JPH05327112A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH05327112A
JPH05327112A JP12730592A JP12730592A JPH05327112A JP H05327112 A JPH05327112 A JP H05327112A JP 12730592 A JP12730592 A JP 12730592A JP 12730592 A JP12730592 A JP 12730592A JP H05327112 A JPH05327112 A JP H05327112A
Authority
JP
Japan
Prior art keywords
semiconductor laser
active layer
resonator
mask
length direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12730592A
Other languages
Japanese (ja)
Inventor
Koji Tominaga
浩司 冨永
Hiroshi Tsuchiya
博 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP12730592A priority Critical patent/JPH05327112A/en
Publication of JPH05327112A publication Critical patent/JPH05327112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To manufacture a semiconductor laser of high output structure wherein the thickness of an active layer changes in the resonator length direction, by using an MOCVD method. CONSTITUTION:When a ridge type multilayered crystal film turning to an optical waveguide is formed on an InP substrate 1 by using an MOCVD method, a pair of masks 2, 2 for selective growth are formed on both sides of a region where the multi-layered polycrystalline film is formed on the InP substrate 1. The width of the mask 2 is changed in the resonator length direction. Narrow width parts 22 are formed in the vicinity of the resonator end surface. Wide width parts 21 are formed in the central part of the resonator. Thereby a thin active layer is grown on the narrow width part 22, and a thick active layer is grown on the wide width part 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、MOCVD(有機金属
気相成長)法を用いた半導体レーザの製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor laser using MOCVD (metal organic chemical vapor deposition).

【0002】[0002]

【従来の技術】近年、レーザディスクプレーヤ等の光情
報処理装置の小形化、高性能化のために、光源となる半
導体レーザの高出力化が要求されている。
2. Description of the Related Art In recent years, in order to reduce the size and improve the performance of optical information processing devices such as laser disk players, there has been a demand for higher output of semiconductor lasers as light sources.

【0003】半導体レーザの高出力化を図るには、共振
器端面がレーザ光によって熱的に破壊される光出力レベ
ル、即ち瞬時光学的損傷(COD;Catastrophic Optica
l Damage)の向上が必要である。CODレベルの向上に
は、共振器端面における発光面積の拡大による光密度の
低減が有効である。
In order to increase the output of a semiconductor laser, the optical output level at which the cavity facets are thermally destroyed by the laser light, that is, instantaneous optical damage (COD; Catastrophic Optica).
l Damage) needs to be improved. In order to improve the COD level, it is effective to reduce the light density by increasing the light emitting area on the end face of the resonator.

【0004】そこで、発光面積の拡大のために、活性層
を薄膜化することが行なわれる。即ち、活性層の薄膜化
によって光のしみだしを増大させて、光のスポット径を
拡大し、光密度を低減せしめるのである。
Therefore, in order to increase the light emitting area, the active layer is thinned. That is, the thinning of the active layer increases the seepage of light, enlarges the spot diameter of light, and reduces the light density.

【0005】しかしながら、共振器長全体に亘って活性
層を薄く形成すると、閾値電流の上昇を招くため、図8
に示す如く、多層結晶膜を構成する活性層(93)を、端面
近傍部(95)でのみ薄膜化した半導体レーザが提案されて
いる(IEEE OF JOURNAL OF QUANTUM ELECTRONICS,VOL.QE
-23,No.6,JUNE 1987)。
However, when the active layer is thinly formed over the entire cavity length, the threshold current is increased, and therefore, FIG.
As shown in, a semiconductor laser is proposed in which the active layer (93) forming the multilayer crystal film is thinned only near the end face (95) (IEEE OF JOURNAL OF QUANTUM ELECTRONICS, VOL.QE.
-23, No. 6, JUNE 1987).

【0006】該半導体レーザは、図示の如くp-GaAs基板
(9)上に、LPE(液相成長)法を用いて、n-GaAs電流阻
止層(91)、p-AlGaAsクラッド層(92)、p-AlGaAs活性層(9
3)、n-AlGaAsクラッド層(96)、及びn-GaAsキャップ層(9
7)を成長せしめて作製される。
The semiconductor laser is a p-GaAs substrate as shown in the figure.
On the (9), an n-GaAs current blocking layer (91), a p-AlGaAs clad layer (92), a p-AlGaAs active layer (9
3), n-AlGaAs cladding layer (96), and n-GaAs cap layer (9
It is made by growing 7).

【0007】ここでは、LPE法の特徴の一つである異
方成長を利用するために、図9に示す如くp-GaAs基板
(9)の表面には、端面近傍の細幅部(99)(99)及び共振器
中央部の太幅部(98)からなる凸条(90)を加工して、該凹
凸面に対して通常のLPE成長を行なう。
Here, in order to utilize anisotropic growth, which is one of the characteristics of the LPE method, as shown in FIG. 9, a p-GaAs substrate is used.
On the surface of (9), a ridge (90) consisting of a narrow width portion (99) (99) near the end face and a wide width portion (98) at the center of the resonator is processed, and with respect to the uneven surface Perform normal LPE growth.

【0008】この場合、結晶の成長速度は、凸条(90)上
部で遅く、凸条(90)以外の平坦部で速くなると共に、凸
条(90)上の細幅部(99)では遅く、太幅部(98)上では速く
なる。従って、成長後のp-AlGaAs活性層(93)の膜厚は、
光導波路において、端面近傍部(95)では薄く、共振器中
央部(94)では厚くなる。
In this case, the growth rate of the crystal is slow at the upper portion of the ridge (90), becomes faster at the flat portion other than the ridge (90), and is slow at the narrow portion (99) on the ridge (90). , It becomes faster on the wide part (98). Therefore, the film thickness of the p-AlGaAs active layer (93) after growth is
In the optical waveguide, it is thin near the end face (95) and thick at the resonator center (94).

【0009】[0009]

【発明が解決しようとする課題】ところで、MOCVD
法は、薄膜成長の制御性、均一性に優れるため、半導体
レーザ素子の製造への応用が期待されている。ところ
が、これまでのMOCVD法による結晶成長では、前述
の如く共振器長方向に厚さが変化する活性層を形成する
ことが出来ず、半導体レーザの高出力化が困難である問
題があった。
By the way, MOCVD
Since the method has excellent controllability and uniformity of thin film growth, it is expected to be applied to the manufacture of semiconductor laser devices. However, in the crystal growth by the MOCVD method up to now, as described above, the active layer whose thickness changes in the cavity length direction cannot be formed, and there is a problem that it is difficult to increase the output of the semiconductor laser.

【0010】本発明の目的は、MOCVD法を用いて前
述の如き高出力構造が得られる半導体レーザの製造方法
を提供することである。
It is an object of the present invention to provide a method of manufacturing a semiconductor laser which can obtain the above-mentioned high output structure by using MOCVD.

【0011】[0011]

【課題を解決する為の手段】本発明に係る半導体レーザ
の製造方法においては、半導体基板上に、MOCVD法
によって、光導波路となるリッジ状の多層結晶膜を形成
する際、半導体基板上には、図1に示す如く、前記多層
結晶膜が形成されるべき領域を挟んで両側に、選択成長
のための一対のマスク(2)(2)を設ける。ここで、各マ
スク(2)の幅は、共振器長方向に変化して、共振器端面
の近傍部では細幅に、共振器中央部では太幅に形成す
る。
In the method of manufacturing a semiconductor laser according to the present invention, when a ridge-shaped multilayer crystal film to be an optical waveguide is formed on a semiconductor substrate by MOCVD, As shown in FIG. 1, a pair of masks (2) and (2) for selective growth are provided on both sides of the region where the multilayer crystal film is to be formed, sandwiching the region. Here, the width of each mask (2) changes in the cavity length direction, and is formed to be thin in the vicinity of the resonator end face and thick in the center of the resonator.

【0012】尚、マスク(2)の材質としては一般的には
SiO2が用いられ、その他にはSi34等が使用可能で
ある。
As the material of the mask (2), SiO 2 is generally used, and other materials such as Si 3 N 4 can be used.

【0013】[0013]

【作用】図1の如く結晶器長方向に幅が変化する一対の
マスク(2)(2)を有する基板上に、MOCVD法による
結晶成長を行なった場合、マスク(2)で覆われた領域に
結晶は成長せず、基板が露出した領域のみに結晶が成長
する、所謂選択成長が行なわれる。
When a crystal is grown by MOCVD on a substrate having a pair of masks (2) and (2) whose widths change in the crystal length direction as shown in FIG. 1, a region covered with the mask (2) is formed. In the so-called selective growth, the crystal does not grow and the crystal grows only in the region where the substrate is exposed.

【0014】又、濃度勾配によってマスク上の気相中か
ら拡散してくる原料種の量が、マスク幅に応じて変化す
るため、図7に示す様に、マスクの幅によって成長膜の
厚さが変化し、マスク幅が広い程、両マスクに挟まれた
選択成長領域の膜厚が増大する(1991年電子情報通信学
会秋期大会予稿C−131参照)。尚、図7の縦軸は、
マスクを形成しない場合の成長膜の厚さを基準とする膜
厚の比である。
Further, since the amount of the raw material species diffused from the vapor phase on the mask changes depending on the mask width due to the concentration gradient, as shown in FIG. 7, the thickness of the growth film depends on the mask width. Changes, and the wider the mask width, the larger the film thickness of the selective growth region sandwiched between the two masks (see 1991 IEICE Fall Conference Preliminary Report C-131). The vertical axis of FIG. 7 is
It is the ratio of the film thickness based on the thickness of the grown film when the mask is not formed.

【0015】従って、図1に示す基板上にMOCVD法
による結晶成長を行なった場合、両マスク(2)(2)間に
おける選択成長後の結晶膜(活性層)の厚さは、共振器端
面の近傍部で小さく、共振器中央部で大きくなる。
Therefore, when the crystal growth by the MOCVD method is performed on the substrate shown in FIG. 1, the thickness of the crystal film (active layer) after the selective growth between both masks (2) and (2) is equal to the cavity end face. Is small in the vicinity of and is large in the center of the resonator.

【0016】[0016]

【発明の効果】本発明に係る半導体レーザの製造方法に
よれば、共振器端面の近傍部のみにおいて活性層の薄膜
化が可能であるので、閾値電流を上げることなく、共振
器端面でのスポット径の拡大によって高出力化が実現さ
れる。
According to the method of manufacturing a semiconductor laser of the present invention, the active layer can be thinned only in the vicinity of the cavity facet, so that the spot on the cavity facet is increased without increasing the threshold current. Higher output is realized by increasing the diameter.

【0017】[0017]

【実施例】図6は、本発明の製造方法によって作製した
半導体レーザを示している。InP基板(1)上には、n-InP
クラッド層(3)、InGaAsP活性層(4)及びp-InPクラッド
層(5)からなる多層結晶膜(30)が形成されており、該多
層結晶膜(30)を挟んで上下に電極(8)(81)が配置されて
いる。
EXAMPLE FIG. 6 shows a semiconductor laser manufactured by the manufacturing method of the present invention. N-InP on the InP substrate (1)
A multi-layer crystal film (30) composed of a clad layer (3), an InGaAsP active layer (4) and a p-InP clad layer (5) is formed, and electrodes (8) are arranged above and below the multi-layer crystal film (30). ) (81) is located.

【0018】以下、上記半導体レーザの製造方法につ
き、図面に沿って具体的に説明する。先ず、図1に示す
InP基板(1)の全面に、CVD法或いは電子ビーム蒸着
法等によって、SiO2膜を一定厚さ(例えば2000オ
ングストローム)に成長させた後、フォトリソグラフィ
によるパターニングを施して、共振器長方向に幅が変化
する左右一対のマスク(2)(2)に整形する。
The method of manufacturing the semiconductor laser will be described below in detail with reference to the drawings. First, as shown in FIG.
A SiO 2 film is grown on the entire surface of the InP substrate (1) by a CVD method, an electron beam evaporation method, or the like to a constant thickness (for example, 2000 angstroms), and then patterned by photolithography in the cavity length direction. The mask is shaped into a pair of left and right masks (2) and (2) whose widths change.

【0019】各マスク(2)は、共振器の端面近傍部に細
幅部(22)(22)、共振器中央部に太幅部(21)を形成したも
ので、両マスク(2)(2)の間隔aは一定値(例えば4μ
m)に設定されている。又、SiO2マスク(2)の各細幅部(2
2)の幅bは4μm、共振器長方向の長さeは30μmに形
成されると共に、太幅部(21)の幅cは8μm、共振器長
方向の長さdは440μmに形成される。
Each mask (2) has a narrow width portion (22) (22) formed near the end face of the resonator and a wide width portion (21) formed at the center of the resonator. The interval a of 2) is a constant value (for example, 4μ
m) is set. Further, SiO 2 each narrow width portion of the mask (2) (2
The width b of 2) is 4 μm, the length e in the cavity length direction is 30 μm, the width c of the wide width portion (21) is 8 μm, and the length d in the cavity length direction is 440 μm. ..

【0020】次に、図2(a)(b)に示す如くMOCVD
法によってリッジ状光導波路となる多層結晶膜(30)を
成長せしめる。この際、SiO2マスク(2)によって覆われ
た領域では結晶は成長せず、InP基板(1)が露出した領
域のみに選択成長が行なわれる。
Next, as shown in FIGS. 2A and 2B, MOCVD is performed.
A multi-layer crystal film (30) to be a ridge-shaped optical waveguide is grown by the method. At this time, crystals do not grow in the region covered with the SiO 2 mask (2), and selective growth is performed only in the region where the InP substrate (1) is exposed.

【0021】尚、MOCVD法による結晶成長に際して
は、成長温度が600℃、圧力が40torrに設定され、原料
としてAsH3、PH3、TEIn、TEGaが用いられ
る。
During the crystal growth by the MOCVD method, the growth temperature is set to 600 ° C. and the pressure is set to 40 torr, and AsH 3 , PH 3 , TEIn and TEGa are used as raw materials.

【0022】この結果、図3に示す如くInP基板(1)上
には前記多層結晶膜(30)として、n-InPクラッド層
(3)、InGaAsP活性層(4)、p-InPクラッド層(5)及びp-
InGaAsPコンタクト層(6)が形成される。
As a result, as shown in FIG. 3, an n-InP clad layer was formed on the InP substrate (1) as the multilayer crystal film (30).
(3), InGaAsP active layer (4), p-InP clad layer (5) and p-
An InGaAsP contact layer (6) is formed.

【0023】前述の如く各結晶層の成長速度は、共振器
端面の近傍部では遅く、共振器中央部では速いから、図
5に示す如く、成長後の端面近傍部におけるn-InPクラ
ッド層(3)の膜厚jは0.72μm、InGaAsP活性層(4)
の膜厚kは0.09μm、p-InPクラッド層(5)の膜厚l
は0.9μm、p-InGaAsPコンタクト層(6)の膜厚mは0.
9μmとなる。
As described above, the growth rate of each crystal layer is slow in the vicinity of the end face of the resonator and fast in the center of the resonator. Therefore, as shown in FIG. 5, the n-InP clad layer ( The thickness j of 3) is 0.72 μm, and the InGaAsP active layer (4)
Has a thickness k of 0.09 μm, and the p-InP clad layer (5) has a thickness l
Is 0.9 μm, and the film thickness m of the p-InGaAsP contact layer (6) is 0.9 μm.
It becomes 9 μm.

【0024】一方、共振器中央部では、図4に示す如く
n-InPクラッド層(3)の膜厚fは0.8μm、InGaAsP活性
層(4)の膜厚gは0.1μm、p-InPクラッド層(5)の膜
厚hは1μm、p-InGaAsPコンタクト層(6)の膜厚iは1
μmとなる。
On the other hand, in the central part of the resonator, as shown in FIG.
The film thickness f of the n-InP clad layer (3) is 0.8 μm, the film thickness g of the InGaAsP active layer (4) is 0.1 μm, the film thickness h of the p-InP clad layer (5) is 1 μm, and p-InGaAsP The film thickness i of the contact layer (6) is 1
It becomes μm.

【0025】最後に、図6の如く多層結晶膜(30)の上面
を除く表面領域に絶縁層(7)を形成すると共に、多層結
晶膜(30)を挟んで上下両面に、電極(8)(81)を形成し
て、高出力構造の半導体レーザを完成する。
Finally, as shown in FIG. 6, an insulating layer (7) is formed on the surface region of the multilayer crystal film (30) excluding the upper surface, and the electrodes (8) are formed on the upper and lower surfaces with the multilayer crystal film (30) interposed therebetween. (81) is formed to complete the semiconductor laser having a high output structure.

【0026】上記半導体レーザの製造方法によれば、結
晶成長にMOCVD法を用いる場合にも、活性層の膜厚
を共振器長方向に変化させた高出力構造を容易に形成す
ることが出来る。
According to the method for manufacturing a semiconductor laser described above, even when the MOCVD method is used for crystal growth, it is possible to easily form a high output structure in which the thickness of the active layer is changed in the cavity length direction.

【0027】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能であることは
勿論である。
The above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or limiting the scope. The configuration of each part of the present invention is not limited to the above embodiment, and it is needless to say that various modifications can be made within the technical scope described in the claims.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体レーザの製造方法における
マスク形成工程を示す斜視図である。
FIG. 1 is a perspective view showing a mask forming step in a method for manufacturing a semiconductor laser according to the present invention.

【図2】MOCVD法による多層結晶膜の成長工程を示
す断面図である。
FIG. 2 is a cross-sectional view showing a step of growing a multilayer crystal film by MOCVD.

【図3】基板上の多層結晶膜を示す斜視図である。FIG. 3 is a perspective view showing a multilayer crystal film on a substrate.

【図4】図3A−A線に沿う拡大断面図である。FIG. 4 is an enlarged sectional view taken along the line AA of FIG.

【図5】図3B−B線に沿う拡大断面図である。FIG. 5 is an enlarged cross-sectional view taken along the line BB of FIG.

【図6】絶縁層及び電極形成工程を示す斜視図である。FIG. 6 is a perspective view showing an insulating layer and electrode forming step.

【図7】マスクの幅と膜厚の関係を示すグラフである。FIG. 7 is a graph showing the relationship between mask width and film thickness.

【図8】従来の半導体レーザの共振器長方向に沿う断面
を示す斜視図である。
FIG. 8 is a perspective view showing a cross section along a cavity length direction of a conventional semiconductor laser.

【図9】従来のLPE法による半導体レーザの製造方法
に用いる基板の平面及び断面形状を示す図である。
FIG. 9 is a diagram showing a plane and a sectional shape of a substrate used in a conventional semiconductor laser manufacturing method by the LPE method.

【符号の説明】[Explanation of symbols]

(1) InP基板 (2) SiO2マスク (21) 太幅部 (22) 細幅部 (30) 多層結晶膜 (3) n-InPクラッド層 (4) InGaAsP活性層 (5) p-InPクラッド層 (6) p-InGaAsPコンタクト層(1) InP substrate (2) SiO 2 mask (21) Wide part (22) Narrow part (30) Multilayer crystal film (3) n-InP clad layer (4) InGaAsP active layer (5) p-InP clad Layer (6) p-InGaAsP contact layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に、有機金属気相成長法に
よって、光導波路となるリッジ状の多層結晶膜を形成す
る半導体レーザの製造方法において、有機金属気相成長
法による結晶成長に際して、半導体基板上には、前記多
層結晶膜が形成されるべき領域を挟んで両側に、選択成
長のための一対のマスク(2)(2)を設け、各マスク(2)
の幅は、共振器長方向に変化して、共振器端面の近傍部
では細幅に、共振器中央部では太幅に形成することを特
徴とする半導体レーザの製造方法。
1. A method of manufacturing a semiconductor laser in which a ridge-shaped multi-layer crystal film to be an optical waveguide is formed on a semiconductor substrate by a metal organic chemical vapor deposition method, the method comprising: A pair of masks (2) (2) for selective growth are provided on both sides of the substrate on both sides of the region where the multilayer crystal film is to be formed, and each mask (2)
Is changed in the cavity length direction to form a thin width in the vicinity of the end face of the cavity and a wide width in the center of the cavity.
JP12730592A 1992-05-20 1992-05-20 Manufacture of semiconductor laser Pending JPH05327112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12730592A JPH05327112A (en) 1992-05-20 1992-05-20 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12730592A JPH05327112A (en) 1992-05-20 1992-05-20 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH05327112A true JPH05327112A (en) 1993-12-10

Family

ID=14956667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12730592A Pending JPH05327112A (en) 1992-05-20 1992-05-20 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH05327112A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226566A (en) * 1994-02-10 1995-08-22 Nec Corp Quantum well semiconductor laser and its manufacture
JPH08236856A (en) * 1995-02-22 1996-09-13 Nec Corp Manufacture of optical semiconductor element
US5580818A (en) * 1994-04-28 1996-12-03 Nec Corporation Fabrication process for semiconductor optical device
JPH0946002A (en) * 1995-07-28 1997-02-14 Nec Corp Semiconductor optical element and its manufacture
US5614436A (en) * 1992-12-22 1997-03-25 Nec Corporation Multiple quantum well distributed feedback semiconductor laser device and method for fabricating the same
US5770466A (en) * 1993-01-07 1998-06-23 Nec Corporation Semiconductor optical integrated circuits and method for fabricating the same
EP1198042A2 (en) * 2000-10-12 2002-04-17 Fuji Photo Film Co., Ltd. Semiconductor laser device with a current non-injection region near a resonator end face, and fabrication method thereof
WO2009141933A1 (en) * 2008-05-19 2009-11-26 パナソニック株式会社 Nitride semiconductor laser
JP2010267871A (en) * 2009-05-15 2010-11-25 Sony Corp Semiconductor laser, and method of manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614436A (en) * 1992-12-22 1997-03-25 Nec Corporation Multiple quantum well distributed feedback semiconductor laser device and method for fabricating the same
US5770466A (en) * 1993-01-07 1998-06-23 Nec Corporation Semiconductor optical integrated circuits and method for fabricating the same
JPH07226566A (en) * 1994-02-10 1995-08-22 Nec Corp Quantum well semiconductor laser and its manufacture
US5580818A (en) * 1994-04-28 1996-12-03 Nec Corporation Fabrication process for semiconductor optical device
JPH08236856A (en) * 1995-02-22 1996-09-13 Nec Corp Manufacture of optical semiconductor element
JPH0946002A (en) * 1995-07-28 1997-02-14 Nec Corp Semiconductor optical element and its manufacture
EP1198042A2 (en) * 2000-10-12 2002-04-17 Fuji Photo Film Co., Ltd. Semiconductor laser device with a current non-injection region near a resonator end face, and fabrication method thereof
EP1198042A3 (en) * 2000-10-12 2004-04-28 Fuji Photo Film Co., Ltd. Semiconductor laser device with a current non-injection region near a resonator end face, and fabrication method thereof
US6888866B2 (en) 2000-10-12 2005-05-03 Fuji Photo Film Co., Ltd. Semiconductor laser device with a current non-injection region near a resonator end face, and fabrication method thereof
WO2009141933A1 (en) * 2008-05-19 2009-11-26 パナソニック株式会社 Nitride semiconductor laser
JP2009283512A (en) * 2008-05-19 2009-12-03 Panasonic Corp Nitride semiconductor laser
JP2010267871A (en) * 2009-05-15 2010-11-25 Sony Corp Semiconductor laser, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH05327112A (en) Manufacture of semiconductor laser
US5524017A (en) Quantum well semiconductor laser
JP3857141B2 (en) Optical semiconductor device and manufacturing method thereof
JPH0552676B2 (en)
US5360763A (en) Method for fabricating an optical semiconductor device
JPH03238813A (en) Epitaxial growth method
JP3190665B2 (en) Semiconductor laser
JP2973215B2 (en) Semiconductor laser device
KR100236003B1 (en) Semiconductor laser diode and its manufacturing method
JPH05145182A (en) Manufacture of semiconductor laser device with end plane window construction
JPH0831652B2 (en) Semiconductor laser
JPS5834988A (en) Manufacture of semiconductor laser
JPH01215087A (en) Semiconductor light emitting device
JPH1140885A (en) Semiconductor laser device
JPH06112586A (en) Semiconductor laser diode
JPH0228985A (en) Semiconductor laser and manufacture thereof
JPH02240988A (en) Semiconductor laser
JPH0818157A (en) Semiconductor laser and fabrication thereof
JPS60201684A (en) Semiconductor laser device and manufacture thereof
JPH09307185A (en) Method for manufacturing semiconductor laser element
JPH04163982A (en) Semiconductor laser and manufacture thereof
JPH0728096B2 (en) Semiconductor laser
JPS58110086A (en) Semiconductor laser and manufacture thereof
JPH08288583A (en) Semiconductor optical element and fabrication thereof
JPH0231481A (en) Manufacture of buried type semiconductor laser

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001024