JPS59166624A - High frequency induction refining of pipe - Google Patents

High frequency induction refining of pipe

Info

Publication number
JPS59166624A
JPS59166624A JP3956083A JP3956083A JPS59166624A JP S59166624 A JPS59166624 A JP S59166624A JP 3956083 A JP3956083 A JP 3956083A JP 3956083 A JP3956083 A JP 3956083A JP S59166624 A JPS59166624 A JP S59166624A
Authority
JP
Japan
Prior art keywords
pipe
tempering
temp
cooling water
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3956083A
Other languages
Japanese (ja)
Inventor
Norio Ito
則雄 伊藤
Ban Tan Toran
トラン・バン・タン
Isao Matsumoto
勲 松本
Hironori Chiba
千葉 裕紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
DKK Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Showa Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd, Showa Seisakusho Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP3956083A priority Critical patent/JPS59166624A/en
Publication of JPS59166624A publication Critical patent/JPS59166624A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To enhance the fatigue resistant strength of a pipe, by a method wherein the pipe is heated to the annealing temp. directly below an austenitizing temp. while moving and the heated pipe is quenched from said temp. under movement by injecting cooling water to generate large residual compression stress in the axial direction of the pipe. CONSTITUTION:In uniformly refining the entire cross-sectional area of a pipe by high frequency induction hardening and annealing, hardening is at first applied to the entire cross-sectional area of the pipe by a usual high frequency hardening method. In the subsequent annealing, the pipe 1 is moved to an up- and-down direction while rotated by a support apparatus 4 and heated to the temp. directly below an austenitizing temp. by a high frequency heating coil 5. In the next step, cooling water 7 is directly injected from a cooling water jacket 6 to quench the heated pipe 1 to an atmospheric temp. from said annealing temp. By this method, residual compression stress larger than the stress during hardening is generated in the axial direction of the pipe 1 and, as a result, the fatigue resistant strength of the pipe 1 is enhanced to a large extent.

Description

【発明の詳細な説明】 本発明はパイプ全断面の高周波誘導調質方法に関する。[Detailed description of the invention] The present invention relates to a method for high-frequency induction refining of the entire cross section of a pipe.

さらに詳しくは、自動二輪車のフロントフォーク用フォ
ークパイプ等の部材の耐疲労性を向上させる高周波誘導
調質方法に関するものである。
More specifically, the present invention relates to a high frequency induction thermal refining method for improving the fatigue resistance of members such as fork pipes for front forks of motorcycles.

従来、パイプの耐疲労性を向上させる調質方法、すなわ
ち、焼入れしたパイプを400C〜600Cの温度に焼
戻し、強靭なソルバイト組織を形成させて耐疲労性を向
上させる処理方法としては、次に示すような種々の方法
がある。すなわち、電気炉焼入+電気炉焼戻し、高周波
移動焼人士電気炉焼戻し、高周波定置焼入+電気炉焼戻
し、高周波定置焼入+高周波定置焼戻し、高周波移動焼
入+高周波定置焼戻し等である。
Conventionally, the following treatment methods have been used to improve the fatigue resistance of pipes, that is, to temper the quenched pipe to a temperature of 400C to 600C to form a strong sorbite structure. There are various methods such as: That is, electric furnace hardening + electric furnace tempering, high-frequency moving quencher electric furnace tempering, high-frequency stationary quenching + electric furnace tempering, high-frequency stationary quenching + high-frequency stationary tempering, high-frequency moving quenching + high-frequency stationary tempering, etc.

これらの調質方法における焼戻し工程は、電気炉加熱に
よる方法と高周波誘導加熱による方法とに大別されるが
、その焼戻し温度、焼戻し時間は、電気炉による場合と
高周波による場合とでは異なる。
The tempering process in these refining methods is broadly classified into methods using electric furnace heating and methods using high frequency induction heating, but the tempering temperature and tempering time are different depending on whether the electric furnace is used or the high frequency is used.

電気炉焼戻しに比べて、高周波定置焼戻しによる場合に
は、焼戻し温度は高く、焼戻し時間は短い。短い焼戻し
時間で、長時間焼戻しだ場合と同一の硬さを得るために
、その焼戻し温度を高くしなければならないが、それを
どれほど高くするかについては、次式が提示されている
Compared to electric furnace tempering, when using high frequency stationary tempering, the tempering temperature is higher and the tempering time is shorter. In order to obtain the same hardness as in the case of long-time tempering with a short tempering time, the tempering temperature must be increased, and the following formula is proposed as to how high it should be.

すなわち (T1+273) / (T2+273) = (lo
g j2+c)/ (1w t+ +c)ここで T1
. Tz:焼戻し温度(C)’I + t2 ’焼戻し
時間(seC)C:炭素量によって決まる定数 上式は、鋼を焼戻しする場合に、温度T1、時間t1の
条件で得られる焼戻し効果は、温度T2、時間t2の条
件で得られる焼戻し効果に等しいということを示す。後
述の比較例に示すように、炭素含有量0.40〜0.4
5重量%のパイプの焼戻しを電気炉にて行なう場合、そ
の焼戻し温度は470 C,保持時間は1.5時間であ
る。この焼戻し条件により調質硬さ)(RC40を得て
いる。
That is, (T1+273) / (T2+273) = (lo
g j2+c)/(1w t+ +c) where T1
.. Tz: Tempering temperature (C) 'I + t2' Tempering time (seC) C: Constant determined by carbon content The above equation shows that when tempering steel, the tempering effect obtained under the conditions of temperature T1 and time t1 is This indicates that the tempering effect is equal to that obtained under the conditions of T2 and time t2. As shown in the comparative example below, the carbon content is 0.40 to 0.4
When tempering a 5% by weight pipe in an electric furnace, the tempering temperature is 470 C and the holding time is 1.5 hours. Under these tempering conditions, the tempered hardness) (RC40) was obtained.

これを高周波誘導加熱によシ短時間(約1秒)で焼戻す
場合の焼戻し温度を上式から求めると、約640Cとな
る。すなわち、電気炉焼戻し条件470 U X 1.
5時間に相当する高周波焼戻し条件は640t:’ X
 1.0秒となる。通常、焼入れした鋼を400C〜6
00Cの温度に焼戻す処理を”調質”と呼ぶが、この焼
戻し温度(400C〜6ooC)は、電気炉およびその
他の炉で時間をかけて焼戻す場合の温度であって、当然
、高周波加熱による調質の場合は、その焼戻し時間が短
いため、その加熱温度は上述したように高くなる。
The tempering temperature when this is tempered in a short time (about 1 second) by high-frequency induction heating is determined from the above equation to be about 640C. That is, electric furnace tempering conditions 470 U X 1.
The induction tempering condition corresponding to 5 hours is 640t: 'X
It becomes 1.0 seconds. Usually, hardened steel is 400C~6
The process of tempering to a temperature of 00C is called "refining", but this tempering temperature (400C to 6ooC) is the temperature at which tempering is performed over time in an electric furnace or other furnaces, and of course, high-frequency heating is used. In the case of heat refining, the tempering time is short, so the heating temperature is high as described above.

一般に高周波焼入れにおいては、普通の焼入れに比べて
、鋼の表面の残留応力が大きく、従って、耐疲労強度が
高くなる。この高周波焼入れによる表面の圧縮残留応力
は焼戻しによって小さくなるが、その値は焼戻し温度が
高くなればなるほど小さくなる。例えば高周波焼入れし
たパイプ材を電気炉にて焼戻した場合、その焼戻し温度
が500C〜600C位であると、残留応力は完全に除
去され、実質的にゼロとなる′。また高周波定置加熱、
移動加熱によシミ気炉加熱相当の温度で焼戻しだ場合も
、同傾向を示す。
In general, in induction hardening, the residual stress on the surface of the steel is greater than in normal hardening, and therefore the fatigue strength is increased. This compressive residual stress on the surface due to induction hardening is reduced by tempering, and its value becomes smaller as the tempering temperature becomes higher. For example, when induction-hardened pipe material is tempered in an electric furnace, if the tempering temperature is about 500C to 600C, residual stress is completely removed and becomes substantially zero. In addition, high frequency stationary heating,
The same tendency is observed when the material is tempered by moving heating at a temperature equivalent to stain furnace heating.

以上は、焼戻し後、空冷した場合の残留応力の挙動であ
るが、焼戻し後、冷却速度を水冷によシ早めだ場合、残
留応力の値は、焼戻し温度が400C位迄は焼入時の残
留応力の値よシ小さいが、600C位で焼入時と同等も
しくは、少し大きい値を示すにすぎない。高周波定置加
熱によシ、短時間で電気炉焼戻し温度400C〜600
Cに相当する温度で焼戻し、噴射冷却により急速冷却し
ても同じような傾向を示す。いずれの場合も従来の焼戻
し方法では大きな残留応力を発生させることが困難でア
シ、耐疲労性の著しい向上はあまシ期待できなかった。
The above is the behavior of residual stress when air cooling is performed after tempering. However, if the cooling rate is accelerated by water cooling after tempering, the value of residual stress will decrease until the tempering temperature is about 400C. Although it is smaller than the stress value, at about 600C it shows a value equivalent to or only slightly larger than that during quenching. Due to high frequency stationary heating, electric furnace tempering temperature 400C to 600C in a short time
A similar tendency is exhibited even when tempering is performed at a temperature corresponding to C and rapid cooling is performed by injection cooling. In either case, it was difficult to generate large residual stress using conventional tempering methods, and significant improvements in reed and fatigue resistance could not be expected.

本発明は上記問題点を解決し、耐疲労性の高いパイプを
得るだめの高周波調質方法を提供するもので、その要旨
は、高周波誘導焼入れ、焼戻しによシバイブ全断面を均
一に調質する方法において、その焼戻し工程を移動加熱
冷却法にて行ない、その焼戻し温度を鉄鋼のオーステナ
イト化温度直下にして移動加熱し、該加熱部を噴射冷却
水を用いて移動急速冷却することによシ、パイプの軸方
向に焼入時の応力よりも大きな残留圧縮応力を発生さぜ
、耐疲労性を向上させることを特徴とするパイプの高周
波誘導調質方法にある。
The present invention solves the above-mentioned problems and provides a high-frequency thermal refining method for obtaining a pipe with high fatigue resistance. In the method, the tempering step is carried out by a moving heating and cooling method, the tempering temperature is moved to be just below the austenitizing temperature of the steel, and the heated part is moved and rapidly cooled using jetted cooling water. A high-frequency induction refining method for a pipe is characterized in that it generates a residual compressive stress in the axial direction of the pipe that is larger than the stress during quenching, thereby improving fatigue resistance.

本発明におけるパイプの調質は、その焼戻し工程に著し
い特徴がある。すなわち、焼入れは、従来、慣用されて
いる高周波焼入れ方法によって、パイプ全断面を焼入れ
するが、焼戻しは移動加熱冷却法によって行ない、その
焼戻し温度をオーステナイト化温度直下とし、該焼戻し
温度から2〜5秒間以内に常温迄−挙に冷却する。
The pipe refining in the present invention has a remarkable feature in its tempering process. That is, the entire cross section of the pipe is quenched by a commonly used induction hardening method, but the tempering is performed by a moving heating and cooling method, and the tempering temperature is set just below the austenitizing temperature, and the tempering temperature is 2 to 5 degrees below the austenitizing temperature. Cool down to room temperature within seconds.

その間、所要の調質硬さを維持しておく。During this time, the required hardness is maintained.

第2図は、その実施の態様を示すが、1はパイプ、4は
パイプ1を支持し、これを回転させながら上下方向に移
動させるための装置、5は高周波加熱コイル、6は噴射
冷却水用ジャケット、7は噴射冷却水である。なお、パ
イプ1はこれを上下方向に固定し、加熱コイル5と冷却
水用ジャケット6を移動させるようにし、また両者を相
対的に移動させるようにしてもよい。
FIG. 2 shows an embodiment thereof, in which 1 is a pipe, 4 is a device for supporting the pipe 1 and moving it vertically while rotating, 5 is a high-frequency heating coil, and 6 is a cooling water jet. 7 is a cooling water jet. Note that the pipe 1 may be fixed in the vertical direction, and the heating coil 5 and cooling water jacket 6 may be moved, or both may be moved relative to each other.

寸ず高周波加熱コイル5でパイプ1をオーステナイト化
温度直下まで加熱し、次いで直ちに冷却水用ジャケット
から冷却水7をパイプ1に噴射し、パイプ1を常温まで
に冷却する。
The pipe 1 is heated to just below the austenitizing temperature using the high-frequency heating coil 5, and then immediately the cooling water 7 is injected into the pipe 1 from the cooling water jacket to cool the pipe 1 to room temperature.

このような焼戻しによって、パイプには大きな残留圧縮
応力が発生し、その結果、耐疲労強度が大巾に向上する
。すなわち、高い焼戻し温度のだめ焼入れによる変態応
力が減少し、かわりに急速冷却による熱応力が現われて
、パイプの収縮と共に大きな残留圧縮応力が発生する。
Such tempering generates a large residual compressive stress in the pipe, and as a result, the fatigue strength is greatly improved. That is, the transformation stress due to the slow quenching at a high tempering temperature is reduced, and instead thermal stress due to rapid cooling appears, causing large residual compressive stress as the pipe contracts.

この熱応力は高温から急速冷却すればするほど大きくな
る。しかるにオーステナイト化温度以上に加熱して急冷
すると、焼きが入るので、焼きの入らないオーステナイ
ト化温度以下でできるだけ高温に加熱し、しかる後急速
冷却しなければならない。
This thermal stress increases as the temperature is rapidly cooled down. However, if it is heated above the austenitizing temperature and then rapidly cooled, quenching will occur, so it must be heated as high as possible below the austenitizing temperature without causing quenching, and then rapidly cooled.

本発明の調質方法は、炭素含有量02〜0.6%のパイ
プ材に適用可能である。まだ調質硬さについては、焼戻
し温度あるいは常温迄の冷却速度を調整することにより
、所要調質硬さを得ることができる。冷却速度の調整は
、冷却液流量、および送シ速度を変化させることにより
可能である。
The refining method of the present invention is applicable to pipe materials with a carbon content of 02 to 0.6%. As for the tempered hardness, the required tempered hardness can be obtained by adjusting the tempering temperature or the cooling rate to room temperature. The cooling rate can be adjusted by changing the coolant flow rate and feeding rate.

本発明においては、パイプ全断面を均一に調質するため
の高周波電源は、調質対象パイプの径、肉厚によって、
I KHz〜10KHzの周波数範囲で適当に選択する
ことができる。
In the present invention, the high frequency power source for uniformly refining the entire cross section of the pipe depends on the diameter and wall thickness of the pipe to be refined.
A suitable selection can be made in the frequency range from I KHz to 10 KHz.

以下に、実施例および比較例を示す。Examples and comparative examples are shown below.

実施例 外径37φ、内径30φ、長さ755rnfn、材質5
AE1041 (炭素含有量0.40〜0,45重量%
)のシームレスパイプを、表−1に示す調質条件により
、パイプの両端150問ずつを非調質部とし、残、!l
)455wnの範囲をHRC40”の硬さに調質した。
Exception diameter: 37φ, inner diameter: 30φ, length: 755rnfn, material: 5
AE1041 (carbon content 0.40-0.45% by weight
) seamless pipe, according to the refining conditions shown in Table 1, with 150 parts at each end of the pipe as non-thermal parts, and the rest, ! l
) 455wn was tempered to a hardness of HRC40''.

この場合の焼戻し噴射冷却水量は50737m1nであ
る。
The amount of tempering injection cooling water in this case is 50,737 m1n.

表 −1調質条件 比較例1 実施例で用いたものと同じパイプに、実施例と同一の焼
入れ条件により焼入れを行ない、焼戻しは電気炉にて行
ない、その調質硬さをHRC40+:3 とした。この
場合の焼戻し条件は400 tr X 1.5時間、焼
戻し後の冷却は空冷とした。
Table 1 Comparative example of thermal refining conditions 1 The same pipe as used in the example was hardened under the same hardening conditions as in the example, tempering was performed in an electric furnace, and the refining hardness was HRC40+:3. did. The tempering conditions in this case were 400 tr x 1.5 hours, and the cooling after tempering was air cooling.

比較例2 実施例と同一のパイプに電気炉焼入れをし、比較例1と
同じ条件で電気炉焼戻しを行なった。
Comparative Example 2 The same pipe as in Example was quenched in an electric furnace, and tempered in an electric furnace under the same conditions as in Comparative Example 1.

比較例3 実施例で用いたものと同じパイプに、実施例と同一の焼
入れ条件にて焼入れを行ない、焼戻しは施こさなかった
Comparative Example 3 The same pipe as used in the example was quenched under the same quenching conditions as in the example, but was not tempered.

第1図は実施例によって得られたパイプの縦断面図を示
す。図において、1は調質部、2は非調質部、3は境界
部、rlは調質部の内径、r2は非調質部の内径、r3
は境界部の内径を示す。
FIG. 1 shows a longitudinal cross-sectional view of a pipe obtained in an example. In the figure, 1 is the tempered part, 2 is the non-tempered part, 3 is the boundary, rl is the inner diameter of the tempered part, r2 is the inner diameter of the non-tempered part, r3
indicates the inner diameter of the boundary.

第2図は、本発明の調質方接の一例を示す。FIG. 2 shows an example of a thermal square tangent of the present invention.

図において、4は焼入れ、焼戻し用加熱コイル、5は噴
射冷却水を示す。
In the figure, 4 indicates a heating coil for quenching and tempering, and 5 indicates an injection cooling water.

以上、実施例、比較例1〜3で得たパイプについて、寸
法変化、および機緘的性質の測定結果を表−2に示す。
Table 2 shows the measurement results of dimensional changes and mechanical properties of the pipes obtained in Examples and Comparative Examples 1 to 3.

表−2において、内径寸法変化のマイナスは、パイプに
調質を施こす前よシ収縮していることを示す。段差は非
調質部の内径r2と境界部の内径r3との寸法差r2−
r3を示す。耐疲労性は応力振幅±40ky/xi で
の破断回数を示す。圧縮残留応力はパイプ表面より0.
2.の深さにおける値を示す。
In Table 2, a negative value in the internal diameter dimension change indicates that the pipe is shrinking before being tempered. The step is the dimensional difference r2- between the inner diameter r2 of the non-thermal refining part and the inner diameter r3 of the boundary part.
Indicates r3. Fatigue resistance indicates the number of fractures at a stress amplitude of ±40ky/xi. The compressive residual stress is 0.0 from the pipe surface.
2. indicates the value at the depth of

表−2より、本発明の調質方法によるパイプは、従来の
調質方法に比べて耐疲労性は3〜4倍に向上している。
From Table 2, the fatigue resistance of the pipe produced by the heat refining method of the present invention is three to four times higher than that of the pipe produced by the conventional heat refining method.

圧縮残留応力は焼入のみの値に対して約3倍の値を示し
ているが、これは焼戻し温度が高い状態からの急速冷却
が、圧縮応力の増大に有効であることを示している。こ
の大きな圧縮残留応力の発生によって、耐疲労性が著し
く向上するものと考えられる。一方、電気炉焼戻しの場
合、その値はゼロに近く、これは焼戻しにより残留圧縮
応力がほとんど除去されていることを示している。その
他、抗張力、降伏点、伸び、衝撃値についても、本発明
の調質方法によるパイプが最もすぐれていることは明ら
かである。
The compressive residual stress is about three times the value obtained by quenching alone, which indicates that rapid cooling from a high tempering temperature is effective in increasing the compressive stress. It is thought that the generation of this large compressive residual stress significantly improves fatigue resistance. On the other hand, in the case of electric furnace tempering, the value is close to zero, indicating that residual compressive stress is almost removed by tempering. In addition, it is clear that the pipe produced by the refining method of the present invention is the most excellent in terms of tensile strength, yield point, elongation, and impact value.

さらに、本発明の調質方法によるパイプは、内径の収縮
量が従来法に比べて最も大きく、焼入れのみのパイプの
内径寸法変化が−0,09wnの収縮量であるが、これ
は従来法に比べて、高い焼戻し温度から急速冷却するこ
とにより、大きな熱応力を生じ、収縮量が大きくなるこ
とを示している。次に、段差についても本発明によるパ
イプは大きな特徴を示す。すなわち調質部の内径r1と
境界部の内径r3との差が生ずることである。これは、
従来方法および焼入れのみの場合、rlとr3は等しい
か、もしくはr3)rlの傾向を示すが、本発明方法に
よると、r3<rIとなる。
Furthermore, the amount of inner diameter shrinkage of the pipe produced by the refining method of the present invention is the largest compared to that of the conventional method, and the inner diameter dimensional change of the pipe treated only by quenching is -0.09wn, which is lower than that of the conventional method. In comparison, rapid cooling from a high tempering temperature produces large thermal stress and increases the amount of shrinkage. Next, the pipe according to the present invention exhibits a significant feature regarding the level difference. That is, there is a difference between the inner diameter r1 of the tempered part and the inner diameter r3 of the boundary part. this is,
In the case of the conventional method and only quenching, rl and r3 are equal or exhibit a tendency of r3)rl, but according to the method of the present invention, r3<rI.

従って、非調質部との段差が最も大きくなる。Therefore, the difference in level from the non-tempered part becomes the largest.

本発明の調質方法、すなわち、高周波焼入れ+高周波移
動焼戻しは、短時間加熱のだめ、結晶粒が従来法に比べ
非常に微細となり、機械的性質に好結果を与え、さらに
、スケールの発生および脱炭が極端に少なく、後段のメ
ッキ工程での酸洗いなどによるスケール除去が不要とな
る。さらに、パイプの両端は、非調質状態にすることが
できるので、ネジ加工等が容易である。
The thermal refining method of the present invention, that is, induction hardening + high frequency transfer tempering, requires only short heating time, and the crystal grains become much finer than that of conventional methods, giving good results on mechanical properties. Since there is extremely little charcoal, there is no need to remove scale by pickling or the like in the subsequent plating process. Furthermore, since both ends of the pipe can be brought into a non-temperature state, threading etc. can be easily performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例によって得られたパイプの縦断
面図、第2図は本発明の調質方法の一例を示す図である
。 1・・・・・・焼入部、   2・・・・・・井焼入飾
、3・・・・・・境界部、    4・・・・・・パイ
プの支持部、5・・・・・・高周波コイル、 6・・・・・・冷却水用ジャケット、 7・・・・・・冷却水。
FIG. 1 is a longitudinal cross-sectional view of a pipe obtained according to an embodiment of the present invention, and FIG. 2 is a diagram showing an example of the refining method of the present invention. 1... Hardened part, 2... Hardened decoration, 3... Boundary part, 4... Pipe support part, 5...・High frequency coil, 6... Jacket for cooling water, 7... Cooling water.

Claims (2)

【特許請求の範囲】[Claims] (1)高周波誘導焼入、焼戻しによシバイブ全断面を均
一に調質する方法において、その焼戻し工程を移動加熱
冷却法にて行ない、まず鉄鋼のオーステナイト化温度直
下にまで移動加熱し、次いで該加熱部を噴射冷却水を用
いて移動急速冷却し、それによって、パイプの軸方向に
焼入時の応力よシも大きな残留圧縮応力を発生させ、耐
疲労性を向上させることを特徴とするパイプの高周波誘
導調質方法。
(1) In the method of uniformly refining the entire cross section of the shivive by high-frequency induction hardening and tempering, the tempering process is performed by a moving heating and cooling method, first moving and heating the steel to just below the austenitizing temperature, and then A pipe characterized in that the heated part is moved and rapidly cooled using jetted cooling water, thereby generating residual compressive stress in the axial direction of the pipe that is greater than stress during quenching, thereby improving fatigue resistance. High frequency induction refining method.
(2)上記移動急速冷却を、噴射冷却水量、およびパイ
プもしくは加熱コイルの送り速度を調整して行なうこと
を特徴とする特許請求の範囲第1項記載のパイプの高周
波誘導調質方法。
(2) The high-frequency induction refining method for a pipe according to claim 1, wherein the moving rapid cooling is performed by adjusting the amount of injected cooling water and the feeding speed of the pipe or heating coil.
JP3956083A 1983-03-10 1983-03-10 High frequency induction refining of pipe Pending JPS59166624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3956083A JPS59166624A (en) 1983-03-10 1983-03-10 High frequency induction refining of pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3956083A JPS59166624A (en) 1983-03-10 1983-03-10 High frequency induction refining of pipe

Publications (1)

Publication Number Publication Date
JPS59166624A true JPS59166624A (en) 1984-09-20

Family

ID=12556453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3956083A Pending JPS59166624A (en) 1983-03-10 1983-03-10 High frequency induction refining of pipe

Country Status (1)

Country Link
JP (1) JPS59166624A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342396A (en) * 1986-08-04 1988-02-23 ユナイテッド・テクノロジ−ズ・コ−ポレイション Composite material article enhanced in fatigue strength
US6108908A (en) * 1997-11-03 2000-08-29 Illinois Tool Works Heat treated combustion chamber housing and process for making same
KR100464636B1 (en) * 2002-04-15 2005-01-03 박종국 Manufacturing method of cross arm
JP2010031305A (en) * 2008-07-25 2010-02-12 Ntn Corp Tempering apparatus and method using high-frequency induction heating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633424A (en) * 1979-08-23 1981-04-03 Nippon Steel Corp Steel pipe having excellent crushing strength

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633424A (en) * 1979-08-23 1981-04-03 Nippon Steel Corp Steel pipe having excellent crushing strength

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342396A (en) * 1986-08-04 1988-02-23 ユナイテッド・テクノロジ−ズ・コ−ポレイション Composite material article enhanced in fatigue strength
US6108908A (en) * 1997-11-03 2000-08-29 Illinois Tool Works Heat treated combustion chamber housing and process for making same
KR100464636B1 (en) * 2002-04-15 2005-01-03 박종국 Manufacturing method of cross arm
JP2010031305A (en) * 2008-07-25 2010-02-12 Ntn Corp Tempering apparatus and method using high-frequency induction heating

Similar Documents

Publication Publication Date Title
CA1076463A (en) Producing rolled steel products
JP4748283B2 (en) Manufacturing method of thick-walled seamless steel pipe
JPS58188532A (en) Manufacture of hollow stabilizer
US5876523A (en) Method of producing spheroidal graphite cast iron article
WO2023213109A1 (en) Accurate heat treatment method for low-carbon low-alloy high-strength thin steel plate
CN105369015A (en) 42 CrMo shaft part quenching and heat-treatment technology
US4457789A (en) Process for annealing steels
JP2009074155A (en) Method for quenching die
JPS59166624A (en) High frequency induction refining of pipe
JP3159372B2 (en) Mold and quenching method
US2924543A (en) Cold-finished steels and method for manufacturing same
JPS61153230A (en) Production of low-alloy steel wire rod which permits quick spheroidization
SU773103A1 (en) Method of thermal treatment of long-sized high-speed steel tool
JP2835057B2 (en) Spring steel and manufacturing method thereof
CN109055683A (en) A kind of D6AC ultrahigh-strength steel thin-wall shell vacuum fractionation air quenching method
SU1188215A1 (en) Method of heat treatment of cold-rolled low-carbon steel
JP2716141B2 (en) Spring material
JPS6343446B2 (en)
SU1038369A1 (en) Method for treating stainless martensite steels
SU1129248A1 (en) Method for treating low-carbon steel
SU1315487A1 (en) Method for cyclic heat treatment of medium-carbon and low-alloy steels
SU595405A1 (en) Method of heat treatment of low-carbon steel
SU1731843A1 (en) Metal-forming device
SU1093714A1 (en) Method for heat treating pole pieces of electrical steels
SU659637A1 (en) Method of heat treatment of articles