JPS59205786A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS59205786A
JPS59205786A JP8037783A JP8037783A JPS59205786A JP S59205786 A JPS59205786 A JP S59205786A JP 8037783 A JP8037783 A JP 8037783A JP 8037783 A JP8037783 A JP 8037783A JP S59205786 A JPS59205786 A JP S59205786A
Authority
JP
Japan
Prior art keywords
layer
semiconductor substrate
semiconductor
semiconductor laser
resonant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8037783A
Other languages
Japanese (ja)
Inventor
Kenichi Kasahara
健一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP8037783A priority Critical patent/JPS59205786A/en
Publication of JPS59205786A publication Critical patent/JPS59205786A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form a resonant surface without utilizing cleavage by forming a projecting section on a semiconductor substrate, shaping first and second clad layers on the projection section to form a projecting region and forming the resonant surface from the side surface of the projecting region. CONSTITUTION:A projecting section 12 in size corresponding to cavity length is formed to a semiconductor substrate 11. An N type Al0.27Ga0.73As first clad layer 14, a GaAs active layer 15, a P type Al0.27Ga0.73As second clad layer 16 and an N type GaAs contact layer 17 are grown on the projecting section 12. A SiO2 film 20 to which a window is bored in a striped shape is formed on the layer 17, and Zn is diffused through the window. A P side electrode 22 is prepared by using Ti/Pt/Au. An N side electrode 23 is prepared in such a manner that a semiconductor is removed through etching and exposed and AuGe-Ni/Au is used. Accordingly, a process in which a resonant surface is formed through cleavage is unnecessitated because the layer 15 functions as an active medium for a semiconductor laser and side surfaces 191, 192 as the resonant surfaces.

Description

【発明の詳細な説明】 本発明は共振面をへき開に依らずに形成する半導体レー
ザに関するものであり、他の光素子や電子素子と半導体
基板の上へモノリシックに集積化することが容易な半導
体レーザに関するものでちる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser in which a resonant surface is formed without relying on cleavage, and is a semiconductor laser that can be easily monolithically integrated with other optical devices or electronic devices onto a semiconductor substrate. Anything related to lasers.

半導体レーザの共振面は従来へき開を利用して作られて
いるが、製造工程の簡略化、及び歩留まシ向上の点から
へき開に依らずに共振面を形成することが望まれる。そ
の様にして作製される半導体レーザは光・電気複合素子
を実現する上で是非とも必要とされているものである。
Although the resonant surface of a semiconductor laser has conventionally been formed using cleavage, it is desirable to form the resonant surface without relying on cleavage in order to simplify the manufacturing process and improve yield. Semiconductor lasers manufactured in this manner are absolutely necessary for realizing optical/electrical composite devices.

光・電気複合素子とは同一半導体基板の上に元素子や電
子素子とをモノリシックに集積化することにより作製さ
れるものであシ、光通信や光情報処理をはじめとして今
後、広範囲な分野に応用が期待されている素子である。
Optical/electrical composite devices are manufactured by monolithically integrating elements and electronic devices on the same semiconductor substrate, and will be used in a wide range of fields in the future, including optical communications and optical information processing. This is a device that is expected to have many applications.

半導体レーザは光・電気複合素子に於ける一構成喪素と
して欠くことのできない光素子であるが半導体レーザと
他の光素子や電子素子とを同時に同一の半導体基板の上
に自由に製作することが可能となるにはへき開を必要と
せずに共振面が形成できる構造の半導体レーザが望まれ
るのである。
Semiconductor lasers are indispensable optical elements as one constituent element in optical/electrical composite devices, but it is possible to freely fabricate semiconductor lasers and other optical devices and electronic devices simultaneously on the same semiconductor substrate. In order to make this possible, a semiconductor laser with a structure in which a resonant surface can be formed without the need for cleavage is desired.

本発明は従来の半導体レーザの共振面がへき開によって
形成され、従ってそのために有する上記欠点を除去せん
がためになされたものであり、へき開を利用せずに共振
面を形成して製作することが可能な半導体レーザを実現
することを目的とする。本発明になる半導体レーザは、
半導体基板の上に前記半導体基板に対して垂直で且つ少
なくとも一対の対向面が平行な側部を有する凸部を形成
し、更に前記凸部の上に第1導電型を有する第1クラッ
ド層と活性層と前記第1導′亀型とは異なる第2導電型
を有する第2クラッド層とを順次形成して凸領域を形成
し、共振面が前記凸領域の側面から形成されて成ること
を特徴としている。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional semiconductor laser, in which the resonant surface is formed by cleavage. The aim is to realize a semiconductor laser that is possible. The semiconductor laser according to the present invention is
forming a convex portion on the semiconductor substrate, the convex portion having side portions perpendicular to the semiconductor substrate and having at least one pair of opposing surfaces parallel to each other, and further forming a first cladding layer having a first conductivity type on the convex portion An active layer and a second cladding layer having a second conductivity type different from the first conductivity type are sequentially formed to form a convex region, and a resonant surface is formed from a side surface of the convex region. It is a feature.

以下図面を用いて具体的に説明する。A detailed explanation will be given below using the drawings.

第1図は本発明に係わる半導体レーザの一実施例の製造
工程を示したものである。、υGaAs/QaAS半導
体レーザの製造例で半絶縁性のGaAs基板の上に製作
したものである。
FIG. 1 shows the manufacturing process of an embodiment of a semiconductor laser according to the present invention. This is an example of manufacturing a υGaAs/QaAS semiconductor laser, which was manufactured on a semi-insulating GaAs substrate.

$J1図のfatで示される様に先ず半絶縁GaASの
半導体基板11に共振器長に対応する長さ250μmで
高さ約41Imの凸部12を形成する。(alは共振器
長方向の断面図を示してあり図と実際の寸法とは必ずし
も一致していない。対向面131及び132は互いに平
行かつ半導体基板面に対して垂直になる様に形成する。
As shown by fat in the diagram $J1, first, a convex portion 12 having a length of 250 μm corresponding to the resonator length and a height of about 41 Im is formed on a semiconductor substrate 11 of semi-insulating GaAS. (al indicates a cross-sectional view in the longitudinal direction of the resonator, and the figure and the actual dimensions do not necessarily match. The opposing surfaces 131 and 132 are formed parallel to each other and perpendicular to the semiconductor substrate surface.

この様な形状の凸部12を形成するには反応性イオンエ
ツチングを用いる。この方法を用いれば半導体基板面に
垂直で渭らかな面の形成が可能である。次にtblで示
される様にMOCVD法(有機金属熱分解による化学的
気相成長法)を用いて凸部12の上に厚さ37zmでn
型Aノ0.27Ga0.73ASから成る包1クラッド
層14と厚さ0.1.ttmでQ a A Sから成る
活性層15と厚さ1μmでP型Aノ0.27 Ga0.
73ASから成る第2クラッド層16と更に厚さ1μm
でn型GaASから成るコンタクト層17金成長させる
Reactive ion etching is used to form the convex portion 12 having such a shape. Using this method, it is possible to form a smooth surface perpendicular to the surface of the semiconductor substrate. Next, as shown in tbl, a layer of n with a thickness of 37 zm is formed on the convex portion 12 using the MOCVD method (chemical vapor deposition method using metal organic pyrolysis).
A shell 1 cladding layer 14 of type A 0.27Ga0.73AS and a thickness 0.1. The active layer 15 is made of Q a A S with a thickness of 1 μm and a P type A of 0.27 Ga0.ttm.
A second cladding layer 16 made of 73AS and a further thickness of 1 μm
Then, a contact layer 17 made of n-type GaAS is grown.

MOCVD法を用いれば凸部12の頂部と対向面131
及び132の上にはほとんど同じ厚さで各半導体層が形
成されて凸領域18が形成される。凸領域18は凸部1
2の形状がそのまま保たれており、その側面191及び
192は凸部12の頂部に形成された活性層15に対し
垂直になっている。次に2μm巾でストライプ状に窓が
開いた5L02膜20をコンタクト層17の上に形成し
窓を通してZnを拡散させる。第1図(C1はZn拡敵
後の第1図(blの一点鎖線で示した部分の断面図であ
る。21はZnの拡散領域である。次に(dlに示され
る様にTil・/p t、 /A Mを用いてP側電極
22を作製する。第1図(dlも(C1と同様に第1図
(blの一点鎖線で示した部分の断面図でちる。n側電
極23は(dlで示した様に第1クラッド層14まで半
導体層エツチングによって除去して露出させ人uQe−
N i/Auを用いて作製する。凸部12の頂部に形成
された活性層15が半導体レーザの活性媒質となシ、側
面191及び192が共振面となるのでへき開によって
共振面を形成する工程は不要になる。本発明になる半導
体レーザの他の優れた特徴は従来の半導体レーザの様に
活性層15が空気中に露出していないことである。この
特徴は特に本実施例の様にAJGaAS/GaA!i混
品から成る半導体レーザの構造として有効である。活性
層15の端面が空気にさらされていないので酸化が防げ
、それによる劣化を受けにくくなυ、従来のAノG a
 A S /Ga A S 半導体レーザで必要とした
共振器端面のバッシベーシッンが不要になる。
If the MOCVD method is used, the top of the convex portion 12 and the opposing surface 131
and 132, each semiconductor layer is formed with almost the same thickness to form the convex region 18. The convex region 18 is the convex portion 1
2 is maintained as it is, and its side surfaces 191 and 192 are perpendicular to the active layer 15 formed on the top of the convex portion 12. Next, a 5L02 film 20 having stripe-shaped windows with a width of 2 μm is formed on the contact layer 17, and Zn is diffused through the windows. Figure 1 (C1 is a cross-sectional view of the part shown by the dashed line in Figure 1 (bl) after Zn expansion. 21 is the Zn diffusion region. Next, as shown in (dl), The P-side electrode 22 is manufactured using t, /A M. FIG. (As shown by dl, the first cladding layer 14 is removed and exposed by etching the semiconductor layer 14.
Manufactured using Ni/Au. Since the active layer 15 formed on the top of the convex portion 12 serves as the active medium of the semiconductor laser, and the side surfaces 191 and 192 serve as resonant surfaces, the step of forming a resonant surface by cleavage is unnecessary. Another excellent feature of the semiconductor laser of the present invention is that the active layer 15 is not exposed to the air unlike conventional semiconductor lasers. This feature is particularly important for AJGaAS/GaA! This is effective as a structure for a semiconductor laser made of mixed products. Since the end face of the active layer 15 is not exposed to air, oxidation can be prevented and it is less susceptible to deterioration due to υ, compared to conventional A-Ga.
Bassi basins on the cavity end faces, which are required in A S /Ga A S semiconductor lasers, become unnecessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(at〜(dlは本発明に係わる一実施例の製造
工程を示したものである。 11は半導体基板、12は、凸部、131及び132は
対向面、14は第1クラッド層、15は活性層、16は
第2り2ラド層、17はコンタクト層、18は凸領域、
191及び192は側面、20は5102膜、21は拡
散領域、22はP側電極、23はn側電極である。
FIG. 1 (at to (dl) shows the manufacturing process of an embodiment according to the present invention. 11 is a semiconductor substrate, 12 is a convex portion, 131 and 132 are opposing surfaces, and 14 is a first cladding layer. , 15 is an active layer, 16 is a second layer, 17 is a contact layer, 18 is a convex region,
191 and 192 are side surfaces, 20 is a 5102 film, 21 is a diffusion region, 22 is a P-side electrode, and 23 is an n-side electrode.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の上に前記半導体基板表面に対して垂直で且
つ互いに平行な一対の側部対向面を有する凸部を形成し
、更に前記凸部を形成した半導体基板上に前記凸部形状
を保持するようにして第1導電型を有する第1クラッド
層と活性層と前記第1導電型とは異なる第2導電型を有
する第2クラッド層とを順次形成して凸領域を形成し、
共振面が前記凸領域の側面で形成されて成ることを特徴
とする半導体レーザ。
forming a convex portion on a semiconductor substrate having a pair of opposing side surfaces perpendicular to the surface of the semiconductor substrate and parallel to each other; and further maintaining the shape of the convex portion on the semiconductor substrate on which the convex portion is formed. forming a convex region by sequentially forming a first cladding layer having a first conductivity type, an active layer, and a second cladding layer having a second conductivity type different from the first conductivity type;
A semiconductor laser characterized in that a resonant surface is formed by a side surface of the convex region.
JP8037783A 1983-05-09 1983-05-09 Semiconductor laser Pending JPS59205786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8037783A JPS59205786A (en) 1983-05-09 1983-05-09 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8037783A JPS59205786A (en) 1983-05-09 1983-05-09 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS59205786A true JPS59205786A (en) 1984-11-21

Family

ID=13716586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8037783A Pending JPS59205786A (en) 1983-05-09 1983-05-09 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS59205786A (en)

Similar Documents

Publication Publication Date Title
JPS62257783A (en) Semiconductor laser element
JPH05327112A (en) Manufacture of semiconductor laser
JP3246207B2 (en) Manufacturing method of semiconductor laser
JPS59205786A (en) Semiconductor laser
JP2546150B2 (en) Three-dimensional cavity surface emitting laser
JPS61265888A (en) Manufacture of semiconductor laser
JP2687495B2 (en) Manufacturing method of semiconductor laser
JPH0511677B2 (en)
JP2833962B2 (en) Semiconductor laser and its manufacturing method
JP2626570B2 (en) Method for manufacturing semiconductor laser device
JPS5856992B2 (en) semiconductor laser equipment
JPS6390879A (en) Manufacture of semiconductor laser
JPH0282678A (en) Manufacture of semiconductor light emitting device
JP2005123416A (en) Surface emitting laser element and manufacturing method thereof, and surface emitting laser array and optical transmission system
JPS62213288A (en) Semiconductor laser device
JP4024319B2 (en) Semiconductor light emitting device
JPS62285486A (en) Semiconductor laser
JPH06318760A (en) Surface light emission laser and manufacture thereof
JPH02240988A (en) Semiconductor laser
JPS5834988A (en) Manufacture of semiconductor laser
JPH03288489A (en) Distribution feedback semiconductor laser device
JPH0582901A (en) Fabrication of semiconductor laser device
JP2000101189A (en) Manufacture of semiconductor laser element
JPH02122585A (en) Manufacture of semiconductor laser
JPH02199892A (en) Manufacture of semiconductor laser