JPS59209608A - Permselective membrane - Google Patents

Permselective membrane

Info

Publication number
JPS59209608A
JPS59209608A JP58081768A JP8176883A JPS59209608A JP S59209608 A JPS59209608 A JP S59209608A JP 58081768 A JP58081768 A JP 58081768A JP 8176883 A JP8176883 A JP 8176883A JP S59209608 A JPS59209608 A JP S59209608A
Authority
JP
Japan
Prior art keywords
polyamine
membrane
polyamine compound
oxygen
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58081768A
Other languages
Japanese (ja)
Inventor
Kenko Yamada
山田 建孔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP58081768A priority Critical patent/JPS59209608A/en
Publication of JPS59209608A publication Critical patent/JPS59209608A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a permselective membrane for selectively separate and concentrating oxygen in the air, constituted of a polymer consisting of a polyamine component prepared by containing two kinds of specific polyamine compounds in a predetermined ratio and polyisocyanate. CONSTITUTION:A polyamine compound I represented by formula (wherein R1, R2, R11 and R12 are a hydrogen atom or a 1-10C hydrocarbon group, R3, R4, R5, R6, R5', R6', R7, R13, R14, R15, R16, R15' and R16' are a monovalent hydrocar bon group, x, y, z, o and p are an integer of 1-10 and n and m are an integer of 1-250) and a polyamine compound II represented by formula II are prepred. These two kinds of polyamine compounds are contained in such a mol ratio that polyamine compound I /(polyamine compond I + polyamine compound II) is 0.1-1 to prepare a polyamine component which is, in turn, reacted with polyisocyanate having a plurality of isocyanate groups to form siloxane-containing polyurea polymer. Oxygen in the air is separated and conc. by the permselective membrane comprising this polymer.

Description

【発明の詳細な説明】 本発明は良好な透過性を持つ、気体状混合4f/J又は
液状混合物の選択透過性膜に関する。さらに詳しくは特
定のシルキサン誘導体の骨格を有するポリアミン成分と
ポリイソシアネートとを重合せしめてなるポリ尿素系の
分離rA罠門する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a permselective membrane for gaseous mixtures 4f/J or liquid mixtures with good permeability. More specifically, it is a polyurea-based separation rA trap made by polymerizing a polyamine component having a specific silxane derivative skeleton and a polyisocyanate.

特に本発明の膜は酸素の透過量が大きく、且つ酸素の選
択透過性にすぐれる。
In particular, the membrane of the present invention allows a large amount of oxygen to permeate and has excellent oxygen permselectivity.

現在、燃焼基ネルギーを利用する装置、例えば家庭用暖
房器具、自動車エンジン、ボイラー等においては、空気
中に酸素が約20%の0度で存在することを基礎に設計
され運用されて℃するが、−酸化炭素などの有害な不完
全燃焼物ht発生している。
Currently, devices that utilize combustion-based energy, such as home heating appliances, automobile engines, and boilers, are designed and operated on the basis that approximately 20% oxygen exists in the air at 0 degrees Celsius. - Harmful incomplete combustion products such as carbon oxide are generated.

今、酸素濃度の高められた空気が供給されたとすれば、
不完全燃焼による環境汚染等σ)問題が解消されるばか
りでなく、燃焼効率を高めることも可能になる。
Now, if air with increased oxygen concentration is supplied,
This not only solves problems such as environmental pollution caused by incomplete combustion, but also makes it possible to increase combustion efficiency.

又、酸素濃度の高められた空気は、呼吸器系疾患者や未
熟児の呼吸用として有用である。
In addition, air with increased oxygen concentration is useful for breathing by people with respiratory disorders and premature infants.

このように酸素濃度の高い空気を得る方法として高分子
膜を用いて大気中の酸素を選択的に分離濃縮する方法が
ある。
As a method of obtaining air with such a high oxygen concentration, there is a method of selectively separating and concentrating oxygen in the atmosphere using a polymer membrane.

一般に均質膜中を透過する気体の量は次式であられされ
る。
Generally, the amount of gas permeating through a homogeneous membrane is calculated by the following formula.

そこでコンパクトな装置でできるだけ気体の透過量をあ
げる罠は気体透過係数旦の大きな素材を選び、膜厚をで
きるだけ薄くすることが、膜分離法においては必要とな
る。
Therefore, in order to increase the amount of gas permeation as much as possible with a compact device, it is necessary in the membrane separation method to select a material with a large gas permeability coefficient and to make the membrane thickness as thin as possible.

一方、混合気体の分離の場合、分離をよくするには、分
離係数α(α=高透過性ガスの遭遇係数/低透過性ガス
の透過係数)の大きな素材を選定することも重要な因子
である。
On the other hand, in the case of separating mixed gases, selecting a material with a large separation coefficient α (α = encounter coefficient of high permeability gas / permeation coefficient of low permeability gas) is also an important factor in order to improve separation. be.

大気中の酸素と窒素の分離に使用する膜、即ち酸素富化
膜としては種々のものがすでに提案されているが、その
なかでポリ尿ス(系からの痕は強度上も耐熱的にもすぐ
れているが気体透過性は小さく実用に供し得なかった。
Various membranes have already been proposed for use in the separation of oxygen and nitrogen from the atmosphere, that is, oxygen enrichment membranes. Although excellent, the gas permeability was so low that it could not be put to practical use.

そこで本発明者はかかるポリ尿素で気体の透過性の大き
い選択透過性膜を伊るべく鋭意研究した結果、アミン成
分としてシロキサン骨格を有するポリアミンから誘導さ
れたポリ尿素膜がすぐれた気体例えば酸素の選択透過性
を有することを見いだしさきに提案した(特願昭57−
74475号参照)。またそのポリ尿素の形成反応を循
多孔性支持体膜上で実施し重合と膜の形成を同時におこ
なわせしめろこともできた(特願昭51774476号
参照)。
As a result of intensive research into a permselective membrane with high gas permeability using polyurea, the present inventor found that a polyurea membrane derived from a polyamine having a siloxane skeleton as an amine component has excellent gas permeability, such as oxygen. He discovered that it has selective permeability and proposed it (patent application 1983-
(See No. 74475). It was also possible to carry out the polyurea formation reaction on a circulating porous support membrane so that polymerization and membrane formation could be carried out simultaneously (see Japanese Patent Application No. 51774476).

かかるポリ尿素膜は透過性および選択性にすぐれるが、
さら忙選択性の向上をはかるため銹意研究した結果、こ
のシロキサン系ポリ尿素膜忙第3級アミン基及び/又は
ピリジン環を導入すること罠より改良がはかれることを
見い出し本発明に到達した。
Such polyurea membranes have excellent permeability and selectivity, but
As a result of extensive research aimed at further improving the selectivity, it was discovered that an improvement could be achieved by introducing a tertiary amine group and/or a pyridine ring into the siloxane-based polyurea membrane, resulting in the present invention.

即ち本発明は、下記式(I)で表わされるポリ7ミン化
合物(I)及び下記式(■lで表わされるポリアミン化
合物(1ン とを、次式 の割合で含有したシロキサン含有ポリアミンから主とし
てなるポリアミン成分と、少くとも2個のインシアネー
ト基を有するポリイソシアネ−1・成分との反応により
待られたシロキサン含有ポリ尿素から実質的になる重合
体から形成された選択透過性膜である。
That is, the present invention mainly consists of a siloxane-containing polyamine containing a polyamine compound (I) represented by the following formula (I) and a polyamine compound (1) represented by the following formula (■l) in the ratio of the following formula. A permselective membrane formed from a polymer consisting essentially of a siloxane-containing polyurea prepared by reaction of a polyamine component and a polyisocyanate-1 component having at least two incyanate groups.

本発明は選択透過性刃i%を構成するポリ尿素重合体が
その側鎖に第3級アミン基及び/又はピリジル基を有す
ることにその特徴があり、そのため該重合体の製造にあ
たり、’i3j、 3 pliアミノ基及び/又はピリ
ジン環を側鎖に含むポリアミンを必ず用いる。
The present invention is characterized in that the polyurea polymer constituting the permselective blade i% has a tertiary amine group and/or pyridyl group in its side chain. , 3 pli A polyamine containing an amino group and/or a pyridine ring in its side chain is always used.

本発明如使用されるポリアミン化合物(I)の構造式(
■)においてR,、R2は同一もしくは異なり、水素原
子又は炭素原子数1〜10の炭化水素基であり、炭化水
素基の例としてはメチル基、エチル基、プロピル基、ブ
チル基、シクロヘキシル基、フェニル基、) !Jル基
、ナフチル占(等をあげることができる。
Structural formula of polyamine compound (I) used according to the present invention (
In (2), R, and R2 are the same or different and are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and examples of the hydrocarbon group include a methyl group, an ethyl group, a propyl group, a butyl group, a cyclohexyl group, Phenyl group, )! Examples include J group, naphthyl group, etc.

Xは第3級アミン基及び/又はピリジン環を少くとも1
個有する脂肪族、脂環族、芳香族炭化水素残基である。
X has at least one tertiary amine group and/or pyridine ring
These are aliphatic, alicyclic, and aromatic hydrocarbon residues.

第3級アミン基及び/又はピリジン環の数は1つ以上あ
れば特に限定されないが通常は4以下である。
The number of tertiary amine groups and/or pyridine rings is not particularly limited as long as it is one or more, but is usually 4 or less.

その例としては下記 などをあげることができる。An example is below etc. can be given.

また などの第2級アミンをその骨格に含むものも使用できる
。R,、R4,R,、R,、、R,’、 R6’、 R
1は同一もしくは異なり一価の炭化水素基又はフッ素化
炭化水素基である。炭化水素基としては、炭素原子数1
〜20の脂肪族基、炭素原子数6〜工5の脂環族基、炭
素原子数6〜15の芳香族基であり、 例えば−CH,、−C,H,、−C8i(7,−CH=
CR2゜ことができる。フッ素化炭化水素基としては、
上記炭化水素基の水素原子の少くとも一部をフッ素原子
で置換したものである。
Also, those containing a secondary amine in their skeleton can also be used. R,,R4,R,,R,,,R,',R6',R
1 are the same or different monovalent hydrocarbon groups or fluorinated hydrocarbon groups. As a hydrocarbon group, the number of carbon atoms is 1
~20 aliphatic groups, alicyclic groups having 6 to 5 carbon atoms, and aromatic groups having 6 to 15 carbon atoms, such as -CH,, -C,H,, -C8i(7,- CH=
CR2° is possible. As a fluorinated hydrocarbon group,
At least some of the hydrogen atoms in the above hydrocarbon group are replaced with fluorine atoms.

X + Y * zは同一もしくは異なり1〜]()の
整数であり、好ましくは2〜5の!IG数である。
X + Y * z are the same or different and are integers from 1 to ](), preferably from 2 to 5! This is the number of IGs.

mは1〜250の整数である。第3級アミン基及び/又
はピリジン環の効果をだすにはmは大きいほうがよいが
、製膜性は悪くなり、好ましくは1〜1.00である。
m is an integer from 1 to 250. In order to bring out the effects of the tertiary amine group and/or the pyridine ring, it is better to have a larger value of m, but this results in poor film forming properties, so it is preferably from 1 to 1.00.

eはO又は1〜250の整数であり、酸素の透過性をあ
げるには4は大きく、一方酸素と窒素の選択性を高める
にはぎはO又は小さくした方がよく、要求する膜特性に
応じ任意に選ぶことができる。
e is O or an integer from 1 to 250; 4 is large to increase oxygen permeability; on the other hand, e should be O or small to increase oxygen and nitrogen selectivity, depending on the required membrane properties. Can be selected arbitrarily.

本発明のポリアミン化合物(I)の合成法としては例え
ば次の方法があるが、特にこれに限定されるものではな
い。
The method for synthesizing the polyamine compound (I) of the present invention includes, for example, the following method, but is not particularly limited thereto.

R’      R 1 本発明のポリアミン(I)のなかで分PIS膜としての
性能および膜強度の点から次の構造のものCH3(C!
(、)  CH3 2 X′ が好適に用いられ、そのなかでもIl’jivL次の構
造 iのもの CI、   CH,CH。
R' R 1 Among the polyamines (I) of the present invention, those having the following structure CH3 (C!
(,) CH3 2

CH3CH。CH3CH.

が合成上および高重合体の重合体が容易にできる点で好
ましい。
is preferable from the standpoint of synthesis and the fact that high polymers can be easily produced.

本発明のポリアミン化合物(U、1の構造式(n)にお
(1て R11、R1□は前記ポリアミン化合物(IlのR1と
同一であり、 Rls + R14−Rls + Ry6+ R+; 
+ R1e’  はR6と同一であり、0とpはXと同
一であり、nは1〜250の整数である。
In the structural formula (n) of the polyamine compound (U, 1) of the present invention, R11 and R1□ are the same as R1 of the polyamine compound (Il), and Rls + R14-Rls + Ry6+ R+;
+ R1e' is the same as R6, 0 and p are the same as X, and n is an integer from 1 to 250.

かかるアミン化合物の例としては次のものをあげること
ができる。
Examples of such amine compounds include the following.

CHsCH。CHsCH.

CH,CH8 1 CH,CH。CH, CH8 1 CH, CH.

CH8CH。CH8CH.

1 CH,CI(。1 CH, CI (.

1 CI、   CH。1 CI, CH.

CHlCX−1゜ 1 CM、    CF(。CHlCX-1゜ 1 CM, CF (.

CH,C6H,CH。CH, C6H, CH.

1    1    1 CT(3C6H,CII。1 1 1 CT (3C6H, CII.

CH,CH=CH,CH3 111 CH,CH=C)l、CH。CH, CH=CH, CH3 111 CH, CH=C)l, CH.

本発明においてポリアミン化合物(Ilと同(Illの
割合は次式 で表わしてo、iυ上好ましくは0.5以上であ包0.
1以下で)・ると側鎖の第3級アミ7基及び/又はピリ
ジル基の割合が小さく、例えば階床と窒素の分離におけ
る選択性の向上の効果/勾玉とんとない。
In the present invention, the polyamine compound (the same as Il (the ratio of Ill is expressed by the following formula, o, iυ, preferably 0.5 or more, and 0.5% or more) is used.
1 or less), the proportion of tertiary amine 7 groups and/or pyridyl groups in the side chain is small, and the effect of improving selectivity in, for example, separation of floor and nitrogen/Magatama is extraordinary.

本発明の膜のポリアミン成分として、側鎖に第1級ない
しは第2級アミ7基をもっシロキサン含有ポリアミン化
合物。
The polyamine component of the membrane of the present invention is a siloxane-containing polyamine compound having 7 primary or secondary amide groups in its side chain.

例えば CH,(CH2)qCH3 NF(。for example CH, (CH2)qCH3 NF(.

罵 N!(。Abuse N! (.

N などを本発明の特徴を損わちい範囲で加えろことができ
る。本発明に用いる少くとも2個σ)インシアネート基
を有するポリイソシアネート成分としては、芳香族、脂
環族あるいは、脂肪族骨格からなるポリイソシアネート
類でアI)、その91iとしては例えばトリレンジイン
シアネート。
N and the like can be added within a range that does not impair the features of the present invention. The polyisocyanate component having at least two σ) inocyanate groups used in the present invention is polyisocyanate having an aromatic, alicyclic, or aliphatic skeleton. Cyanate.

ジフェニルメタンジイソシアネート、ナフタレ    
″ンジイソシアネート、フェニルンイソシアネートなど
の芳香族ジ・イソシアネート;ヘキサメチレンジイソシ
アネート、シクロヘキザンジインシアネート、メタキシ
レンジインシアネート。
diphenylmethane diisocyanate, naphthalene
Aromatic di-isocyanates, such as diisocyanate, phenylene diisocyanate; hexamethylene diisocyanate, cyclohexane diisocyanate, meta-xylene diisocyanate.

インホロンジイソシアネート等の脂肪族ふるいは脂環族
ジインシアネートがあげられる。
Aliphatic sieves such as inphorone diisocyanate include alicyclic diincyanates.

また下記式 (但しqは1〜1oの整数を示す) などの3官能以上のポリイソシアネートを使うことがで
きる。また、本発明に使用するポリイソシアネート成分
としてその構造中忙少くとも1個ノ(−8i−0+のシ
ロキサン41ζ造(但シ、R。
Further, a trifunctional or higher functional polyisocyanate such as the following formula (where q represents an integer of 1 to 1o) can be used. In addition, the polyisocyanate component used in the present invention is composed of at least one (-8i-0+ siloxane 41ζ) in its structure.

&、 、 RHは同一もしくは異なり、炭素数1〜4の
アルキル基又はフェニル基)を有し、かつ少くとも2個
のインシアネート基を有するシロキサン系ポリイソシア
ネートも使うことができる。
&, , RH are the same or different, and a siloxane polyisocyanate having an alkyl group or phenyl group having 1 to 4 carbon atoms and at least two incyanate groups can also be used.

かかるシルキサン系ポリイソシアネートとしては、下記
式圃 あるいは下記式■ 1%1R11Rat 13.2.   R,R2゜ ・−・・・・・・・■ で表われるものが有利である。
Such a silxane polyisocyanate may be expressed by the following formula or the following formula (1) 1%1R11Rat 13.2. Preference is given to those represented by R, R2°.

前記(urlの化合物の具体例としてはCH,C’[−
I。
Specific examples of compounds in the above (url) include CH, C'[-
I.

1 CH,CH。1 CH, CH.

CT(、CHBCH。CT(, CHBCH.

1 1 1 CI(、CH,CI(。1 1 1 CI(, CH, CI(.

CH,CH。CH, CH.

I CH,CH。I CH, CH.

をあげることができる。can be given.

一方(IvIの化合物は下記式 %式% で表われる化合物と、少くとも2個のインシアネー) 
Jlをもつポリイソシアネート化合物との反応忙よって
得ることができる。
On the other hand (the compound IvI is a compound represented by the following formula % formula % and at least two Incyanes)
It can be obtained by reaction with a polyisocyanate compound having Jl.

か−る■の具体例としては、 OCR,CH,0 等をあげることができる。As a specific example of Call ■, OCR,CH,0 etc. can be given.

前記ポリイソシアネートは他のポリイソシアネートとの
混合物の形でも使用できる。これらのポリイソシアネー
トのうちシロキザン系ポリイソシアネートを使用する方
が酸素透過性の良好な膜を得る上では好ましい。
The polyisocyanates can also be used in the form of mixtures with other polyisocyanates. Among these polyisocyanates, it is preferable to use siloxane polyisocyanates in order to obtain a membrane with good oxygen permeability.

前記ポリアミン成分とポリイソシアネート成分とから本
発明の膜を形成させるためKは、ポリアミン成分とポリ
イソシアネート成分とを溶媒中で反応させ、ポリマー溶
液を調製し、キャスティングなどにより製膜し脱溶媒を
して膜を得ることもできるが、両者を微多孔性支持体表
面上で重合せしめ、該支持体表面上にポリ尿素の薄膜を
形成させる方法が重合と製膜が同時にでき、しかも極薄
膜が容易に得られるのでより好ましい。
In order to form the film of the present invention from the polyamine component and polyisocyanate component, K reacts the polyamine component and polyisocyanate component in a solvent, prepares a polymer solution, forms a film by casting etc., and removes the solvent. However, the method of polymerizing both on the surface of a microporous support and forming a thin film of polyurea on the surface of the support allows polymerization and film formation at the same time, and it is easy to form an extremely thin film. It is more preferable because it can be obtained in

その界面重合法の一つの好ましい方法について以下記載
する。
One preferred interfacial polymerization method will be described below.

前記ポリアミン成分の溶液を後述する微多孔性支持体表
面上に予め塗布し、その塗布した基材とポリインシアネ
ート成分の溶液とを接触させる方法である。
This is a method in which a solution of the polyamine component is previously applied onto the surface of a microporous support (described later), and the coated substrate is brought into contact with the solution of the polyincyanate component.

この塗布方法としては浸漬法、r+−ルコーティング法
、ウィックコーティング法、スプレーコーティング法等
如何なる方法でもよい。
This coating method may be any method such as dipping, r+-ru coating, wick coating, and spray coating.

かかるポリアミンは可溶性であるものが好ましく、水お
よび炭素原子数1〜10好ましくは、炭i原子f&1〜
6のアルコール、グリコール。
Such a polyamine is preferably soluble in water and has 1 to 10 carbon atoms, preferably carbon i atoms f&1 to
6 alcohol, glycol.

エーテル、エステル類またはこれらの2種以上の混合溶
液が用いられる。好ましいものとしては水、メタノール
、エタノール、インプロパ/−ル、エチレングリコール
、ジエチレングリコール、プロピレングリコール、メチ
ルセルソルグ、ジオキサンなどの単独溶媒およびこれら
の混合溶媒が用いられる。
Ethers, esters, or a mixed solution of two or more thereof are used. Preferred solvents include water, methanol, ethanol, in-propyl, ethylene glycol, diethylene glycol, propylene glycol, methylcelsorg, dioxane, and other single solvents and mixed solvents thereof.

これらの溶媒群より選ばれた少なくとも1種の溶媒に少
なくとも0.1 %溶解せしめた本発明のポリアミン溶
液は、微多孔性支持体膜に塗布又は含浸せしめられる。
The polyamine solution of the present invention, which is dissolved at least 0.1% in at least one solvent selected from these solvent groups, is applied or impregnated onto a microporous support membrane.

かかる支持体膜の基材として、ガラス質多孔材、 m 
結金属、セラミックスとかセルロースエステル、ポリス
チレン、ビニルゾチラール、ポリスルホン、塩化ビニル
等の有機ポリマーが挙げられる。
As a base material of such a support membrane, a vitreous porous material, m
Examples include bound metals, ceramics, and organic polymers such as cellulose ester, polystyrene, vinylzotyral, polysulfone, and vinyl chloride.

ポリスルホン膜は本発明の基材として特にすぐれた性能
を有するものであり、他にポリビニルクロライドも又有
効である。ポリスルホン多孔質基材の製造法は、米国塩
水局レポート(O8W Report ) N[135
9にも記載されている。
Polysulfone membranes have particularly excellent performance as the base material of the present invention, and polyvinyl chloride is also effective. The method for manufacturing polysulfone porous substrates is described in the U.S. Bureau of Salt Water Report (O8W Report) N[135
It is also described in 9.

かかる基材は表面の孔の大きさが一般に約100〜10
00オングストロームの間にあるものが好ましいが、こ
れに限られるものではなく、最終の膜の月途などに応じ
て、表面の孔の大きさは50A〜5oooXの間で変化
しうる。
Such substrates generally have a surface pore size of about 100 to 10
The size of the surface pores is preferably between 50A and 500A, but is not limited to this, and may vary depending on the age of the final membrane and the like.

これらの基材は対称構造でも非対称構造でも使用できる
が、望ましくは非対称構造のものがよい。しかしながら
、これらの基材は、LIS P 8117の装置により
測定された透気度が20〜3000秒、より好ましくは
50〜1000秒のものが用いられる。透過度が20秒
以下のものは、得られる複合膜に欠陥が生じやすく、選
択性が低下しやすい。また、3000秒以上のものは、
得られた枝合膜の透気量が低いものしか得られない。
These substrates can be used in either symmetrical or asymmetrical structures, but asymmetrical structures are preferable. However, these base materials are those having an air permeability of 20 to 3000 seconds, more preferably 50 to 1000 seconds, as measured by LISP 8117 equipment. When the permeability is 20 seconds or less, defects tend to occur in the resulting composite membrane, and selectivity tends to decrease. In addition, if the duration is 3000 seconds or more,
Only the resulting branched membranes with low air permeability can be obtained.

また基材(微多孔性瑛)は、その孔の大きさが最大細孔
径として1μ以下、好ましくは0.5μ以下であるのが
有利である。
Further, it is advantageous for the base material (microporous enamel) to have a maximum pore size of 1 μm or less, preferably 0.5 μm or less.

本発明の膜を得るに際1−、ポリインシアネートの溶解
に使用される溶媒としては、インシアネートに対して不
活性でありそれを溶解ししかも支持体基材物質を実質的
に溶解しないものでありかつ前記アミン溶液と界面をつ
くるものである。また形成されたポリ尿素を溶解しない
ものあるいはほとんど溶解しないものである。
When obtaining the membrane of the present invention, 1- The solvent used to dissolve the polyincyanate must be one that is inert to the incyanate, dissolves it, and does not substantially dissolve the support base material. and forms an interface with the amine solution. Moreover, it does not dissolve the formed polyurea, or it hardly dissolves it.

かかる溶媒としては、炭素原子数6〜20の脂肪族;脂
環族炭化水素、炭素原子数6〜20の芳香族炭化水素;
炭素原子数1〜120ノー、ロゲン化炭化水素、炭素原
子数4〜14のエーテル、炭素原子数3〜14のケトン
、炭素原子数3〜14のエステル類およびこれらの2種
以上の混合物を用いることができる。
Such solvents include aliphatic hydrocarbons having 6 to 20 carbon atoms; alicyclic hydrocarbons; aromatic hydrocarbons having 6 to 20 carbon atoms;
Using carbon atoms of 1 to 120, logenated hydrocarbons, ethers of 4 to 14 carbon atoms, ketones of 3 to 14 carbon atoms, esters of 3 to 14 carbon atoms, and mixtures of two or more of these. be able to.

好ましい例としては11−ヘキサン、n−オクタン、1
1−デカン、ドデセン、1−ヘキサデセン、シクロヘキ
サン、 2,2.4− )リメチルヘキサン、ベンゼン
、トルエン、キシレン、四m化炭2.クロロホルム、ジ
クロルエタン、トリクμpエタン、クロルベンゼン、フ
ローベンゼン。
Preferred examples include 11-hexane, n-octane, 1
1-decane, dodecene, 1-hexadecene, cyclohexane, 2,2.4-)limethylhexane, benzene, toluene, xylene, tetramerized carbon2. Chloroform, dichloroethane, tric μp ethane, chlorobenzene, flobenzene.

ヘキサフロロベンゼン、フロヒルエーテルチルエーテル
,アニソールエチルア−+:テー)+シクロヘキサノン
等をあげることができる。
Examples include hexafluorobenzene, fluoroyl ether tyl ether, anisole ethyl a-+:t)+cyclohexanone, and the like.

溶媒中の好適なポリインシアネート化合物濃度は該化合
物の種類,溶媒,基月,その他の条件によって変化しう
るが,実験により最適値を決定することができる。
Although the suitable concentration of the polyincyanate compound in the solvent may vary depending on the type of the compound, the solvent, the base size, and other conditions, the optimum value can be determined by experiment.

しかし、一般的に約0.1〜5.0、好ましり番マ0、
5〜3.0重量%で十分効果を発揮しうる。
However, generally about 0.1 to 5.0, preferably 0,
A sufficient effect can be exhibited at 5 to 3.0% by weight.

ポリアミン成分とポリイソシアネー) Iff1分との
かかる界面反応は室温乃至約100°C,好まL < 
ハ2 0〜50℃の温度にお−1で2秒〜10分、妊ま
しくは10秒〜5分間行うことh″−できる。この界面
反応は膓の表面ド→二として集中さり,るように行)こ
とができる。
Such an interfacial reaction between the polyamine component and the polyisocyanate) If1 minute is carried out at room temperature to about 100°C, preferably L<
C2 It can be carried out at a temperature of 0 to 50℃ for 2 seconds to 10 minutes, preferably 10 seconds to 5 minutes.This interfacial reaction is concentrated as a line) can be done.

かくして微多孔性支持体表面上に、選択透3fA性を有
する重縮合体の薄℃・Vへを有する複合li疼カー得ら
れろ。
In this way, a composite polymer having a thin temperature range of 0.degree.

さらに本発明の他の界面製膜方法として、ポリイソシア
ネート成分を徹多JL支j寺イ本に含浸し、それにポリ
アミン成分の溶液を接触させて薄膜を形成させろことも
できろ。
Furthermore, as another method for forming an interfacial film according to the present invention, a thin film may be formed by impregnating a polyisocyanate component with a polyamine component and contacting it with a solution of a polyamine component.

さらに本発明の他の製膜法は、前述の通りポリ尿素重合
体溶液を別途調製し、その溶液をキャスティングコーテ
ィング、中空糸未秒糸法ブrどで膜の形にして脱溶媒し
て固体膜とすることもできる。
Furthermore, in another method for forming a film according to the present invention, a polyurea polymer solution is separately prepared as described above, and the solution is formed into a film using casting coating, hollow fiber unseconded thread method, etc., and the solvent is removed to solidify the solution. It can also be a membrane.

本発明の選択$L過性膜の厚さは厳qIjに規定される
ものではないが、厚みとして番ま少くと.も100オン
グストロームであり通常200〜50,00 (lオン
グストロームの厚みを有する。
The thickness of the selected $L-transmissive film of the present invention is not strictly defined, but the thickness may be at least as low as qIj. The thickness is usually 200 to 50,00 angstroms.

又特殊な場合として、膜を非対称膜構造にして全厚とし
ては50,000オングストロームを越えるが分靜活性
層としては、前記膜厚の範囲にある嗅とすることもでき
る。
In a special case, the membrane may have an asymmetric membrane structure with a total thickness exceeding 50,000 angstroms, but the silent active layer may have a thickness within the above range.

本発明の膜および微多孔性支持体の形状は平膜状、中空
繊維等いかなる形状でも使用可能であり、それに応じて
本発明の膜も平膜、中空糸等いかなる形態でもよい。
The membrane and microporous support of the present invention can be in any shape, such as a flat membrane or hollow fibers, and accordingly, the membrane of the present invention may also be in any shape, such as a flat membrane or a hollow fiber.

そして本発明の膜は、その優れた気体透過性。The membrane of the present invention has excellent gas permeability.

選択性を利用し、て例えば空気から酸素富化空気を製造
する装置に組み込んでエンジン、暖房器具等の燃焼効率
の向上、さらに清浄な酸素富化空気として、未熟児の保
育箱、呼吸器疾患者の治療器機として、あるいは人工肺
2人工えらとして利用することができる。
Utilizing selectivity, it can be incorporated into devices that produce oxygen-enriched air from air to improve the combustion efficiency of engines, heaters, etc. Furthermore, as clean oxygen-enriched air, it can be used in nurseries for premature babies and for respiratory diseases. It can be used as a medical treatment device for patients, or as an artificial lung or artificial gill.

又酸素の分離以外にも水素、ヘリウム、炭醒ガスなどを
含む気体の分離にも使用できる。
In addition to separating oxygen, it can also be used to separate gases including hydrogen, helium, carbonization gas, etc.

本発明の膜は耐熱性、耐久性にすぐれるので逆浸透膜、
パーベー/(レーション用l偉として、水、エタノール
、酢酸などを含む混合液体の分離用にも用いろことiI
″−できる。
The membrane of the present invention has excellent heat resistance and durability, so it can be used as a reverse osmosis membrane.
Pervey / (Can also be used as a liquid for separation of mixed liquids containing water, ethanol, acetic acid, etc.)
″-I can.

以下実施例をあげて、本発明を記述するカζ、本発明は
、これらに限定されるもσ)で番まな−・。
Hereinafter, the present invention will be described with reference to examples. Although the present invention is not limited to these examples, the present invention is not limited to these examples.

実施例中“部”は重量部を示す。In the examples, "parts" indicate parts by weight.

参考例1 密に織ったダクロン(Dacron)製不織布(目付9
180g/m″)をガラス板上に固定した。次いで、該
不織布上にポリスルホンJ2.5wt%、メ手ルセルソ
ルプ12.5 wt% 、およυζ残部ジメチルホルム
アミドを含む溶液を厚さ約0.2μの層状にキャストし
、直ちにポリスルホン層を室温の水浴中にてゲル化させ
ることにより、不織布補強多孔性ポリスルホン膜をTO
た。   、1このようにして得られた多孔性ポリスル
ホンm ハ厚ミが約40〜70μであり、非対称構造を
有しており、かつ表面には約50〜600 Aの微孔が
多数存在することが電子顕截鏡写真九より観、察された
。またこれらの多孔性基材はJIS P 8117装置
による透気度が150〜300秒であった。
Reference Example 1 Densely woven Dacron nonwoven fabric (basis weight 9
180 g/m") was fixed on a glass plate. Next, a solution containing 2.5 wt% of polysulfone J, 12.5 wt% of Mete Roussel Solp, and the remainder dimethylformamide was spread on the nonwoven fabric to a thickness of about 0.2 μm. A non-woven reinforced porous polysulfone membrane is made of TO
Ta. , 1 The porous polysulfone m thus obtained has a thickness of about 40 to 70μ, has an asymmetric structure, and has many micropores of about 50 to 600 A on the surface. It was observed and inferred from the electron microscope photograph 9. Further, these porous substrates had an air permeability of 150 to 300 seconds using a JIS P 8117 device.

実施例1 下記式(1)および(2) CI(、(CI(、) CI(。Example 1 The following formulas (1) and (2) CI(, (CI(,) CI(.

s /\ CH,CH。s /\ CH, CH.

CH,CH,CH。CH, CH, CH.

のポリアミンを等モル混合し、この混合ポリアミン成分
の1.wt%のエチレングリフール溶液を調製L 、こ
の溶液忙参考例1で得られたポリスルホン微多孔膜を5
分間浸漬したのち、膜を該溶液より引きだし垂直にして
室温尤て10分田ドレインした。
1. of the mixed polyamine components are mixed in equimolar amounts. Prepare a wt% ethylene glycol solution, add 5% of the polysulfone microporous membrane obtained in Reference Example 1 to this solution.
After being immersed for a minute, the membrane was pulled out of the solution, held vertically, and drained for 10 minutes at room temperature.

つぎKこの膜を4.4−ジフエニルメクンジインシアネ
ートの1wt%のへキサデセン溶液に5分間浸漬したの
ち60分間液切りをし、さらに水中罠24時間つけて洗
浄したのち室温にて乾燥する。20℃において理化精機
工業■製21研式気体透過率測定器を用いて気体透過性
R目を測定したところ酸素透過速度は1.3XIQcc
/cI1. sec −cmHg、酸素と窒素の選択性
しま5.8であった。
Next, this membrane is immersed in a 1wt% hexadecene solution of 4.4-diphenylmecundi cyanate for 5 minutes, drained for 60 minutes, and then placed in an underwater trap for 24 hours for washing and then dried at room temperature. . When gas permeability R was measured at 20°C using a 21-ken type gas permeability meter manufactured by Rika Seiki Kogyo ■, the oxygen permeation rate was 1.3XIQcc.
/cI1. sec -cmHg, oxygen and nitrogen selectivity was 5.8.

実施例2〜6 表−1に記載したポリアミン成分とボIJイソシアナー
ト成分を用いて、実施例1と同木工の操作をして膜をつ
くった。その結果を表−1に示す。表中ポリアミン成分
およびポリイソシアネート成分。0内のモル数は、こf
)割合で混合し、その混合物を用いて溶液を調製したこ
とを意味する。
Examples 2 to 6 Membranes were produced using the polyamine components and BoIJ isocyanate components listed in Table 1 and carrying out the same woodworking operations as in Example 1. The results are shown in Table-1. Polyamine component and polyisocyanate component in the table. The number of moles within 0 is f
) ratio, and the mixture was used to prepare a solution.

]

Claims (1)

【特許請求の範囲】 1、下記式(Ilで表わされるポリアミン化合物(Il
及び下記式(mlで表わされるポリアミン化合物(IT
I とを、次式 ポリアミン化合物(I)+ポリアミン化合物(III 
    (モル比)の割合で含有したシルキサン含有ポ
リアミンから主としてなるポリアミン成分と、少くとも
2個のインシアネート基を有するポリイソシアネート成
分との反応により得られたシロキサン含有ポリ尿素から
実質的になる重合体から形成された選択透過性膜。 2、 該ポリアミン化合物(11が CHs  (Cr(t )   CHs12 X′ である特許請求の範囲第1項記載の選択透過性膜。 3、該ポリアミン化合物(Ilが CHs (CHt )s CH3 通 7N、 I(、CCH。 である特許請求の範囲第2項記載の選択透過性膜。
[Scope of Claims] 1. A polyamine compound (Il) represented by the following formula (Il)
and a polyamine compound (IT
I and the following formula polyamine compound (I) + polyamine compound (III
A polymer consisting essentially of a siloxane-containing polyurea obtained by reacting a polyamine component mainly consisting of a silxane-containing polyamine contained in a ratio of (molar ratio) with a polyisocyanate component having at least two incyanate groups. A selectively permeable membrane formed from. 2. The permselective membrane according to claim 1, wherein the polyamine compound (11 is CHs (Cr(t) CHs12 The permselective membrane according to claim 2, which is I(, CCH.
JP58081768A 1983-05-12 1983-05-12 Permselective membrane Pending JPS59209608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58081768A JPS59209608A (en) 1983-05-12 1983-05-12 Permselective membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58081768A JPS59209608A (en) 1983-05-12 1983-05-12 Permselective membrane

Publications (1)

Publication Number Publication Date
JPS59209608A true JPS59209608A (en) 1984-11-28

Family

ID=13755635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58081768A Pending JPS59209608A (en) 1983-05-12 1983-05-12 Permselective membrane

Country Status (1)

Country Link
JP (1) JPS59209608A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59209610A (en) * 1983-05-12 1984-11-28 Teijin Ltd Permselective membrane
JPS62106810A (en) * 1985-11-05 1987-05-18 Agency Of Ind Science & Technol Separating membrane for osmosis vaporization
JPS633029A (en) * 1986-06-20 1988-01-08 ミネソタ マイニング アンド マニユフアクチユアリング カンパニ− Organopolysiloxane polyurea block copolymer and manufacture
WO2003052021A1 (en) * 2001-12-18 2003-06-26 3M Innovative Properties Company Silicone priming compositions, articles and methods_____________
JP2010502630A (en) * 2006-08-31 2010-01-28 スリーエム イノベイティブ プロパティズ カンパニー Side chain fluorochemicals with crystallizable spacer groups
US8865249B2 (en) 2002-05-22 2014-10-21 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US8909314B2 (en) 2003-07-25 2014-12-09 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US8954128B2 (en) 2008-03-28 2015-02-10 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9173607B2 (en) 2008-03-28 2015-11-03 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9328371B2 (en) 2001-07-27 2016-05-03 Dexcom, Inc. Sensor head for use with implantable devices
US9339223B2 (en) 1997-03-04 2016-05-17 Dexcom, Inc. Device and method for determining analyte levels
US9339222B2 (en) 2008-09-19 2016-05-17 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US9439589B2 (en) 1997-03-04 2016-09-13 Dexcom, Inc. Device and method for determining analyte levels
US9549693B2 (en) 2002-05-22 2017-01-24 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US10300507B2 (en) 2005-05-05 2019-05-28 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US10376143B2 (en) 2003-07-25 2019-08-13 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US10791928B2 (en) 2007-05-18 2020-10-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949802A (en) * 1982-09-17 1984-03-22 Teijin Ltd Permselective membrane for separation of gas
JPS59120207A (en) * 1982-12-28 1984-07-11 Asahi Glass Co Ltd Crosslinked composite membrane
JPS59209610A (en) * 1983-05-12 1984-11-28 Teijin Ltd Permselective membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949802A (en) * 1982-09-17 1984-03-22 Teijin Ltd Permselective membrane for separation of gas
JPS59120207A (en) * 1982-12-28 1984-07-11 Asahi Glass Co Ltd Crosslinked composite membrane
JPS59209610A (en) * 1983-05-12 1984-11-28 Teijin Ltd Permselective membrane

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59209610A (en) * 1983-05-12 1984-11-28 Teijin Ltd Permselective membrane
JPS62106810A (en) * 1985-11-05 1987-05-18 Agency Of Ind Science & Technol Separating membrane for osmosis vaporization
JPH047257B2 (en) * 1985-11-05 1992-02-10 Kogyo Gijutsuin
JPS633029A (en) * 1986-06-20 1988-01-08 ミネソタ マイニング アンド マニユフアクチユアリング カンパニ− Organopolysiloxane polyurea block copolymer and manufacture
US9931067B2 (en) 1997-03-04 2018-04-03 Dexcom, Inc. Device and method for determining analyte levels
US9439589B2 (en) 1997-03-04 2016-09-13 Dexcom, Inc. Device and method for determining analyte levels
US9339223B2 (en) 1997-03-04 2016-05-17 Dexcom, Inc. Device and method for determining analyte levels
US9328371B2 (en) 2001-07-27 2016-05-03 Dexcom, Inc. Sensor head for use with implantable devices
US9804114B2 (en) 2001-07-27 2017-10-31 Dexcom, Inc. Sensor head for use with implantable devices
WO2003052021A1 (en) * 2001-12-18 2003-06-26 3M Innovative Properties Company Silicone priming compositions, articles and methods_____________
US7090922B2 (en) 2001-12-18 2006-08-15 3M Innovative Properties Company Silicone priming compositions, articles, and methods
US8865249B2 (en) 2002-05-22 2014-10-21 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US9549693B2 (en) 2002-05-22 2017-01-24 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US9179869B2 (en) 2002-05-22 2015-11-10 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US9801574B2 (en) 2002-05-22 2017-10-31 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US11020026B2 (en) 2002-05-22 2021-06-01 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US10052051B2 (en) 2002-05-22 2018-08-21 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US10154807B2 (en) 2002-05-22 2018-12-18 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8909314B2 (en) 2003-07-25 2014-12-09 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US9597027B2 (en) 2003-07-25 2017-03-21 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US10376143B2 (en) 2003-07-25 2019-08-13 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US10610140B2 (en) 2003-07-25 2020-04-07 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US9993186B2 (en) 2003-07-25 2018-06-12 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US10300507B2 (en) 2005-05-05 2019-05-28 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US8889230B2 (en) 2006-08-31 2014-11-18 3M Innovative Properties Company Side chain fluorochemicals with crystallizable spacer groups
JP2010502630A (en) * 2006-08-31 2010-01-28 スリーエム イノベイティブ プロパティズ カンパニー Side chain fluorochemicals with crystallizable spacer groups
US10791928B2 (en) 2007-05-18 2020-10-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US9566026B2 (en) 2008-03-28 2017-02-14 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9173607B2 (en) 2008-03-28 2015-11-03 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9693721B2 (en) 2008-03-28 2017-07-04 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US10143410B2 (en) 2008-03-28 2018-12-04 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9572523B2 (en) 2008-03-28 2017-02-21 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9549699B2 (en) 2008-03-28 2017-01-24 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11147483B2 (en) 2008-03-28 2021-10-19 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8954128B2 (en) 2008-03-28 2015-02-10 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9173606B2 (en) 2008-03-28 2015-11-03 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US10028683B2 (en) 2008-09-19 2018-07-24 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US10561352B2 (en) 2008-09-19 2020-02-18 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US9339222B2 (en) 2008-09-19 2016-05-17 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US10028684B2 (en) 2008-09-19 2018-07-24 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US11918354B2 (en) 2008-09-19 2024-03-05 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors

Similar Documents

Publication Publication Date Title
JPS59209608A (en) Permselective membrane
JPS59209610A (en) Permselective membrane
JPS59209609A (en) Permselective membrane
WO2015041250A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JPH04222832A (en) Polyimide and gas separation material made by using it
JP2016503448A (en) Blend polymer membrane for gas separation containing fluorinated ethylene-propylene polymer
JPS5949803A (en) Permselective membrane for separation of gas
US4710204A (en) Polyphosphazene gas separation membranes
JPS5959221A (en) Prearation of composite perrmeable membrane for separating gas
CA1294093C (en) Polyphosphazene fluid separation membranes
JPS6252602B2 (en)
JPH0696106B2 (en) Gas separation membrane
JPS6274406A (en) Separating membrane
JPH0230292B2 (en)
JPH022608B2 (en)
JPWO2017145728A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method and polyimide compound
KR101403345B1 (en) Reverse osmosis composite membrane for boron rejection and manufacturing method thereof
JPS58193703A (en) Manufacture of composite membrane having selective permeability for gas separation
JPS5949804A (en) Permselective membrane for separation of gas
JPH0224577B2 (en)
JPS5959222A (en) Preparation of composite permselective membrane
WO2019044215A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
JPS6274405A (en) Separating membrane
JPS5949808A (en) Production of selectively permeable composite membrane for separation of gas
JPS5949809A (en) Production of selectively permeable composite membrane for separation of gas