JPH0282678A - Manufacture of semiconductor light emitting device - Google Patents

Manufacture of semiconductor light emitting device

Info

Publication number
JPH0282678A
JPH0282678A JP23372588A JP23372588A JPH0282678A JP H0282678 A JPH0282678 A JP H0282678A JP 23372588 A JP23372588 A JP 23372588A JP 23372588 A JP23372588 A JP 23372588A JP H0282678 A JPH0282678 A JP H0282678A
Authority
JP
Japan
Prior art keywords
layer
gaas
ingap
compound semiconductor
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23372588A
Other languages
Japanese (ja)
Inventor
Toshiyuki Tanahashi
俊之 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23372588A priority Critical patent/JPH0282678A/en
Publication of JPH0282678A publication Critical patent/JPH0282678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable the regrowth without exposing a layer containing a comparatively large amount of Al and moreover to enable the operation by the same operation principle as that of SAS lasers, by forming a conductivity-type, second clad layer made of a compound semiconductor containing Al inside a stripe groove and an antiwaveguide layer. CONSTITUTION:A semiconductor laser consists of an n<+>-GaAs substrate 11, an n<+>-GaAs buffer layer 12, an n<+>-AlGaInP clad layer 13, an undoped InGaP layer 14, the first p-AlGaInP clad layer 15, a p-InGaP cap layer 16, a GaAs etching stop layer 17, an n-InGaP antiwaveguide layer 18, the second p-AlGaInP clad layer 21, and a p<+>-GaAs layer 22. That is, the InGaP cap layer 16 with a very thin thickness of 0.01-0.03mum or so, for example, and GaAs etching-stop layer 17 with a thickness of 0.04-0.06mum or so have been provided between the first p-AlGaInP clad layer 15 and the n-InGaP antiwavelength layer 18. And, the first p-AlGaInP clad layer 15 containing a comparatively large amount of Al is formed in a state of not being exposed to the surface through the regrowing process. This makes it possible to obtain semiconductor lasers which operate by a similar operation principle to that of SAS lasers.

Description

【発明の詳細な説明】 〔概 要〕 半導体発光装置の製造方法に゛係り、特にしきい値電流
が低く、横モードが制御されたへβGa1nP系の可視
域の半導体発光装置の製造方法に関し、Alを比較的多
く含有する層が露出せず、再成長可能な構造でしかもS
ASレーザと同等の動作原理で動作可能な半導体発光装
置が得られる製造方法を提供することを目的とし、 活性層が形成された基板上にA1を含有する化合物半導
体よりなる一導電型の第1クラッド層と、該第1クラッ
ド層よりAlの含有量が少ないかもしくはA1を含有し
ない化合物半導体よりなるキャップ層、該キャップ層と
は異なる組成の化合物半導体よりなるエツチングストッ
プ層、該エツチングストップ層とは異なる組成であって
前記第1クラッド層よりAlの含有量が少ないかもしく
はANを含有しない化合物半導体よりなり、且つ該キャ
ップ層より厚い反導波層を順に成長し、前記反導波層を
部分的にストライプ状にエツチング除去してエツチング
ストップ層を露出させ、前記エツチングストップ層を該
反導波層をマスクに用いてエツチング除去してキャップ
層を露出させてストライプ溝を形成し、 前記ストライプ溝内部及び該反導波層上にAIを含有す
る化合物半導体よりなる一導電型の第2クラッド層を形
成してなることを構成とする。
[Detailed Description of the Invention] [Summary] This invention relates to a method of manufacturing a semiconductor light emitting device, and particularly to a method of manufacturing a βGa1nP visible range semiconductor light emitting device with a low threshold current and controlled transverse mode. The layer containing a relatively large amount of Al is not exposed and has a structure that can be regrown.
The purpose of the present invention is to provide a manufacturing method for obtaining a semiconductor light emitting device that can operate on the same operating principle as an AS laser. A cladding layer, a cap layer made of a compound semiconductor with a lower Al content than the first cladding layer or containing no Al, an etching stop layer made of a compound semiconductor having a composition different from that of the cap layer, and the etching stop layer. The anti-waveguide layer is made of a compound semiconductor having a different composition and has a lower Al content or does not contain AN than the first cladding layer, and is thicker than the cap layer, and the anti-waveguide layer is The etching stop layer is partially etched away in a stripe form to expose the etching stop layer, the etching stop layer is etched away using the anti-waveguide layer as a mask to expose the cap layer to form a stripe groove, and the stripe is etched away to expose the cap layer. A second cladding layer of one conductivity type made of a compound semiconductor containing AI is formed inside the groove and on the anti-waveguide layer.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体発光装置の製造方法に係り、特にしきい
値電流が低く、横モーIが制御されたA I2 Ga1
nP系の可視域の半導体発光装置の製造方法に関する。
The present invention relates to a method of manufacturing a semiconductor light emitting device, and particularly relates to a method of manufacturing a semiconductor light emitting device, and in particular, a semiconductor light emitting device having a low threshold current and a controlled transverse motion I.
The present invention relates to a method of manufacturing an nP-based visible range semiconductor light emitting device.

近年光デイスク用の光源として、従来の^i! GaA
s系の700nm帯の発振波長の半導体レーザに代わっ
てより高記録密度化可能なへβGa1nP系の600n
m帯の発振波長を有する半導体レーザが要望されている
In recent years, the conventional ^i! light source for optical disks has become popular. GaA
βGa1nP-based 600n which enables higher recording density in place of s-based semiconductor laser with an oscillation wavelength in the 700nm band
There is a demand for a semiconductor laser having an oscillation wavelength in the m band.

〔従来の技術〕[Conventional technology]

A ll Ga1nP系の半導体レーザの構造として;
InGaAsP系の半導体レーザにおいて横モード制御
及び低しきい値電流が実現されたS A S (Sel
fAligned−3tructure)レーザ構造を
(M、Yano et at。
As the structure of the All Ga1nP semiconductor laser;
S A S (Sel
fAligned-3structure) laser structure (M, Yano et at.

IIEEE JQE QE−15(’79)1388−
1395)を適用すると、第3図に示すようにn”−G
aAs基板1 % n” −GaAsバッファ層2、n
 −A I Ga1nPクラッド層3、InGaP活性
層4、n −1nGaP反導層5、p−へj!Ga1n
Pクラッド層6及びp ”−GaAs層7の構造となる
。このようなA I Ga1nP構造は第4A図ないし
第4C図で示す工程で製造される。
IIEEE JQE QE-15('79)1388-
1395), n”-G is applied as shown in Figure 3.
aAs substrate 1% n” -GaAs buffer layer 2, n
-A I Ga1nP cladding layer 3, InGaP active layer 4, n-1nGaP anticonducting layer 5, p- to j! Ga1n
The structure consists of a P cladding layer 6 and a p''-GaAs layer 7. Such an A I Ga1nP structure is manufactured by the steps shown in FIGS. 4A to 4C.

すなわち第4A図のようにn”−GaAs基板1、n”
 −GaAs バッファ層2、n −A j! Ga1
nPクランド層3、アンドープInGaP活性層4 a
 、、p−AlGa1nPクランドN6及びn−1nG
aP反導波層を通常工程で製造した後、第4B図第4C
図で示すようにA j! Ga1nPの第2クラッド層
を成長する時にストライプ溝形状にn −InGaP反
導波層が除去されるがその際該ストライプ溝底面にll
が多いpAβGa1nPAlクラット層が露出する。
That is, as shown in FIG. 4A, an n"-GaAs substrate 1, n"
-GaAs buffer layer 2, n -A j! Ga1
nP ground layer 3, undoped InGaP active layer 4a
, p-AlGa1nP cland N6 and n-1nG
After manufacturing the aP anti-waveguide layer in the normal process, FIG. 4B, FIG. 4C
As shown in the figure A j! When growing the second cladding layer of Ga1nP, the n-InGaP anti-waveguide layer is removed in the shape of a stripe groove, and at that time, the bottom surface of the stripe groove is
The pAβGa1nPAl craat layer with a large amount of pAβGa1 is exposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の如く露出した第1クラッド層はANが多いためそ
の表面が酸化されストライプ溝内部のクラッド層が良質
の結晶に成長できない。
Since the first cladding layer exposed as described above has a large amount of AN, its surface is oxidized and the cladding layer inside the stripe groove cannot grow into a high-quality crystal.

従って単に従来のInGaAsP系と同様のSASレー
ザ構造をA I Ga1nP系に応用しても低しきい値
電流で横モード制御が不可能であった。
Therefore, even if a SAS laser structure similar to that of the conventional InGaAsP system was simply applied to the A I Ga1nP system, it was impossible to control the transverse mode with a low threshold current.

本発明はAI2を比較的多く含有する層が露出せず再成
長可能でしかもSASレーザと同等の動作原理で動作可
能な半導体発光装置が得られる製造方法を提供すること
を目的とする。
An object of the present invention is to provide a manufacturing method capable of producing a semiconductor light emitting device which can be regrown without exposing a layer containing a relatively large amount of AI2 and which can operate on the same operating principle as an SAS laser.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は本発明によれば活性層が形成された基板上に
Alを含有する化合物半導体よりなる一導電型の第1ク
ラッド層と、該第1クラッド層よりA1の含有量が少な
いかもしくはAIを含有しない化合物半導体よりなるキ
ャップ層、該キャップ層とは異なる組成の化合物半導体
よりなるエツチングストップ層、該エツチングストップ
層とは異なる組成であって前記第1クラッド層よりlの
含有量が少ないかもしくは八!を含有しない化合物半導
体よりなり、且つ該キャップ層より厚い反導波層を順に
成長し、 前記反導波層を部分的にストライプ状にエツチング除去
してエツチングストップ層を露出させ、前記エツチング
ストップ層を該反導波層をマスクに用いてエツチング除
去してキャップ層を露出させてストライプ溝を形成し、 前記ストライプ溝内部及び該反導波層上に八lを含有す
る化合物半導体よりなる一導電型の第2クラッド層を形
成してなることを特徴とする半導体発光装置の製造方法
によって解決される。
According to the present invention, the above-mentioned problem is solved by providing a first cladding layer of one conductivity type made of a compound semiconductor containing Al on a substrate on which an active layer is formed, and a first cladding layer having a lower A1 content than the first cladding layer or an Al A cap layer made of a compound semiconductor that does not contain , an etching stop layer made of a compound semiconductor having a composition different from that of the cap layer, and an etching stop layer having a composition different from that of the etching stop layer and having a lower l content than the first cladding layer. Or eight! an anti-waveguide layer made of a compound semiconductor containing no compound semiconductor and thicker than the cap layer; the anti-waveguide layer is partially etched away in stripes to expose the etching stop layer; is removed by etching using the anti-waveguide layer as a mask to expose the cap layer to form a stripe groove, and a conductive layer made of a compound semiconductor containing 8L is formed inside the stripe groove and on the anti-waveguide layer. The problem is solved by a method of manufacturing a semiconductor light emitting device, which is characterized by forming a second cladding layer of a mold.

〔作 用〕[For production]

本発明では、例えばAlの含有の少ないll I Ga
1nP、InGaP等よりなるキャップ層により、A/
の含有の多いA I Ga1nP等よりなる第1クラッ
ド層が露出するのを防止するため良質の第2のへ4!G
a1nP等よりなる第2クラブト層が成長できる。ここ
で、本発明ではキャップ層を薄く形成できるようにキヤ
・7ブ層及び反導波層とは異なる組成のエツチングスト
・ツブ層をキャップ層と反導波層間に設けてエツチング
しており、キャップ層の厚さが例えば、数100人とい
う非常に薄い厚さに形成でき、反導波層が活性層から大
きく離れないのでSASレーザと同等の動作原理で動作
することができる。
In the present invention, for example, ll I Ga with low Al content
With a cap layer made of 1nP, InGaP, etc., A/
In order to prevent the first cladding layer made of A I Ga1nP etc. containing a large amount of 4! from being exposed, a high quality second cladding layer 4! G
A second Crabstone layer made of a1nP or the like can be grown. Here, in the present invention, in order to form a thin cap layer, an etching block layer having a composition different from that of the cap layer and the anti-waveguide layer is provided between the cap layer and the anti-waveguide layer, and etching is performed. The cap layer can be formed to a very thin thickness of, for example, several hundred layers, and the anti-waveguide layer is not far away from the active layer, so it can operate on the same operating principle as an SAS laser.

〔実力缶例〕[Example of ability]

以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の一実施例により得られる半導体レーザ
を説明するための模式断面図である。
FIG. 1 is a schematic cross-sectional view for explaining a semiconductor laser obtained according to an embodiment of the present invention.

第1図に示すように本発明に係る半導体レーザはn”−
GaAs基板11、n ’−GaAsバッファ層12、
no−へj2GalnPクラッド層13、アンド−プI
 n (h a P層14、p−へJGalnP第1ク
ラット層15、p−1nGaPキ+7プ層16 、Ga
Asエツチング2871層17、n−InGaP反導波
層18、p^jl! Ga1nP第1nPッド層19及
びp”−GaAs層22からなる。すなわち特に本実施
例ではp^1GalnP第1GalnP15とn  I
nGaP反導波層との間に例えば0.01〜0.03μ
m程度の非常に薄い厚さのInGaPギ+7プキャップ
層び0.04〜0.06p程度の厚さのGaAsエツチ
ング2871層17を新たに設け/lが比較的多く含有
されたpA I Ga1nP第1クラ、ド層が再成長工
程で表面に露出しない状態で製造されるのでSASレー
ザと同様の動作原理で動作する半導体レーザを得る。
As shown in FIG. 1, the semiconductor laser according to the present invention has n”-
GaAs substrate 11, n'-GaAs buffer layer 12,
no-j2GalnP cladding layer 13, and-p I
n (h a P layer 14, p-JGalnP first crat layer 15, p-1nGaP cap layer 16, Ga
As etched 2871 layer 17, n-InGaP anti-waveguide layer 18, p^jl! It consists of a Ga1nP first nP layer 19 and a p''-GaAs layer 22. In other words, in this embodiment, p^1GalnP first GalnP15 and nI
For example, 0.01 to 0.03μ between the nGaP anti-waveguide layer.
A GaAs etched 2871 layer 17 with a thickness of about 0.04 to 0.06 p is newly provided. Since the semiconductor laser is manufactured in a state in which the cladding and doping layers are not exposed to the surface during the regrowth process, a semiconductor laser that operates on the same operating principle as an SAS laser is obtained.

第2A図ないし第2D図は本発明の一実施例の製造方法
を説明するための工程断面図である。
FIGS. 2A to 2D are process cross-sectional views for explaining a manufacturing method according to an embodiment of the present invention.

第2A図に示すようにn”−(100)GaAs基板I
l上り有機金属CVD法(MOCVD法)を用いて順次
Se ドープ(ドープI I X IQ18cm−’)
のn”−GaAsパ7ファ層(厚さ0.5 am) 、
Se  ドープ(ドープIt I X 101Bc10
1B  のn+−八l o、 z、Gao、 zsln
o、 sPクラッド層(厚さ1卿)、アンドープのIn
o、 5Gao、 sP層(厚さ0.1un)、Zn 
 ドープ(ドープ!7X10I?cm −’ )のp 
−1no、 5Gao、 sPキャップ層(厚さ0.0
2μm)、Zn  トープ(トープffi 7 X 1
0”cm−3)のp −GaAsエッチングス[・ツブ
層(厚さ0.05μm) 、Se  F −プ(トープ
N 7 X 10”Cln−’)のn −1n6.5G
ao、 sP反導波層(厚さ0.8μl11)を成長温
度700℃で形成する。
As shown in Figure 2A, an n''-(100) GaAs substrate I
Sequentially doped with Se using upstream metal organic CVD method (MOCVD method) (doped I
n”-GaAs buffer layer (0.5 am thick),
Se doped (doped It I X 101Bc10
1B n+-8l o, z, Gao, zsln
o, sP cladding layer (thickness 1 μm), undoped In
o, 5Gao, sP layer (thickness 0.1un), Zn
p of dope (dope!7X10I?cm-')
-1no, 5Gao, sP cap layer (thickness 0.0
2 μm), Zn tope (taupe ffi 7 x 1
0"cm-3) p-GaAs etching [-tube layer (0.05μm thick), n-1n6.5G of Se F-type (tope N7 x 10"Cln-')
Ao, sP anti-waveguide layer (thickness: 0.8 μl) is formed at a growth temperature of 700°C.

次に第2B図に示tようにn −1no、 5Gao、
 sP反導波層上に約2000 Aの厚さのSi3N、
膜19を形成し、<011>方向に8un巾の開口部を
通常のフォトリソグラフィ技術で形成し、次に該5iJ
s膜をマスクとして塩酸を用いた化学エツチングにより
lno、 5Gao、 、p反導波層18にストライプ
溝20を形成する。このエツチングにより溝底面にGa
Asエツチング2871層17が露出する。
Next, as shown in Figure 2B, n -1no, 5Gao,
approximately 2000 A thick Si3N on the sP anti-waveguide layer,
A film 19 is formed, an 8-un wide opening is formed in the <011> direction using a normal photolithography technique, and then the 5 iJ
A stripe groove 20 is formed in the lno, 5Gao, ,p anti-waveguide layer 18 by chemical etching using hydrochloric acid using the s film as a mask. Due to this etching, Ga is formed on the bottom surface of the groove.
As etched 2871 layer 17 is exposed.

次に第2C図に示すように硫酸と過酸化水素水と水の混
合液を用いた化学エツチングにより溝底部のGaAsエ
ツチング2871層17を除去する。
Next, as shown in FIG. 2C, the GaAs etched 2871 layer 17 at the bottom of the groove is removed by chemical etching using a mixture of sulfuric acid, hydrogen peroxide, and water.

次に第1図に示すように5t3Na膜マスクを弗酸によ
り除去した後、再度MOCVD法によって順次Zn  
ドープ(ドープ量I Xl01BcII+−’) のp
−八j’0.2sGa0. zslno、 5P第2グ
ランド層21 (厚さlln@)及びZn  ドープ(
ドープ量4 xlQIllcflI−3)のp。
Next, as shown in Figure 1, after removing the 5t3Na film mask with hydrofluoric acid, Zn was sequentially deposited again using the MOCVD method.
Dope (doping amount I Xl01BcII+-') p
-8j'0.2sGa0. zslno, 5P second ground layer 21 (thickness lln@) and Zn doped (
p of doping amount 4xlQIllcflI-3).

GaAs層22(厚さ1声)を700℃の成長温度で形
成する。
A GaAs layer 22 (one tone thick) is formed at a growth temperature of 700°C.

次に、図示はしないがp側電極AuZn/Au、及びn
側電極AuGe/Auを形成して共振器厚さ300卿で
レーザ素子を形成すると、しきい値電流50mA、効率
Q、2mW/mAであり、CW出力20mWで基本横モ
ード発振の特性が得られた。
Next, although not shown, the p-side electrode AuZn/Au and the n
When a laser device is formed with side electrodes AuGe/Au and a cavity thickness of 300 μm, the threshold current is 50 mA, the efficiency Q is 2 mW/mA, and fundamental transverse mode oscillation characteristics are obtained with a CW output of 20 mW. Ta.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によればA/を比較的多く含
有するA I Ga1nP第1nPッド層を露出させな
いで再成長し得るので低しきい値電流で横モード制御さ
れた半導体発光装置を得ることができる。
As explained above, according to the present invention, since the A I Ga1nP first nP layer containing a relatively large amount of A/ can be regrown without being exposed, a semiconductor light emitting device with transverse mode control at a low threshold current can be realized. Obtainable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例により得られる半導体レーザ
を説明するための模式断面図であり、第2A図ないし第
2C図は本発明の一実施例の製造方法を説明するための
工程断面図であり、第3図は従来の半導体レーザを示す
断面図であり、 第4A図ないし第4C図は従来例の製造方法を説明する
ための工程断面図である。 1 、11 ・=n”−GaAs基板、2 、12・”
n” −GaAs バッファ層、3 、13 =−n−
Aj2GalnPクラッド層、4 、 l 4 ・・・
InGaP活性層、5 、15 ・” p−Aj!Ga
1nPクラッド層、6 、18 ・= n−1nGaP
反導波層、7 、22−p”−GaAs層、 8.20・・・ストライプ溝、 16 =−p−InGaPキャップ層、17・・・Ga
Asエツチングストップ層、21− p −A j2 
Ga1nP第1nPッド層。 第 回 第2A回 第2B団 第2C回 2・・・P’−GaAs層 16・・・p nGaPキャップ磨 第 図 第 4B図 第4A図 第4C図
FIG. 1 is a schematic cross-sectional view for explaining a semiconductor laser obtained according to an embodiment of the present invention, and FIGS. 2A to 2C are process cross-sectional views for explaining a manufacturing method according to an embodiment of the present invention. FIG. 3 is a cross-sectional view showing a conventional semiconductor laser, and FIGS. 4A to 4C are process cross-sectional views for explaining a conventional manufacturing method. 1 , 11 ・=n”-GaAs substrate, 2 , 12 ・”
n''-GaAs buffer layer, 3, 13 =-n-
Aj2GalnP cladding layer, 4, l4...
InGaP active layer, 5, 15 ・”p-Aj!Ga
1nP cladding layer, 6, 18 ・= n-1nGaP
Anti-waveguide layer, 7, 22-p”-GaAs layer, 8.20...stripe groove, 16=-p-InGaP cap layer, 17...Ga
As etching stop layer, 21-p-A j2
Ga1nP first nP layer. 2nd A 2nd B Group 2C 2...P'-GaAs layer 16...p nGaP cap polishing diagram Figure 4B Figure 4A Figure 4C

Claims (1)

【特許請求の範囲】[Claims] 1、活性層が形成された基板上にAlを含有する化合物
半導体よりなる一導電型の第1クラッド層と、該第1ク
ラッド層よりAlの含有量が少ないかもしくはAlを含
有しない化合物半導体よりなるキャップ層、該キャップ
層とは異なる組成の化合物半導体よりなるエッチングス
トップ層、該エッチングストップ層とは異なる組成であ
って前記第1クラッド層よりAlの含有量が少ないかも
しくはAlを含有しない化合物半導体よりなり、且つ該
キャップ層より厚い反導波層を順に成長し、前記反導波
層を部分的にストライプ状にエッチング除去してエッチ
ングストップ層を露出させ、前記エッチングストップ層
を該反導波層をマスクに用いてエッチング除去してキャ
ップ層を露出させてストライプ溝を形成し、前記ストラ
イプ溝内部及び該反導波層上にAlを含有する化合物半
導体よりなる一導電型の第2クラッド層を形成してなる
ことを特徴とする半導体発光装置の製造方法。
1. A first cladding layer of one conductivity type made of a compound semiconductor containing Al on the substrate on which the active layer is formed, and a compound semiconductor with a lower Al content than the first cladding layer or a compound semiconductor containing no Al. an etching stop layer made of a compound semiconductor having a composition different from that of the cap layer; a compound having a composition different from the etching stop layer and containing less Al than the first cladding layer or containing no Al; An anti-waveguide layer made of a semiconductor and thicker than the cap layer is sequentially grown, and the anti-waveguide layer is partially etched away in stripes to expose an etching stop layer. A stripe groove is formed by etching away the wave layer using a mask to expose the cap layer, and a second cladding of one conductivity type made of a compound semiconductor containing Al is formed inside the stripe groove and on the anti-waveguide layer. A method for manufacturing a semiconductor light emitting device, characterized in that it is formed by forming layers.
JP23372588A 1988-09-20 1988-09-20 Manufacture of semiconductor light emitting device Pending JPH0282678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23372588A JPH0282678A (en) 1988-09-20 1988-09-20 Manufacture of semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23372588A JPH0282678A (en) 1988-09-20 1988-09-20 Manufacture of semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH0282678A true JPH0282678A (en) 1990-03-23

Family

ID=16959591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23372588A Pending JPH0282678A (en) 1988-09-20 1988-09-20 Manufacture of semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH0282678A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0477013A2 (en) * 1990-09-20 1992-03-25 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor laser
US6690701B2 (en) * 1999-12-10 2004-02-10 The Furukawa Electric Co., Ltd. Semiconductor laser device
JP2018518052A (en) * 2015-06-17 2018-07-05 ツー−シックス レーザー エンタープライズ ゲーエムベーハー Wide-area laser with anti-guide region for higher-order transverse mode suppression

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0477013A2 (en) * 1990-09-20 1992-03-25 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor laser
US5210767A (en) * 1990-09-20 1993-05-11 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser
US6690701B2 (en) * 1999-12-10 2004-02-10 The Furukawa Electric Co., Ltd. Semiconductor laser device
JP2018518052A (en) * 2015-06-17 2018-07-05 ツー−シックス レーザー エンタープライズ ゲーエムベーハー Wide-area laser with anti-guide region for higher-order transverse mode suppression

Similar Documents

Publication Publication Date Title
JP3734849B2 (en) Manufacturing method of semiconductor laser device
JPH0856045A (en) Semiconductor laser device
JP2647076B2 (en) Semiconductor laser device and method of manufacturing the same
JPH05327112A (en) Manufacture of semiconductor laser
JPH0282678A (en) Manufacture of semiconductor light emitting device
JPS62200786A (en) Semiconductor laser device and manufacture thereof
JPH05211372A (en) Manufacture of semiconductor laser
JPS61265888A (en) Manufacture of semiconductor laser
JP2687495B2 (en) Manufacturing method of semiconductor laser
JPH01184973A (en) Semiconductor laser
JPS6223191A (en) Manufacture of ridge type semiconductor laser device
JP3689733B2 (en) Manufacturing method of semiconductor device
JPS59227179A (en) Semiconductor laser and manufacture thereof
JPH01186688A (en) Semiconductor laser device
JPH02240988A (en) Semiconductor laser
JPS62108591A (en) Manufacture of semiconductor laser
JPS61284985A (en) Manufacture of semiconductor laser device
JPH03185889A (en) Semiconductor laser element and manufacture thereof
JPH05145182A (en) Manufacture of semiconductor laser device with end plane window construction
JPS60164383A (en) Manufacture of semiconductor laser
JPH11126945A (en) Manufacture of strained semiconductor crystal and manufacture of semiconductor laser using it
JPH04243183A (en) Semiconductor laser and manufacture thereof
JPH03288489A (en) Distribution feedback semiconductor laser device
JP2812187B2 (en) Manufacturing method of semiconductor laser
JPH0580836B2 (en)