 401 toward the electrode 404. The transparent electrode pattern on the opposite side may be a solid (non-divided and uniform) pattern on the entire surface in the same manner as an ordinary simple matrix type liquid crystal element. When super-resolution is performed, a voltage is applied to the annular zone 401 via the electrode 404 to operate the liquid crystal molecules in the annular zone.
[0019]
In FIG. 2, the circular region 208 may be free of transparent electrodes or simply cut out. However, at this time, even when no electrical signal is applied to the annular zone 209, a relative phase difference occurs in the laser light 203 that passes through the annular zone 209 and the circular zone 208, and the condensing optical system 205 or another It is necessary to correct with an optical system. In addition, it is possible to cause super-resolution by applying an electrical signal only to the circular region 208, but in this case, it is necessary to draw out the electrode while avoiding the annular region 209.
[0020]
In this embodiment, the liquid crystal element is used as an electrically controllable phase modulation element. However, in addition to this, a solid crystal such as bismuth silicon oxide (BSO) or lithium niobate, or an electro-optic such as PLZT. Ceramics may be used. However, these materials have an effective operating voltage of hundreds to thousands of volts, and a liquid crystal element having an effective operating voltage of several volts is preferable in terms of driving.
[0021]
【The invention's effect】
As is apparent from the above description, the optical apparatus using the liquid crystal phase modulation element according to the present invention can switch between normal resolution and super resolution with a simple configuration. That is, it is possible to provide an optical disc apparatus that corresponds to the recording density of the optical disc apparatus standardized in the normal resolution mode and switches to the original high density optical disc apparatus in the super resolution mode. Further, since the optical path length, that is, the phase modulation amount can be controlled by controlling the voltage applied to the liquid crystal, it is possible to cope to some extent even if the wavelength of the light source changes. In addition, it is difficult to polish a normal phase plate made by glass etching or the like so as to accurately produce a half-wave relative phase difference. However, in this method, the phase modulation amount can be easily controlled by finely adjusting the applied voltage, and an accurate relative phase difference of half wavelength can be easily obtained. This also indicates that it is possible to easily cope with a phase change due to a temperature change or the like.
[0022]
Further, the liquid crystal phase modulation element in the present invention is easy to manufacture because it is small in size and very simple in structure as compared with a liquid crystal display panel for a personal computer having a complicated matrix pixel structure. Further, in the present invention, since a liquid crystal element having an effective operating voltage of several volts is used as an electrically controllable phase modulation element, it can be directly driven by a dual complementary MOS semiconductor device (CMOS-IC), resulting in low consumption. A small optical device can be realized with electric power.
[Brief description of the drawings]
FIG. 1 is a configuration example of an optical device according to a first embodiment of the present invention.
FIG. 2 is a configuration example of an optical device according to a second embodiment of the present invention.
FIG. 3 is a diagram showing the action of an electrically controllable parallel alignment type liquid crystal element in the second embodiment of the present invention.
FIG. 4 is a diagram showing a transparent electrode shape of a liquid crystal phase modulation element in a second embodiment of the present invention.
FIG. 5 is a diagram for explaining super-resolution by a conventional general phase shift method;
[Explanation of symbols]
101, laser light sources 102, 202, collimate lenses 103, 203, 502, laser light 104, phase modulation elements 105, 205, 501, condensing optical systems 106, 206, 504, point images 107, 207, 503, optical axis 108, 208, 402, 506, circular regions 109, 209, 401, 507, annular region 201, linearly polarized laser light source 204, liquid crystal phase modulation element 301, glass substrate 302, liquid crystal molecule 303, alignment axis 304, linearly polarized light 403 , Lead electrode wire 404, electrode 505, phase plate

Claims (2)

少なくともレーザー光を出射するレーザー光源と該レーザー光の位相を変調する液晶位相変調素子と該液晶位相変調素子で変調された光束を集光する集光光学系とから構成される光学装置において、該液晶位相変調素子の機能は電気信号で制御され、かつ該液晶位相変調素子は該集光光学系で集光される光束に対して該光束の光軸を中心としたほぼ円形領域と該円形領域以外の輪帯領域とに独立して電気的に制御される二ヶ所の部位から構成され、前記円形領域または前記輪帯領域に電気信号を与えて前記円形領域と前記輪帯領域とを透過するレーザ光に相対位相差を発生させ、前記円形領域と前記輪帯領域とにそれぞれ透明電極パターンを形成することによって、前記円形領域と前記輪帯領域に電気信号を与えていない状態において前記円形領域と前記輪帯領域とを透過するレーザ光に相対位相差が発生することを防止するように構成し、かつ該液晶位相変調素子の位相変調量は該レーザー光のほぼ半波長程度もしくは半波長プラス波長の整数倍程度である事を特徴とする光学装置。In an optical device comprising at least a laser light source that emits laser light, a liquid crystal phase modulation element that modulates the phase of the laser light, and a condensing optical system that condenses a light beam modulated by the liquid crystal phase modulation element, The function of the liquid crystal phase modulation element is controlled by an electric signal, and the liquid crystal phase modulation element has a substantially circular area centered on the optical axis of the light beam and the circular area with respect to the light beam condensed by the condensing optical system. consists two places of site to be electrically controlled independently for the annular region other than the transmission and said annular region and said circular area giving electrical signals to said circular area or the annular area to generate a relative phase difference to the laser over light, by forming the respective transparent electrode pattern and the circular region and the annular region, in the state of not giving an electrical signal to said circular region the annular region Above Relative phase difference is configured to prevent the occurrence in the laser over light passing through the shape area and the annular region, and the phase modulation amount of the liquid crystal phase modulation element about almost half of the wavelength of the laser light or An optical device characterized by being an integral multiple of a half wavelength plus a wavelength. レーザー光として直線偏光レーザー光を用い、かつ該液晶位相変調素子は平行配向型液晶素子から構成され、該直線偏光レーザー光の偏光軸方向は該平行配向型液晶素子の液晶分子配向軸の方向とほぼ一致するように構成されている事を特徴とする特許請求の範囲第1項記載の光学装置。 A linearly polarized laser beam is used as the laser beam, and the liquid crystal phase modulation element is composed of a parallel alignment type liquid crystal element, and the polarization axis direction of the linearly polarized laser beam is the direction of the liquid crystal molecule alignment axis of the parallel alignment type liquid crystal element. 2. The optical device according to claim 1, wherein the optical device is configured so as to substantially coincide.
JP10625198A 1998-04-16 1998-04-16 Optical device Expired - Lifetime JP3999875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10625198A JP3999875B2 (en) 1998-04-16 1998-04-16 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10625198A JP3999875B2 (en) 1998-04-16 1998-04-16 Optical device

Publications (2)

Publication Number Publication Date
JPH11306583A JPH11306583A (en) 1999-11-05
JP3999875B2 true JP3999875B2 (en) 2007-10-31

Family

ID=14428892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10625198A Expired - Lifetime JP3999875B2 (en) 1998-04-16 1998-04-16 Optical device

Country Status (1)

Country Link
JP (1) JP3999875B2 (en)

Also Published As

Publication number Publication date
JPH11306583A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
US3838906A (en) Optical switch
US7894029B2 (en) Apparatus for optically arranging surface of alignment film and method for manufacturing liquid crystal display device using the same
US4783152A (en) Variable focal length lens
JP3620145B2 (en) Optical head device
WO2011105619A1 (en) Polarization conversion element
JP4625491B2 (en) Dual-use input electrode for MIOC (Multifunctional Integrated Optical Device)
KR0185729B1 (en) Optically writing projection-type display
JPH09146128A (en) Electrooptic element
EP0294898B1 (en) Device for projection television
JPH11194345A (en) Polarized light radiation device to orient film for liquid crystal display element
JP3999875B2 (en) Optical device
JPS61277919A (en) Variable focal length lens
JP2765529B2 (en) Waveguide type optical device
WO2017140044A1 (en) Holographic information recording and reproducing apparatus and method, and display device
US3540794A (en) Multilayer digital light deflector
JP3149121B2 (en) Variable wavelength liquid crystal optical filter
JP2016114899A (en) Liquid crystal optical device
JP4022096B2 (en) Optical deflection element and image display device
JPH0627427A (en) Optical function element
SU1492341A1 (en) Thin-film electroptical lens
JP2007148309A (en) Optical device using polarizing variable element
JP4668365B2 (en) Optical device
JP3980390B2 (en) Optical deflection element, optical deflection device, optical deflection apparatus, and image display apparatus
JP2000215506A (en) Optical device
JP2006184672A (en) Liquid crystal device and projection type display device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070529

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140817

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term