JPS59197065A - Applying method - Google Patents

Applying method

Info

Publication number
JPS59197065A
JPS59197065A JP7168683A JP7168683A JPS59197065A JP S59197065 A JPS59197065 A JP S59197065A JP 7168683 A JP7168683 A JP 7168683A JP 7168683 A JP7168683 A JP 7168683A JP S59197065 A JPS59197065 A JP S59197065A
Authority
JP
Japan
Prior art keywords
magnetic
developer
magnetic particles
particles
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7168683A
Other languages
Japanese (ja)
Other versions
JPH0220112B2 (en
Inventor
Masanori Takenouchi
竹之内 雅典
Eiichi Imai
今井 栄一
Motoo Urawa
茂登男 浦和
Fumitaka Kan
簡 文隆
Hiroyuki Suematsu
末松 浩之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7168683A priority Critical patent/JPS59197065A/en
Priority to US06/602,010 priority patent/US4571372A/en
Priority to DE19843414951 priority patent/DE3414951A1/en
Publication of JPS59197065A publication Critical patent/JPS59197065A/en
Publication of JPH0220112B2 publication Critical patent/JPH0220112B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/06Developing
    • G03G13/08Developing using a solid developer, e.g. powder developer
    • G03G13/09Developing using a solid developer, e.g. powder developer using magnetic brush

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Brush Developing In Electrophotography (AREA)

Abstract

PURPOSE:To form a uniform thin layer of a developer on the surface of a developer holding member by satisfying specific relations between a number average particle size measured with a maximum length of magnetic particles and the gap between a control member and the surface of the developer holding member. CONSTITUTION:When a sleeve 2 is rotated, magnetic particles and a nonmagnetic developer are mixed while holding a magnetic brush 8 as it is. In the magnetic blade side of a vessel 3 in this state, the mixture of the developer and nonmagnetic particles is prevented from moving by a blade 6 and rises and is moved circularly in the direction of an arrow (c). Then, the nonmagnetic developer is triboelectrified with the sleeve 2 or magnetic particles by mixing with magnetic particles. The triboelectrified developer is applied uniformly thinly onto the surface of the sleeve 2 with the magnetic brush 8, which is formed near the magnetic blade 6, by an image force and reaches a position facing a photosensitive drum. With respect to magnetic particles, relations of an equation are satisfied between a number average particles size (r) measured with a maximum length of magnetic particles and a gap (d) between the blade and the surface of the sleeve.

Description

【発明の詳細な説明】 本発明は、非磁性現像剤により静電潜像を現像する塗布
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coating method for developing an electrostatic latent image with a non-magnetic developer.

従来、乾式−成分現像装置としては各種装置が提案され
又実用化されている。しかし、いずれの現像方式におい
ても乾式−成分現像剤の薄層を形成することは極めて難
かしく、このため比較的厚い層の形成で現像装置を構成
していた。しかるに現像画像の鮮明度、解像力、などの
向上が求められている現任、乾式−成分現像剤の薄層形
成方法及びその装置に関する開発は必須となっている。
Conventionally, various types of dry-component developing devices have been proposed and put into practical use. However, in any of the development methods, it is extremely difficult to form a thin layer of dry component developer, and for this reason, a developing device has been constructed by forming a relatively thick layer. However, in order to improve the sharpness and resolution of developed images, it is now necessary to develop a method for forming a thin layer of a dry-component developer and an apparatus therefor.

れておシ、且つ実用化されている。しかし、これは磁性
現像剤の薄層形成に関するものであった。
It has been developed and put into practical use. However, this concerned the formation of a thin layer of magnetic developer.

磁性現像剤は磁性を持たせるため磁性体を内添しなけれ
ばならず、これは転写紙に転写した現像像を熱定着する
際の定着性の悪さ、現像剤自身に磁性体を内添するため
のカラニ再現の際の色彩の悪さ等の問題点がある。
Magnetic developers must have a magnetic material added to them in order to have magnetism, which causes poor fixing properties when heat fixing the developed image transferred to transfer paper, and adding magnetic material to the developer itself. There are problems such as poor colors when reproducing Kalani.

このため非磁性現像剤の薄層形成方法として、ビーバー
の毛のような柔い毛を円筒状のブラシにして、これに現
像剤を付着塗布する方法や、表面がベルベット等の繊維
で作られた現像ローラにドクターブレード等によシ塗布
する方法が提案されている。しかしながら上記繊維ブラ
シにドクターブレードとして弾件体ブレードを使用した
場合、現像剤量の規制は可能であるが、均一な塗布は行
われず、現像ローラ上の繊維ブラシを摺擦するだけで、
ブラシの繊維間に存在する現像剤への摩擦帯電電荷賦与
は行なわれないため、ゴースト埠の発生しやすいという
問題点があった。また、非磁性現像剤を有しているので
、装置からの現像剤の本発明に上述の従来方法の問題点
を除き、現像剤を現像剤保持部材表面に均一な薄層とし
て形成し、且つ、十分な摩擦帯電を与え、塗布する新規
な塗布方法を提供することを目的としている。更に本発
明は、上記非磁性現像剤が現像装置から漏れ出すのを防
止するのを可能をですることを目的としている。
For this reason, methods for forming a thin layer of non-magnetic developer include a method in which a soft bristle like beaver hair is used as a cylindrical brush and the developer is adhered to the brush, and a method in which the surface is made of fibers such as velvet is used. A method has been proposed in which a doctor blade or the like is used to coat the developing roller. However, when an elastic body blade is used as a doctor blade for the above-mentioned fiber brush, it is possible to regulate the amount of developer, but uniform application is not achieved, and the fiber brush on the developing roller is simply rubbed.
Since no triboelectric charge is imparted to the developer existing between the fibers of the brush, there is a problem in that ghost holes are likely to occur. In addition, since it has a non-magnetic developer, the present invention of the developer from the device can eliminate the problems of the above-mentioned conventional method, form the developer as a uniform thin layer on the surface of the developer holding member, and The purpose of the present invention is to provide a novel coating method that applies sufficient triboelectric charging. A further object of the present invention is to make it possible to prevent the non-magnetic developer from leaking out of the developing device.

上記目的を達成する本発明の塗布方法は、非磁性現像剤
と磁性粒子とを貯蔵する容器と、潜像担持体に非磁性現
像剤を回動搬送する現像剤保持部材と、上記容器の非磁
性現像剤の供給出口側にあり、仁の保持部材表面に間隙
を形成して配置した規制部材と、この規制部材に対して
上記保持部材を介して反対側に配置され、上記容器の現
像剤出口側にある規制部材の上流側に磁性粒子による磁
気ブラシを形成する磁極を少なくとも一つ持つ磁石とを
有し、上記保持部材上に非磁性現像剤の薄層を形成する
塗布方法において、上記磁性粒子の最大長で測定した個
数平均粒径マと前記規制部材と現像剤保持部材表面との
間隙dが次式の関係を満足している事を特徴とするもの
である。
The coating method of the present invention that achieves the above object includes a container for storing a non-magnetic developer and magnetic particles, a developer holding member for rotatably conveying the non-magnetic developer to a latent image carrier, and a non-magnetic developer for the container. A regulating member disposed on the magnetic developer supply outlet side with a gap formed on the surface of the magnetic developer holding member; and a magnet having at least one magnetic pole forming a magnetic brush of magnetic particles on the upstream side of the regulating member on the exit side, and the coating method forms a thin layer of non-magnetic developer on the holding member. The present invention is characterized in that the number average particle diameter (ma) measured at the maximum length of the magnetic particles and the gap d between the regulating member and the surface of the developer holding member satisfy the following relationship.

n〒=d (ここで1.00≦n≦5.00 、 dは非磁性現像
剤の平均粒径以上の値である。より好ましくは、該磁性
粒子の粒径範囲は前記平均粒径7の±20%以内に全粒
子の70個数チ以上を含むものである。)上記本発明の
面像担持体としては、感光体や絶縁体層を有するドラム
状やベルト状の部材であり、磁極としては磁石ローラの
軸方向に同極性又は異極性の磁極を着磁したものや、棒
状の複数の磁石を固定支持部拐上に接着したものを用い
得る。更に回動する現像剤保持部材としては、アルミニ
ウム・銅・ステンレス・黄銅等の非磁性金属や合成樹脂
材料によるスリーブ又は樹脂や金属の無端ベルトの使用
が可能であり、その周面はトナーの搬送性や帯電特性を
高めるのに、必要に応じて粗面化又は凹凸模様を設けて
もよい。また、規制部材としては、鉄等の磁性体やアル
ミニウム、銅、樹脂等の非磁性体によるブレード板や壁
を用い得る。
n〒=d (where 1.00≦n≦5.00, d is a value greater than or equal to the average particle size of the non-magnetic developer. More preferably, the particle size range of the magnetic particles is within the above-mentioned average particle size 7. 70 or more of the total particles are included within ±20% of A magnetic roller in which magnetic poles of the same polarity or different polarity are magnetized in the axial direction, or a magnetic roller in which a plurality of rod-shaped magnets are bonded onto a fixed support member may be used. Furthermore, as the rotating developer holding member, it is possible to use a sleeve made of non-magnetic metal such as aluminum, copper, stainless steel, brass, etc. or a synthetic resin material, or an endless belt made of resin or metal, whose circumferential surface is used to convey the toner. If necessary, a roughened surface or an uneven pattern may be provided in order to improve the electrostatic properties and charging characteristics. Further, as the regulating member, a blade plate or a wall made of a magnetic material such as iron or a non-magnetic material such as aluminum, copper, or resin may be used.

以下、図面に従って本発明を更に詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図は、本発明の塗布方法を適用する現像原理を説明
するだめの現像装置の断面図を示す。
FIG. 1 shows a sectional view of a developing device for explaining the developing principle to which the coating method of the present invention is applied.

図において、1は電子写真感光体ドラムであり、図示し
ない潜像形成手段によ多形成した潜像を保持し、図示の
現像位置を矢印a方向に回転して通過する。この感光体
ドラム1に対しては、現像剤を保持する現像剤保持部材
である非磁性スリーブ2が、所定の間隙を保って対向し
ており、このスリーブ2は矢印す方向に回転する。この
スリーブ2の上部には非磁性現像剤4と磁性粒子5の混
合体を貯蔵する樹脂やアルミニウム等の非磁性材料を用
いた容器3が位置し、との容器3のスリーブ回転方向下
流には、磁性ブレード6がねじ止めされている。
In the figure, reference numeral 1 denotes an electrophotographic photosensitive drum, which holds a latent image formed by a latent image forming means (not shown), and rotates in the direction of arrow a to pass through a developing position shown in the drawing. A non-magnetic sleeve 2, which is a developer holding member that holds developer, faces the photosensitive drum 1 with a predetermined gap therebetween, and this sleeve 2 rotates in the direction indicated by the arrow. A container 3 made of a non-magnetic material such as resin or aluminum is located above the sleeve 2 and stores a mixture of a non-magnetic developer 4 and magnetic particles 5, and downstream of the container 3 in the rotational direction of the sleeve. , a magnetic blade 6 is screwed.

一方、この磁性ブレード6に対するスリーブ2の反対側
には、磁石7が設けられている。この磁石の取付は位置
は、磁極の位置と磁性ブレード6との関係で決定され、
実際には磁性ブレード2の位置よシも若干上流側に磁極
を設けることで形成界によシ、磁気ブラシ8を形成する
。そして、スリーブ2が回転することにょシ上記磁気7
リシ8を保持したまま、磁性粒子と非磁性現像剤とに攪
拌混合される。この状態で容器3の磁性ブレード側では
、このブレード6の存在にょシ現像剤と非磁性粒子の混
合体は、このブレードにょシ移動が阻止されて上架シフ
、矢印C方向に循環運動する。
On the other hand, a magnet 7 is provided on the opposite side of the sleeve 2 to the magnetic blade 6. The mounting position of this magnet is determined by the relationship between the position of the magnetic pole and the magnetic blade 6.
In reality, the position of the magnetic blade 2 is such that the magnetic brush 8 is formed by providing a magnetic pole slightly upstream of the formation field. Then, when the sleeve 2 rotates, the magnetic 7
The magnetic particles and non-magnetic developer are stirred and mixed while retaining the ribbon 8. In this state, on the magnetic blade side of the container 3, due to the presence of the blade 6, the mixture of developer and non-magnetic particles is prevented from moving by the blade, and moves in a circulating manner in the direction of arrow C.

これにより非磁性現像剤は、磁性粒子との混合によシス
リーブ2ないしは磁性粒子によって摩擦帯電される。帯
電された現像剤は、磁性ブレード6の近傍に形成した磁
気ブラシ8にょシ、スリーブ2の表面に鏡映力にょ〕均
一に薄く塗布され、感光体ドラムとの対向位置に至る。
As a result, the non-magnetic developer is triboelectrically charged by the system sleeve 2 or the magnetic particles by mixing with the magnetic particles. The charged developer is uniformly and thinly applied to the surface of the sleeve 2 by a mirror force by a magnetic brush 8 formed near the magnetic blade 6, and reaches a position facing the photoreceptor drum.

ところで、磁気ブラシ8を構成する磁性粒子5は、磁石
7の磁界による拘束力が、摩擦力が原因する搬送力よシ
大きなるように設定することで、スリーブ2上には流出
しない。そして、磁気ブラシ8の領域内に非磁性現像剤
があれば、磁気ブラシ8の磁性粒子とこの現像剤との比
率は、スリーブ2の回転によりほぼ一定WL ?保つ。
By the way, the magnetic particles 5 constituting the magnetic brush 8 do not flow onto the sleeve 2 by setting the restraining force due to the magnetic field of the magnet 7 to be larger than the conveying force caused by the frictional force. If there is non-magnetic developer within the area of the magnetic brush 8, the ratio of the magnetic particles of the magnetic brush 8 to this developer is approximately constant WL? due to the rotation of the sleeve 2. keep.

これにより現像でスリーブ上の現像剤が消費されても、
自動的に磁気ブラシ8の領域に現像剤が供給される。
As a result, even if the developer on the sleeve is consumed during development,
Developer is automatically supplied to the area of the magnetic brush 8.

従って、上記スリーブ2上には常に一定量の現像剤の供
給塗布が可能となる。
Therefore, it is possible to always supply and apply a constant amount of developer onto the sleeve 2.

なお、上記原理説明では規制部材に磁性ブレードを用い
ているが、非磁性フレード又は容器を構成する樹脂やア
ルミニヮム等の非磁性体の壁r、この規制部材として用
いることもできる。しかし、この場合、磁性粒子の流出
を防止するため、スリーブと規制部材との間隙全磁性ブ
レードを用いるときよりも更に小さくする必要がある。
In the above principle explanation, a magnetic blade is used as the regulating member, but a non-magnetic blade or a wall r of non-magnetic material such as resin or aluminum constituting the container may also be used as the regulating member. However, in this case, in order to prevent the outflow of magnetic particles, the gap between the sleeve and the regulating member needs to be made even smaller than when using a fully magnetic blade.

また、磁性ブレードを用いる場合は、ブレードと磁極間
の磁界によシ現像剤の出口部に安定して磁気ブラシが形
成できる点で好ましい。
Further, when a magnetic blade is used, it is preferable because a magnetic brush can be stably formed at the developer outlet by the magnetic field between the blade and the magnetic pole.

ところで、上記第1図の現像装置においては、現像剤が
非磁性現像剤であるため、容器3にスリーブ2が入る側
の領域dから漏れ易いという問題を生じる場合がある。
By the way, in the developing device shown in FIG. 1, since the developer is a non-magnetic developer, there may be a problem that it tends to leak from the region d on the side where the sleeve 2 enters the container 3.

この様に上記領域dからの現像剤の漏れを防止するため
に本発明では上記スリーブが容器内に入る側のスリーブ
と容器間に磁気ブラシを形成してもよい。
In order to prevent the developer from leaking from the area d, a magnetic brush may be formed between the sleeve and the container on the side where the sleeve enters the container.

以上の説明で明らかな如く、本発明における構成要素と
して特に磁性粒子が重要である。上記磁性粒子は、従来
トナー(非磁性現像剤)よりもはるかに多い量でトナー
と混合されていた2成分系現像剤に使用されたキャリ材
としての磁性粒子が有していた機能すなわち主としtト
ナーに帯電付与を行ない、その帯電量を制御する機能よ
りはむしろ、磁性粒子よシもはるかに多量の非磁性現像
剤が存在する系で磁気ブラシ全形成し非磁性現像剤保持
部材上に非磁性現像剤を塗布し、またその量を規制する
機能を果たさなけれはならない。同時に循環移動しなが
ら非磁性現像剤を供給する機能金も有していなければな
らず、さらに、この磁性粒子は規制部材全通過しては好
ましくない。これらの機能を満たす為1こは、磁界によ
り発生する適当な拘束力を有しながら、しかも適当な循
環性を示し、かつ形成された磁気ブラシのブラシの状態
は、均一な塗布を可能にする為に適度な硬さと密度をも
っていなければならない。例えは比較的疎なブラシは現
像剤保持部材上に規制不足のスジを生じやすくする傾向
があり、文通に密なブラシは保持部材上の塗布層の厚さ
全極薄にする傾向があり、いずれも好ましいものではな
い。さらに−例をあげれば循環性が良すぎる場合は塗布
層が厚くなり画像上にカフリが生じたり、又mW性が悪
い場合にはゴーストが生じゃすくなるなど梗々の欠点が
生じる場合がある。
As is clear from the above description, magnetic particles are particularly important as constituent elements in the present invention. The above-mentioned magnetic particles have the same function as the carrier material used in two-component developers, which were mixed with toner in a much larger amount than that of toner (non-magnetic developer). Rather than the function of charging the toner and controlling the amount of charge, it is possible to completely form a magnetic brush in a system where there is a much larger amount of non-magnetic developer than magnetic particles, and the magnetic brush is placed on the non-magnetic developer holding member. It must have the function of applying non-magnetic developer and regulating its amount. At the same time, it must also have a functional metal that supplies the non-magnetic developer while circulating, and furthermore, it is not preferable for the magnetic particles to pass through the entire regulating member. In order to satisfy these functions, 1) the magnetic brush has an appropriate restraining force generated by the magnetic field, exhibits appropriate circulation, and the brush condition of the formed magnetic brush enables uniform application. Therefore, it must have appropriate hardness and density. For example, relatively sparse brushes tend to cause poorly regulated streaks on the developer holding member, while brushes that are densely packed tend to make the overall thickness of the coating layer on the developer holding member extremely thin. Neither is preferable. Furthermore, for example, if the circulation is too good, the coated layer will be thick and cuffing will occur on the image, and if the mW properties are poor, ghosts will appear and other problems may occur. .

本発明者らは、前記本発明に使用される磁性粒子が必要
とされる様々の機能を満たす為に椎々検削した結果、磁
性粒子の粒度、粒度分布が極めて大きな影響全及ぼすと
の知見を得た。
The inventors of the present invention discovered that the particle size and particle size distribution of the magnetic particles have an extremely large influence as a result of performing various examinations to ensure that the magnetic particles used in the present invention satisfy the various functions required. I got it.

磁性粒子の流出を完全に防止し、画像への付着や、磁性
粒子の容器からの流出による非磁性現像剤と磁性粒子と
の比率の変化を防止するためには磁性粒子としては、該
磁性粒子の最大長で測定した個数平均粒径アと前記ブレ
ードとスリーブ表面との間隙dが次式の関係を満足する
事が必要条件である。
In order to completely prevent the outflow of magnetic particles and to prevent adhesion to images and changes in the ratio of non-magnetic developer to magnetic particles due to magnetic particles flowing out from the container, the magnetic particles must be It is a necessary condition that the number average particle diameter a measured at the maximum length of the blade and the gap d between the blade and the sleeve surface satisfy the following relationship.

n7=d (ここで1.(10≦n≦5.00  dは非磁性現像
剤の平均粒径り上の1直である。より好ましくは、該磁
性粒子の粒径範囲は前記平均粒径7の±20%以内に全
粒子の70個数饅以上を含むものである。)ここで磁性
粒子の粒径は、粒子の最大長、すなわち粒子に外接する
平行接線間距離の中の最大距離をもって粒径である。こ
れは、透過顕微鏡あるいは走査電子顕微鏡を用いて得ら
第1.た写真画像の粒子像について、画像解析装置(例
えば高滓製作所製ボッシュロム画像解析装置オムニコン
FAS−1[)により測定する。
n7=d (where 1. (10≦n≦5.00 d is one scale above the average particle size of the non-magnetic developer. More preferably, the particle size range of the magnetic particles is within the above average particle size. (70 or more of the total particles are included within ±20% of 7.) Here, the particle size of the magnetic particle is determined by the maximum length of the particle, that is, the maximum distance among the parallel tangent lines circumscribing the particle. This is measured by using an image analysis device (for example, the Bausch & Lomb image analysis device Omnicon FAS-1 manufactured by Takasuko Seisakusho) on the particle image of the first photographic image obtained using a transmission microscope or a scanning electron microscope. .

ここでnが1.00未満である場合には、非磁性現像剤
の塗布層に細かいスジを発生する場合があり、この塗布
層を用いて現像する際には常温常溜度の環境下では良好
の画像が得られるが、低温低湿度の環境下において、カ
ブリの原因となる場合がある。
If n is less than 1.00, fine streaks may occur in the non-magnetic developer coating layer, and when developing with this coating layer, it is necessary to Good images can be obtained, but fogging may occur in low-temperature, low-humidity environments.

まだ、nが5.00を越える場合には、スリーブとブレ
ードが近接する部位での磁性粒子の充填密度が犬となり
、非磁性現像剤の塗布層片が極薄となり、充分な画像濃
度が得られ力い。捷だ、少量の磁性粒子が流出する場合
も生じるので奸才しくない。
However, if n exceeds 5.00, the packing density of magnetic particles in the area where the sleeve and blade are close to each other becomes too small, and the coated layer of non-magnetic developer becomes extremely thin, resulting in sufficient image density. It's strong. This is tricky, as small amounts of magnetic particles may leak out.

この様に磁性粒子の最大長で測定した個数平均径とブレ
ードとスリーブ表面との間隙の関係を、前記した式nr
 = d (1,00≦n≦5.00)を泗足する車で
常に安定した塗布が得られる。
In this way, the relationship between the number average diameter measured at the maximum length of the magnetic particles and the gap between the blade and sleeve surface is expressed by the above formula nr
= d (1,00≦n≦5.00), a stable coating can always be obtained.

なお、より好ましい条件としては、該磁性粒子の平均粒
径が上記式を満足する条件にあり、かつ、粒径の範囲が
、平均粒径7の±20%以内に全磁性粒子の70個数チ
以上を含む小である。磁性粒子にこの条件を与える事に
より飛びちりゃカプリのない極めて解像の高い画像が得
られる。この効果をもたらす原因は明らかではないが非
磁性現像剤の塗布層における現像剤の充填密度を均一に
する事を可能にしているものと考えられる。
More preferably, the average particle size of the magnetic particles satisfies the above formula, and the particle size range is within ±20% of the average particle size of 70% of the total magnetic particles. It is small including the above. By applying these conditions to magnetic particles, it is possible to obtain extremely high-resolution images with no capri when they fly off. The reason for this effect is not clear, but it is thought that it makes it possible to make the packing density of the developer uniform in the non-magnetic developer coating layer.

また、本発明に適用できる非磁性現像剤としては、従来
電子写真法で用いられている現像剤、例えば、樹脂に顔
料又は染料を混練し、これを扮石争したものやカプセル
化したものを用い得る。
In addition, non-magnetic developers that can be applied to the present invention include developers conventionally used in electrophotography, such as those in which pigments or dyes are kneaded with resin and mixed into stone or encapsulated. Can be used.

本発明に用いられる非磁性現像剤の結着樹脂としてハ、
ポリスチレン、ポリP−クロルスチレン、ポリビニルト
ルエンなどのスチレン及びその簡換体の単重合体;スチ
レン−P−クロルスチレン共重合体、スチレン−プロピ
レン共重合体、スチレン−ビニルトルエン共2!、合体
、スチレン−ビニルナフタリン共重合体、スチレン−ア
クリル酸メチル共重合体、スチレン−アクリル酸エチル
共重合体、スチレン−アクリル酸ブチル共重合体、スチ
レン−アクリル師オクチル共穿合体、スチレン−メタク
リル酸メチル共重合体、スチレン−メタクリル酸エチル
共重合体、スチレン−メタクリル酸ブスチレンーαクロ
ルメタクリル咳メチル共重合体、スチレン−アクリロニ
トリル共重合体、スチレン−ビニルメチルエーテル共重
合体、スチレン−ビニルエチルエーテル共p 合体、ス
チレン−ビニルメチルケトン共重合体、スチレン−ブタ
ジェン共重合体、スチレン−イソプレン共重合体、スチ
レン−アクリロニトリル−インデン共3−. 合体、ス
チレン−マレイン醒共重合体、スチレン−マレインへグ
エステル共沖合体などのスチレン系共1合体:ポリメチ
ルメタクリレート、ポリブチルメタクリレート、ポリ塩
化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプロピ
レン、ポリエステル、ポリウレタン、ポリアミド、エポ
キシ樹脂、ポリビニルブチラール、ポリアクリル酌樹脂
、ロジン、変性ロジン、テルペン#j!脂、フェノール
樹脂゛、JIF+肪族又は脂環族用化水素樹脂、芳香族
系石油樹脂、塩素化パラフィン、パラフィンワックスな
どが単独或いは混合して使用できる。
As a binder resin for the non-magnetic developer used in the present invention, c.
Monopolymers of styrene and its simplified forms such as polystyrene, poly-P-chlorostyrene, and polyvinyltoluene; styrene-P-chlorostyrene copolymers, styrene-propylene copolymers, and styrene-vinyltoluene copolymers 2! , coalescence, styrene-vinylnaphthalene copolymer, styrene-methyl acrylate copolymer, styrene-ethyl acrylate copolymer, styrene-butyl acrylate copolymer, styrene-acrylic octyl copolymer, styrene-methacrylate acid methyl copolymer, styrene-ethyl methacrylate copolymer, styrene-bustyrene methacrylate-alpha chlormethacrylate cough methyl copolymer, styrene-acrylonitrile copolymer, styrene-vinyl methyl ether copolymer, styrene-vinylethyl ether copolymer, styrene-vinylmethylketone copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-acrylonitrile-indene copolymer. Styrenic comonomers such as styrene-maleic copolymer, styrene-maleic ester copolymer: polymethyl methacrylate, polybutyl methacrylate, polyvinyl chloride, polyvinyl acetate, polyethylene, polypropylene, polyester, polyurethane, Polyamide, epoxy resin, polyvinyl butyral, polyacrylic resin, rosin, modified rosin, terpene #j! Fats, phenolic resins, JIF + aliphatic or alicyclic hydrocarbon resins, aromatic petroleum resins, chlorinated paraffins, paraffin waxes, etc. can be used alone or in combination.

本発明の非磁性現像剤においては、任意の適当な顔料や
染料が着色剤として使用可能である。例えば、カーボン
ブラック、鉄黒、フタロシアニンブルー、群青、キナク
リドン、ベンジジンイエローなど公知の染顔料がある。
In the non-magnetic developer of the present invention, any suitable pigment or dye can be used as a colorant. For example, there are known dyes and pigments such as carbon black, iron black, phthalocyanine blue, ultramarine blue, quinacridone, and benzidine yellow.

゛また、荷電制御剤としてアミン化合物、第4級アンモ
ニウム化合物および有機染料特に塩基性染料とその塩、
ベンジルジメチルーヘキザデシルアンモニウムクロライ
ド、テシルートリメチルアンモニウムクロライド、ニグ
ロシン塩基、ニグロシンヒドロクロライド、ザフラニン
r及びクリスタルバイオレット、含金属染料、サリチル
酸含金属化合物等を添加しても良い。
゛Additionally, amine compounds, quaternary ammonium compounds, and organic dyes, especially basic dyes and their salts, are used as charge control agents.
Benzyldimethyl-hexadecyl ammonium chloride, tesyltrimethylammonium chloride, nigrosine base, nigrosine hydrochloride, zafranin r and crystal violet, metal-containing dyes, salicylic acid metal-containing compounds, etc. may be added.

以上の非磁性現像剤の構成は、一般に行なわれている混
合−粉砕法による現像剤に用いても良いし、マイクロカ
プセル現像剤の壁材又は芯材あるいはその両方に用いる
ことも可能である。
The structure of the non-magnetic developer described above may be used in a developer formed by a commonly used mixing-pulverization method, or may be used as a wall material or a core material, or both, of a microcapsule developer.

〔実施例1〕 本発明の一実施例を第2図により説明する。図る。実施
例装置において感光体ドラム1は矢印a方向に60關/
秒の周速度で回転する。2は矢印す方向に66闘/秒の
周速度で回転する外径20間、厚さ0.8玉のステンレ
ス(SUS 304 )製のスリーブで、その表面はΦ
600のアランダム研粒を用いて不定型サンドブラスト
を施し、層方向表面の粗面度を帆8μm (R2−)に
した。
[Example 1] An example of the present invention will be described with reference to FIG. Plan. In the embodiment device, the photoreceptor drum 1 is rotated 60 degrees per second in the direction of arrow a.
Rotates at a circumferential speed of seconds. 2 is a stainless steel (SUS 304) sleeve with an outer diameter of 20mm and a thickness of 0.8mm that rotates at a circumferential speed of 66mm/sec in the direction of the arrow.
Amorphous sandblasting was performed using 600 Alundum abrasive grains, and the roughness of the surface in the layer direction was 8 μm (R2−).

一方、回転するスリーブ2内にはフェライト焼結タイプ
の磁石7cを固定して配設し、その第1磁極のN極は磁
性ブレード6に対して、スリーブ2の中心Oとブレード
先端を結ぶ線から30度(図示θ)傾けて設定しである
。一方の第2イ慢極のS極は、容器のスリーブ入口側に
設けたイみ性部材である鉄片10に対向して位置する。
On the other hand, a sintered ferrite type magnet 7c is fixedly disposed inside the rotating sleeve 2, and the N pole of the first magnetic pole is a line connecting the center O of the sleeve 2 and the tip of the blade with respect to the magnetic blade 6. It is set at an angle of 30 degrees (θ in the figure). The S pole of the second argon pole is located opposite to the iron piece 10, which is an erodible member provided on the inlet side of the sleeve of the container.

この第2磁極のスリーブ表面での磁束密度は、鉄片10
の存在下でそのピーク値が650ガウスあり、鉄片10
を外した状態では400ガウスあった。このとき第2磁
極と鉄片10との位置関係は、鉄片のスリーブ回転方向
への幅は0.5解で、且つスリーブ2と鉄片間の距離は
1.0m1mK設定した。
The magnetic flux density on the sleeve surface of this second magnetic pole is 10
Its peak value is 650 Gauss in the presence of iron piece 10
It was 400 gauss when it was removed. At this time, the positional relationship between the second magnetic pole and the iron piece 10 was such that the width of the iron piece in the sleeve rotation direction was 0.5 mm, and the distance between the sleeve 2 and the iron piece was 1.0 mK.

磁性ブレード6は鉄製であり表面にさび止めのためニッ
ケルメッキを施した。このブレード6はスリーブ2の表
面に対して間隔を100PTnに設定した。
The magnetic blade 6 is made of iron, and its surface is nickel-plated to prevent rust. The distance between the blade 6 and the surface of the sleeve 2 was set to 100PTn.

上記磁性粒子5としては、粒径80〜100μ(個数平
均粒径90pで80〜100μの粒径の粒子が全体の1
00個数qb>の球形鉄粉を70f用いた。一方、非磁
性現像剤4としては、スチレンアクリル系樹脂100部
に対して、アゾ系顔料10部、アミノアクリル樹脂5部
から成る平均粒径12μのトナーにコロイダルシリカを
0.5チ外添したものを用いた。
The magnetic particles 5 have a particle size of 80 to 100 μm (with a number average particle size of 90p, particles with a particle size of 80 to 100 μm constitute 1 of the total particles).
00 pieces qb> of spherical iron powder was used in an amount of 70 f. On the other hand, as non-magnetic developer 4, 0.5 t of colloidal silica was externally added to a toner having an average particle size of 12 μm and consisting of 100 parts of styrene acrylic resin, 10 parts of azo pigment, and 5 parts of amino acrylic resin. I used something.

そして、上記非磁性現像剤と磁性粒子とをよく混合した
後、容器3内に入れる。上記容器3内における非磁性現
像剤と磁性粒子との混合体は、特にこの磁性粒子が磁界
の下でスリーブにより搬送されることで循環運動する様
子が、現像剤が少なくなった状態で観察できた。
Then, after thoroughly mixing the non-magnetic developer and the magnetic particles, they are placed in the container 3. The mixture of non-magnetic developer and magnetic particles in the container 3 can be observed, especially when the developer is running low, as the magnetic particles move in circulation as they are transported by the sleeve under a magnetic field. Ta.

上記構成の現像装置においては、上記スリーブの回転に
とも分いスリーブ2の表面には、約50pm厚の非磁性
現像剤のみによる薄層が形成できた。この現像剤層をブ
ローオフ法により帯電電位を測定【−たところ、+8p
c/gの電位で均一に帯111シていることを羅認した
In the developing device having the above configuration, a thin layer of only non-magnetic developer having a thickness of about 50 pm could be formed on the surface of the sleeve 2 as the sleeve rotated. The charging potential of this developer layer was measured by the blow-off method [-, +8p
It was confirmed that the band 111 was formed uniformly at a potential of c/g.

このスリーブ2に対向する感光体ドラム1表面には、静
電潜像として暗部−600vで明部−150vの電荷模
様を形成し、スリーブ表面との距離を300μmに設定
した。そして、上i1Jスリーブに対し電源Eにより周
波数800 Hz 、 ピーク対ピーク値が1.4kV
で、中心値が一300■の電圧を印加したところ、現像
むらやゴースト侶°、更にはかぶりのない高品質鮮明な
赤色の現仰併を得ることができた。
On the surface of the photosensitive drum 1 facing the sleeve 2, a charge pattern of -600 V in the dark part and -150 V in the bright part was formed as an electrostatic latent image, and the distance from the sleeve surface was set to 300 μm. Then, for the upper i1J sleeve, the frequency was 800 Hz and the peak-to-peak value was 1.4 kV by power source E.
When a voltage with a center value of 1,300 .ANG. was applied, it was possible to obtain a high-quality, clear red image with no uneven development, no ghosting, and no fog.

また、容器3内の混合体に関し、ては、(tt (′4
杓子はほとんど消耗されずに非磁性現像剤のみが胡伶の
ために消費された。また、現作機能は上記現像剤か雌と
んど消費されるまで変わらずに安定していた。上記現像
剤を消費した後、本体から現像装置゛を取出し、スリー
ブ2の下部を見てみたが、そこには磁性粒子は勿論のこ
と、現像剤の漏れはほとんど発生していなかった。
Regarding the mixture in the container 3, (tt ('4
The ladle was hardly consumed and only the non-magnetic developer was consumed for Huli. In addition, the current production function remained unchanged until the developer was almost completely consumed. After consuming the developer, I took out the developing device from the main body and looked at the lower part of the sleeve 2, and found that not only were there no magnetic particles, but there was almost no developer leakage there.

才だ、15℃10チ皿の低温低湿条件下で同様に画像を
得たところ、かぶりゃ飛び散シのない高解像度の良好な
画像を得た。
When images were similarly obtained under low temperature and low humidity conditions in a 10-inch plate at 15°C, good high-resolution images with no fog or splatter were obtained.

〔実施例2〕 実施例1において、磁性粒子5を粒径120〜140μ
(個数平均粒径130μで120〜140μの粒径の粒
子が全体の10000個数多る。)の球形フェライト粉
を100f用い、ブレード6をスリーブ2の表面に対し
て間隔を200μに設定した他は、実施例]1と同様に
行なったところ、同様に良好な結果が得られた。
[Example 2] In Example 1, the magnetic particles 5 had a particle size of 120 to 140μ.
(The number average particle size is 130μ, and the number of particles with a particle size of 120 to 140μ is 10,000 more than the total number.) 100f of spherical ferrite powder was used, and the spacing between the blade 6 and the surface of the sleeve 2 was set to 200μ. , Example] When the same procedure as in Example 1 was carried out, similarly good results were obtained.

〔実施例3〕 実施例1において、磁性粒子5を粒径30〜60μ(個
数平均粒径50μ)の範囲で、かつ、40〜60pの粒
径の粒子が全体の70個数多である偏平鉄粉を1001
用い、ブレード6をスリーブ20表面に対して間隔を7
0μに設定した他は、実施例1と同様に行なったところ
、同様に良好な〔実施例4〕 実施例1において、磁性粒子5を粒径50〜100μ(
個数平均粒径80μ)、64〜95μの粒径の粒子が全
体の83個数多である球形フェライト粉を100?用い
、ブレード6をスリーブ2の表面に対して間隔を250
μに設定した他は、実施例1と同様に行なったところ、
同様に良好な結果が得られた。
[Example 3] In Example 1, the magnetic particles 5 have a particle size in the range of 30 to 60 μm (number average particle size of 50 μm), and the flat iron has a total of 70 particles with a particle size of 40 to 60p. 1001 powder
The distance between the blade 6 and the sleeve 20 surface is 7.
The same procedure as in Example 1 was performed except that the particle size was set to 0μ, and the results were similarly good [Example 4] In Example 1, the magnetic particles 5 were set to 50 to 100μ (
100 spherical ferrite powders with a number average particle size of 80μ) and 83 particles with a particle size of 64 to 95μ. The distance between the blade 6 and the surface of the sleeve 2 is 250 mm.
The procedure was carried out in the same manner as in Example 1, except that μ was set.
Similarly good results were obtained.

〔比較例1〕 実施例1において、磁性牧子5を、粒径200〜250
μ(個数平均粒径230μ)で180〜270μの粒径
の粒子が全体の60係である球形フェライト粉を用いた
他は、実施例1と同様に行なったところ、15℃10%
冊の環境下で、細かいスジ状のカブリが発生した。
[Comparative Example 1] In Example 1, magnetic Makiko 5 was prepared with a particle size of 200 to 250.
The same procedure as in Example 1 was carried out except that spherical ferrite powder was used, in which particles with a particle size of 180 to 270 μ accounted for 60 μ (number average particle size 230 μ).
Under the environment of the book, fine streak-like fogging occurred.

〔比較例2〕 実施例2において、磁性粒子5を粒径25〜50μ(個
数平均粒径30μ)で、25〜36μの粒径の粒子が全
体の50係である球形フェライト粉を用いた他は、実施
例1と同様に行につだところ、15℃10%RHの環境
下で磁性粒子の流出が生じて画像上に刺着した。
[Comparative Example 2] In Example 2, the magnetic particles 5 had a particle size of 25 to 50 μm (number average particle size of 30 μm), and spherical ferrite powder was used in which particles with a particle size of 25 to 36 μm accounted for 50% of the total particle size. When the magnetic particles were applied in the same manner as in Example 1, in an environment of 15° C. and 10% RH, magnetic particles leaked out and stuck onto the image.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明のための現像装置の断面図。 第2図は本発明の実施例に用いた現像装置の断面図。 図において、2は現像剤保持部材であるスリーブ、3は
容器、4は非磁性現像剤、5は磁性粒子、6は規制部材
である磁性ブレード、7は磁石、10は磁性部材である
鉄片を示す。 出願人 キャノン株式会社
FIG. 1 is a sectional view of a developing device for explaining the principle of the present invention. FIG. 2 is a sectional view of a developing device used in an embodiment of the present invention. In the figure, 2 is a sleeve which is a developer holding member, 3 is a container, 4 is a non-magnetic developer, 5 is a magnetic particle, 6 is a magnetic blade which is a regulating member, 7 is a magnet, and 10 is an iron piece which is a magnetic member. show. Applicant Canon Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)  非磁性現像剤と磁性粒子とを貯蔵する容器と
、 潜像担持体に非磁性現像剤を回動搬送する現像剤保持部
材と、 上記容器の非磁性現像剤の供給出口側にあシ、この保持
部材表面に間隙を形成して配置した規制部材と、 この規制部材に対して上記保持部材を介して反対側に配
置され、上記容器の現像剤出口側にある規制部材の上流
側に磁性粒子による磁気ブラシを形成する磁極を少なく
とも一つ持つ磁石とを有1上記保持部材上に非磁性現像
剤の薄層を形成する塗布方法において、 上記磁性粒子の最大長で測定した個数平均粒径〒と、前
記規制部材と現像剤保持部材表面との間隙dが次式の関
係を満足している事1を特徴とする塗布方法。 nr=d (ここで1.00≦n≦5.00.dは非磁性現像剤の
平均粒径以上の値である。)
(1) A container for storing non-magnetic developer and magnetic particles, a developer holding member for rotationally conveying the non-magnetic developer to the latent image carrier, and a developer holding member located on the non-magnetic developer supply outlet side of the container. a regulating member disposed with a gap formed on the surface of the holding member; and an upstream side of the regulating member disposed on the opposite side of the regulating member across the holding member and located on the developer outlet side of the container. and a magnet having at least one magnetic pole forming a magnetic brush of magnetic particles.1 In the coating method of forming a thin layer of non-magnetic developer on the holding member, the average number of magnetic particles measured at the maximum length of the magnetic particles. A coating method characterized in that (1) the particle diameter (〒) and the gap d between the regulating member and the surface of the developer holding member satisfy the following relationship. nr=d (Here, 1.00≦n≦5.00.d is a value greater than or equal to the average particle diameter of the non-magnetic developer.)
(2)磁性粒子の粒径範囲は、前記平均粒径rの±20
%以内に全粒子の70個数−以上を含む特許請求の範囲
第1項記載の塗布方法。
(2) The particle size range of the magnetic particles is ±20 of the average particle size r.
The coating method according to claim 1, wherein the total number of particles is 70 or more within %.
JP7168683A 1983-04-22 1983-04-23 Applying method Granted JPS59197065A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7168683A JPS59197065A (en) 1983-04-23 1983-04-23 Applying method
US06/602,010 US4571372A (en) 1983-04-22 1984-04-19 Method for coating a non-magnetic developer onto a developer holding member
DE19843414951 DE3414951A1 (en) 1983-04-22 1984-04-19 COATING PROCESS FOR COATING WITH A DEVELOPER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7168683A JPS59197065A (en) 1983-04-23 1983-04-23 Applying method

Publications (2)

Publication Number Publication Date
JPS59197065A true JPS59197065A (en) 1984-11-08
JPH0220112B2 JPH0220112B2 (en) 1990-05-08

Family

ID=13467684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7168683A Granted JPS59197065A (en) 1983-04-22 1983-04-23 Applying method

Country Status (1)

Country Link
JP (1) JPS59197065A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191868A (en) * 1986-02-18 1987-08-22 Konishiroku Photo Ind Co Ltd Formation of developer layer
JPS62192756A (en) * 1986-02-20 1987-08-24 Canon Inc Developing method
JPS63226680A (en) * 1986-10-09 1988-09-21 Konica Corp Developer layer forming device
JPH0225874A (en) * 1988-07-15 1990-01-29 Canon Inc Developer thin layer forming device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191868A (en) * 1986-02-18 1987-08-22 Konishiroku Photo Ind Co Ltd Formation of developer layer
JPS62192756A (en) * 1986-02-20 1987-08-24 Canon Inc Developing method
JPS63226680A (en) * 1986-10-09 1988-09-21 Konica Corp Developer layer forming device
JPH0225874A (en) * 1988-07-15 1990-01-29 Canon Inc Developer thin layer forming device

Also Published As

Publication number Publication date
JPH0220112B2 (en) 1990-05-08

Similar Documents

Publication Publication Date Title
JPS6087352A (en) Toner coating method
US4590140A (en) Toner application method and treated magnetic particles for use therein
JPS6087348A (en) Toner coating method
JPS59197065A (en) Applying method
JPS59197056A (en) Applying method
JPS59197064A (en) Applying method
JPS6086555A (en) Coating method of toner
JPS6087351A (en) Toner coating method
JPS60117260A (en) Magnetic particle for toner coating and toner coating method
JPS6167045A (en) Toner coating method
JPS60235165A (en) Coating method
JPS61186973A (en) Toner applying method
JPS61186967A (en) Toner applying method to toner carrying body
JPS61151552A (en) Method for applying toner to toner carrier
JPS61198251A (en) Toner coating method and developer composition
JPS6095573A (en) Developing device
JPS6167046A (en) Toner coating method
JPS63128382A (en) Formation of image
JPS61182054A (en) Process for spreading toner
JPS61149973A (en) Method for coating toner to toner carrying body
JPH0220113B2 (en)
JPS61162060A (en) Magnetic particle material for toner coating and toner coating method using said magnetic particle material
JPS59187371A (en) Developing device
JPS6035763A (en) Developing method
JPS6275552A (en) Image forming method