JPS591657A - Corrosion-and heat-resistant steel for boiler tube - Google Patents

Corrosion-and heat-resistant steel for boiler tube

Info

Publication number
JPS591657A
JPS591657A JP10963082A JP10963082A JPS591657A JP S591657 A JPS591657 A JP S591657A JP 10963082 A JP10963082 A JP 10963082A JP 10963082 A JP10963082 A JP 10963082A JP S591657 A JPS591657 A JP S591657A
Authority
JP
Japan
Prior art keywords
less
asi
corrosion
heat
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10963082A
Other languages
Japanese (ja)
Inventor
Mizuo Sakakibara
榊原 瑞夫
Toshio Fujita
利夫 藤田
Satoshi Araki
荒木 敏
Yukio Onoyama
小野山 征生
Mikio Yamanaka
幹雄 山中
Haruo Shimada
島田 春男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10963082A priority Critical patent/JPS591657A/en
Publication of JPS591657A publication Critical patent/JPS591657A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE:To obtain a steel for a boiler tube with superior corrosion resistance, heat resistance and toughness, by adding specified percentages of C, Si, Mn, Cr, Ni, Mo and N to Fe and by restricting the austenite stabilzing index to a specified range. CONSTITUTION:A steel consisting of, by weight, 0.02-0.12% C, 1.7-3.5% Si, 0.5-2.5% Mn, 15.0-26.0% Cr, 10.0-31.0% Ni, <=1.0% Mo, 0.10-0.25% N and the balance Fe with inevitable impurities and having -1-3 austenite stabilizing index ASI expressed by the equation is prepared. <=1.0% Nb, <=1.0% Ti (Nb+ Ti<=1.0%), <=0.01% B, <=0.1% Al and <=0.05% Ca may be added to the steel. Thus, a steel for a boiler tube ensuring corrosion and heat resistances at high temp. and toughness after long-time use is obtd.

Description

【発明の詳細な説明】 本発明は石炭燃焼2重油燃焼雰囲気における高温度での
耐食性に優れ、かつ強度が高いとともに高温度に長時間
さらされた後にも高い靭性を有するd?イラチューブ用
耐食耐熱用鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a d? This relates to corrosion-resistant and heat-resistant steel for flat tubes.

近年エネルギ資源の供給不安定による高騰が続いており
、省資源、省エネルギー化がさけばれ、産業用設備はこ
の流れに従い改良される傾向にある。火力発電設備にお
いてもこの傾向は顕著でおり、蒸気条件を高温高圧化す
ることによシ熱効率の改善を図9、高性能火力発電設備
へと移行する動向にある。すなわち現状の蒸気条件は5
38℃。
In recent years, energy prices have continued to rise due to the unstable supply of energy resources, and resource and energy conservation has been sought after, and industrial equipment has tended to be improved in accordance with this trend. This trend is also noticeable in thermal power generation equipment, and there is a trend toward improved thermal efficiency by increasing the steam conditions to higher temperatures and pressures. In other words, the current steam condition is 5
38℃.

245 kg/crn”が採用されているが、これを6
50℃。
245 kg/crn” has been adopted, but this is
50℃.

350kg/lyr? K改善することが考えられてい
る。しかしこのためには現状の火力発電用ボイラチュー
ブに用いられているSUS 321 HTB 、 SU
S 347 HTBではその特性が高温強度及び高温耐
食性の観点から不十分であり、新規な材料の開発が切に
望まれている。
350kg/lyr? It is considered to improve K. However, for this purpose, SUS 321 HTB and SU, which are currently used in boiler tubes for thermal power generation, are required.
S 347 HTB has insufficient properties in terms of high-temperature strength and high-temperature corrosion resistance, and the development of a new material is strongly desired.

本発明はかかる動向を背景に開発されたもので、高温度
での耐食性耐熱性と長時間使用後の靭性を確保した全く
新しい型のdeイラチー−プ用鋼である。
The present invention was developed against the background of this trend, and is a completely new type of steel for deiracheap that ensures corrosion resistance and heat resistance at high temperatures and toughness after long-term use.

一般に高温度の空気中においてcrの耐酸化性が優れて
おシ、耐食耐熱用鋼として高Cr化が計られている。本
発明は火力発電燃焼雰囲気中において従来の知見に反し
、15.0〜26.0%の範囲にあるCrス有量の差は
耐食性にほとんど影響を与えないことを知見し、この昇
囲気におりて耐食性を向上させるための唯一の元素とし
て81ヲ知見したことに基づいている。すなわちSiを
1.7チ以上添加すると添加量が増すにつれ耐食性が飛
躍的に向上する◎しかし周知のように鋼中にst 1&
:含有増加させて行くとσ相が生成し、高温強度が低下
する。また長時間高温にさらした後靭性が著しく低下す
るため長時間の使用にあたっては信頼性の点で問題があ
った・本発明ではこのσ相生成を回避するための新しい
知見を得、ASI (オーステナイト安定化指数)とい
う概念を導入し、slの有効利用範囲を拡大し、耐食性
耐熱性及び使用抜靭性の面から信頼性の高い?イラチュ
ーブ用耐食耐熱用鋼を開発したものである。
In general, Cr has excellent oxidation resistance in high-temperature air, and high Cr steels are being developed as corrosion-resistant and heat-resistant steels. The present invention has discovered that, contrary to conventional knowledge, a difference in Cr content in the range of 15.0 to 26.0% has almost no effect on corrosion resistance in the combustion atmosphere of thermal power generation. This is based on the discovery that 81 is the only element for improving corrosion resistance. In other words, when 1.7 or more Si is added, the corrosion resistance improves dramatically as the amount added increases. However, as is well known, there are
: When the content is increased, a σ phase is generated and the high temperature strength decreases. In addition, after being exposed to high temperatures for a long period of time, the toughness significantly decreases, causing problems in terms of reliability during long-term use.In the present invention, we have obtained new knowledge to avoid this σ phase formation, Introducing the concept of SL (stabilization index), expanding the range of effective use of SL, and making it highly reliable in terms of corrosion resistance, heat resistance, and ductility. We have developed a corrosion-resistant and heat-resistant steel for flat tubes.

ASIはオーステナイトマトリックスの安定性を示す指
針でマトリックスが安定であればσ相等異相の金属間化
合物が生成し難くな−る。ASIに影響を及ばず元素と
してC、Nl t Mn t N 、 Cr 、 81
 。
ASI is a guideline that indicates the stability of the austenite matrix, and if the matrix is stable, intermetallic compounds of different phases such as σ phase will be difficult to form. C, Nl t Mnt N , Cr, 81 as elements without affecting ASI
.

Moが知見されそれら元素の効果を総合的に検府した結
果、ASIを以下の ASI=(21C十NS+0.5Mn+11.5N+7
)  (3Si+Cr+Mo)式で現わした場合に、高
温強度及び使用稜靭性に対する元素効果を良く整理出来
ることを見出した。
As a result of the discovery of Mo and the comprehensive examination of the effects of these elements, the ASI was determined as follows: ASI = (21C + NS + 0.5Mn + 11.5N + 7
) It has been found that elemental effects on high temperature strength and usable edge toughness can be well organized when expressed by the formula (3Si+Cr+Mo).

すなわちASIが−1〜3の範囲で叢も高温強度及び高
温長時間時効後の靭性が高い。
That is, when the ASI is in the range of -1 to 3, the high temperature strength and toughness after high temperature long-term aging are high.

以下に本発明における各成分元素を限定した理由につい
て述べる。
The reasons for limiting each component element in the present invention will be described below.

Slは第1図に示すように添加量が増加するに従って人
工法(41%Na 2804 + 51% Fe 2 
(804)5 + 8 ’16V 205 )中、65
0℃x2ooh腐食後の腐食量が減少する。
As shown in FIG.
(804) 5 + 8 '16V 205 ), 65
The amount of corrosion after 0°C x 2ooh corrosion is reduced.

従来SUS 347 HTB等が用いられている538
℃においてはこの腐食減量が約350〜/cm2である
ことから650℃においても実用的に350 ’V/c
1n”以下の腐食量1tt−確保することが必要と考え
られる。
538, which conventionally uses SUS 347 HTB etc.
Since this corrosion loss is about 350~/cm2 at 650°C, it is practical to use 350'V/c even at 650°C.
It is considered necessary to ensure a corrosion amount of 1tt- less than 1n''.

従って本発明においてはSiの下限を1.70%とした
。これ以上のSi’j5添加して行けば行くほど耐食性
は向上するが、Stは前述したように強力なσ相生成元
素であり、このσ相の生成を抑制するためにASI値を
制御する必要があるが、ASIの式中81の増加に伴い
バランスが大きくずれるとc* Mn +Nでは制御出
来ずN量ヲ添加してバランスを保つ必要が生じてぐる。
Therefore, in the present invention, the lower limit of Si is set to 1.70%. Corrosion resistance improves as more Si'j5 is added, but as mentioned above, St is a strong σ phase forming element, and it is necessary to control the ASI value to suppress the generation of this σ phase. However, if the balance shifts significantly as 81 in the ASI equation increases, it cannot be controlled with c*Mn +N, and it becomes necessary to maintain the balance by adding the amount of N.

このため過度の添加は工業的経済性をそこなうことにな
る。従って81の上限を3.5優に限定した。この中で
も好ましいSlの含有量は2.1〜3.0優の範囲にあ
る。又さらに最も効果的な含有量は2.6〜3.0係の
範囲である。
Therefore, excessive addition will impair industrial economy. Therefore, the upper limit of 81 was limited to 3.5 well. Among these, the preferable Sl content is in the range of 2.1 to 3.0. Furthermore, the most effective content is in the range of 2.6 to 3.0.

また第2図に示すよう’1tchsxが−1〜3の範囲
で700℃、1000h時効後の靭性が高い。ASIが
マイナス側からOに近づくにつれてσ相生成は減少しO
になる。従ってASIが0に近づくにつれて靭性は向上
する。一方ASIが0以上の場合σ相は生成されないが
粒界に析出するM2.C6tが増加しASIが増加する
に従い靭性は低下する。しかしマトリックス自体が延性
をもっているためにASIが一7以下で靭性がほぼ0に
近くなるのに比べ、ASIが0以上の場合はVFE 2
0が約5kg・mで飽和している。本発明においては工
業的経済性からVE20が7に9・m以上あれば良いと
考えられASIの範囲を−1〜3とした。又最も好まし
くは−0,5〜2の範囲にある。
Moreover, as shown in FIG. 2, when '1tchsx is in the range of -1 to 3, the toughness after aging at 700° C. for 1000 hours is high. As ASI approaches O from the negative side, σ phase generation decreases and O
become. Therefore, as the ASI approaches 0, the toughness improves. On the other hand, when ASI is 0 or more, no σ phase is generated, but M2 phase precipitates at grain boundaries. As C6t increases and ASI increases, toughness decreases. However, since the matrix itself has ductility, when the ASI is 17 or less, the toughness is close to 0, whereas when the ASI is 0 or more, the VFE 2
0 is saturated at approximately 5 kg/m. In the present invention, it is considered that it is sufficient if the VE20 is 7 to 9 m or more from the viewpoint of industrial economy, and the ASI range is set to -1 to 3. The most preferred range is -0.5 to 2.

Cは高温強度を保持するために下限i0.02%とした
。また過度の添加は炭化物の析出量を増大せしめ時効後
の靭性を低下させるため上限’ii0.12チとした。
The lower limit of C was set to 0.02% in order to maintain high temperature strength. Further, since excessive addition increases the amount of carbide precipitation and reduces toughness after aging, the upper limit was set at 0.12.

Mnの下限は通常鋼中に含有されるsl固定するに足シ
る址として0.5%にした。又Mnは耐食性、高温強度
及び靭性に対しASIによシ影響する。すなわちASI
を調整するためにN10代りに安価な元素としてMn 
f添加するが、過渡の添加は溶製上のトラブル、熱間加
工上のトラブル音生じ、かえって経済性をそこなう。こ
のため上限’k 2.5 %とした。
The lower limit of Mn was set to 0.5% as a sufficient amount to fix sl, which is normally contained in steel. Mn also affects ASI on corrosion resistance, high temperature strength and toughness. That is, ASI
Mn is used as an inexpensive element instead of N10 to adjust
However, transient addition causes troubles during melting and troubles during hot processing, and actually impairs economic efficiency. Therefore, the upper limit 'k was set at 2.5%.

Nlは高温強度、靭性を向上させる。本発明においては
650℃で使用する場合に、従来の5US347HTB
以上の強度が必要であシ、下限全10.0チとした。N
l[’i増量して行くと高温強度、靭性は向上するので
多量の添加が望ましいが、ASI値で規定され上限は3
1.0%とした。
Nl improves high temperature strength and toughness. In the present invention, when used at 650°C, the conventional 5US347HTB
Since a strength higher than that is required, the lower limit was set at 10.0 cm. N
l
It was set as 1.0%.

Crは前述したように人工灰中650℃での耐食性には
ほとんど効果がないことから高温強度及び靭性の面から
は少い方が好ましいと考えられるが、ボイラチー−ブの
場合、内面に流れる水、水蒸気等による腐食を考え通、
常のSUS 304 、321 、347 。
As mentioned above, Cr has almost no effect on corrosion resistance in artificial ash at 650°C, so it is thought that a small amount is preferable from the viewpoint of high-temperature strength and toughness. , thorough consideration of corrosion caused by water vapor, etc.
Regular SUS 304, 321, 347.

316等オーステナイトステンレス鋼の含有するレベル
とした。すなわち下限i15.0%、上限を26.0俤
としたO Moは高温強度を改善するために添加する。M。
The level was set to contain 316 grade austenitic stainless steel. That is, the lower limit i is 15.0% and the upper limit is 26.0%. OMo is added to improve high temperature strength. M.

の高温強度強化機構には固溶強化とN等との相互作用に
よる雰囲気効果によυ強度を向上させる効果がある。固
溶強化を利用するためには多くの添加が必要でおるが、
Mof多量に添加すると人工灰中の腐食減蓋全増大させ
る。このため本合金においては転位の移動の抵抗となる
雰囲気効果を利用している。従ってこのためには1.0
%以下の添加で十分であシ上限ヲ1.0俤に限定した。
The high-temperature strength strengthening mechanism has the effect of improving υ strength due to solid solution strengthening and atmospheric effects due to interaction with N, etc. Many additions are required to utilize solid solution strengthening, but
Adding a large amount of Mof will increase the total corrosion reduction in artificial ash. For this reason, this alloy utilizes the atmospheric effect that acts as a resistance to the movement of dislocations. Therefore for this 1.0
% or less is sufficient, so the upper limit was limited to 1.0 yen.

Nは通常低温度域での強度金ヲ向上させるが、高温度域
ではその効果が少く、む−しろ逆にりIJ−ノ強度全低
下させるという報告もある。しかし本発明の鋼において
はNは700℃におけるりO−ノ強度を向上させる効果
を有しておシ、その効果が顕著に現われる値0.1%を
下限とした。又N量が増加すると窒化物全多量に生成し
、かえって靭性を低下せしめると同時に他の特性例えば
溶接性等を劣化させるため望ましくなく上限ft0.2
5%とした。
Although N usually improves the strength in the low temperature range, it has little effect in the high temperature range, and there are reports that it actually reduces the strength of the IJ. However, in the steel of the present invention, N has the effect of improving the oxidation strength at 700° C., and the lower limit was set at 0.1%, at which this effect becomes noticeable. In addition, when the amount of N increases, a large amount of nitrides are generated, which actually reduces the toughness and at the same time deteriorates other properties such as weldability, which is undesirable and the upper limit is ft0.2.
It was set at 5%.

上述の主要元素のほかに、必要に応じて以下の成分元素
を添加することができる。
In addition to the above-mentioned main elements, the following component elements can be added as necessary.

Nb及びTlは炭窒化物形成効果があり、本発明におい
てもNb及びTI全添加して行くと、その量に従い鋼中
のC,N”i固定し、微細分散させることからクリープ
強度が向上する。しかしこれらの添加元素を増大すると
高温度で粗大な窒化物が生成し、鋼中の有効C及びN量
金減じると同時に加工性、溶接性の面で好ましくない。
Nb and Tl have the effect of forming carbonitrides, and in the present invention, when all Nb and TI are added, C and N''i are fixed and finely dispersed in the steel according to the amount, improving creep strength. However, when these additive elements are increased, coarse nitrides are formed at high temperatures, which reduces the effective amount of C and N in the steel and is also unfavorable in terms of workability and weldability.

従ってそれぞれの添加量の最大を1%とし、Nb+TI
の場合も総量においても1%と限定した。
Therefore, the maximum addition amount of each is set to 1%, and Nb+TI
In both cases, the total amount was limited to 1%.

Bの添加は高温強度を改善することを目的に添加される
。多量の添加は硼化物の生成、溶接性の低下tきたし、
好ましくなく溶接性の低下が致命的にならなめ範囲とし
上限全0.01優に限定した。
B is added for the purpose of improving high temperature strength. Adding a large amount will result in the formation of borides and a decrease in weldability.
If this is undesirable and would lead to a fatal decrease in weldability, the upper limit is set to be 0.01 or more.

At及びCaは鋼中の脱酸元素としてその1種もしくは
両者全添加する。Atけ高温耐食性を向上させる効果が
あるといわれているが、本発明においてはその効果が明
らかでない。従ってAtはCaと同様に脱酸元素として
添加し本発明鋼の製品の健全性を向上させるため通常鋼
の製造範囲における脱酸量を添加する。従って上限をA
t O,1%r Ca0.05%とした〇 以下に実施例をもって説明する。
One or both of At and Ca are added as deoxidizing elements in the steel. Although it is said to have the effect of improving high-temperature corrosion resistance, the effect is not clear in the present invention. Therefore, like Ca, At is added as a deoxidizing element, and in order to improve the soundness of the steel product of the present invention, the deoxidizing amount is added within the manufacturing range of ordinary steel. Therefore, the upper limit is A
t O, 1% r Ca 0.05% 〇 Examples will be described below.

第1表に成分を示した銅のA−Hは本発明鋼でI−Pは
比較鋼である。Sl含有量の低いItAではASIは満
足しているが、耐食性が著しく悪い。本発明の一つの特
徴は耐食性に有り、J−Pの比較鋼においては耐食性全
付与するために本発明のSiの範囲内で製造した。しか
し、本発明鋼A−Hとそれぞれ比較するとASIが適切
でないためにクリープ破断時間及び時効後靭性が署しく
低いことがわかり、本発明鋼の優位性が明らかである。
The copper components A-H shown in Table 1 are steels of the present invention, and I-P are comparative steels. ItA with a low Sl content satisfies the ASI, but the corrosion resistance is extremely poor. One of the features of the present invention is corrosion resistance, and J-P comparative steel was manufactured within the Si range of the present invention in order to provide complete corrosion resistance. However, when compared with the steels of the present invention A to H, it was found that the creep rupture time and toughness after aging were significantly low due to inappropriate ASI, and the superiority of the steels of the present invention is clear.

本発明鋼は通常オーステナイトステンレス−の製造され
る工程において製造される。すなわち電炉、転炉その他
の通常の溶製法が採用出来、鋼塊に鋳込み分塊工程を通
るか、連続鋳造によりビレット全製造し、熱間押出しか
圧延による製管が行なわれる。その後直接または冷牽加
工等を行った後1050℃〜1200℃に溶体化処理後
使用に供せられる。
The steel of the present invention is manufactured in the same process that normally produces austenitic stainless steel. That is, electric furnaces, converters, and other conventional melting methods can be used, and steel ingots can be cast and subjected to a blooming process, or billets can be manufactured entirely by continuous casting, and tubes can be made by hot extrusion or rolling. Thereafter, it is subjected to direct or cold drawing processing and then solution treatment at 1050°C to 1200°C before being used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は人工灰中の腐食試験によって得られたSt添加
量と腐食波1との関係図、第2図は700UXIO00
h時効後の靭性とASIとの関係図である。 第1面 第2図 5r
Figure 1 is a relationship between the amount of St added and corrosion wave 1 obtained by corrosion tests in artificial ash, and Figure 2 is 700UXIO00.
FIG. 6 is a diagram showing the relationship between toughness and ASI after aging. 1st page 2nd figure 5r

Claims (1)

【特許請求の範囲】[Claims] (1)C0,02〜0.12優、all、7〜3.5チ
。 Mn 0.5〜2.5 % 、 Cr 15.0〜2−
6.0 % 、 Ni10.0〜31.0 % 、 M
o 1.0%以下、N0110〜0.25%に含有し残
部がFe及び不可避的不純物よりなシ、以下の式に示す
ASIが−1〜3の範囲にあることを特徴とする?イラ
チーープ用耐食耐熱用鋼。 ASI=(2IC+Ni+0.5Mn+11.5N+7
)  (3Sl+Cr+Mo)(2)C0,02〜0.
12 To 、 Si 1.7〜3.5俤。 Mn O,5〜2.5 % −Cr 15.0〜26.
0 % * N110.0〜31.0 % 、 Mo 
1.0 %以下、NO,10〜0.25チ、さらにNb
 、 TIの1種又は2種全Nb1.0チ以下、Ti1
.Oq6以下、Nb+TIの場合1.0tI6以下を含
有し、残部がFe及び不可避的不純物よシなり、以下の
式に示すASIが−1〜3の範囲にあることを特徴とす
るがイラチューブ用耐食耐熱用鋼。 As I−(21C+N1 +0.5Mn+11.5軒
7 )−(381+Cr+Mo )(3)C0,02〜
 0.12 チ 、 Si  1゜ 7〜3.5 係 
。 Mn 0.5〜2.5%、 Or 15.0〜26.0
 % 、 N110.0〜31.0 % 、 Mo 1
.04以下、NO,10〜0.25%、さらにBo、0
1qb以下を含有し、残部がFe及び不可避的不純物よ
シなり、以下の式に示すASIが−1〜3の範囲にある
ことを特徴とするyl=”(ラチーFゾ用耐食耐熱用鋼
。 AS I = (21C十Nf +0.5Mn+ 11
.5N+ 7) −(3S 1 +Cr +Mo )(
4)C0,02〜0.12 係 、Sil、7〜3.5
 俤 。 Mn  O,5,〜 2.5  %  、   C’r
  1  5.0 〜2 6.0 96   、  N
110.0〜31.0 % 、 Mo 1.0%以下、
NO,10〜0.25%、さらにAtO,1%以下、C
a0.051以下の1種もしくは2種を含有し、残部が
Fe及び不可避的不純物よシなり、以下の式に示すAS
Iが−1〜3の範囲にあることを特徴とするがイラチュ
ーブ用耐食耐熱用鋼。 AS I = (21C+Ni +0.5Mn+ 11
.5N+7)−(3S i +Cr +Mo )(5)
  CO,02〜0.12 % 、 Sl 1.7〜3
.5 % 。 Mn 0.5〜2.5%、 Cr 15.0〜26.0
4 、 N110,0〜31.0 ’Ir 、 Mo 
1.0%以下、NO,10〜0.25係、さらにNb 
、 TIの1種又は2種をNb1、0%以下、Ti1.
0%以下、 Nb+TI ノ場合1.0チ以下とBo、
01%以下を含有し、残部がFe及び不可避的不純物よ
シなり、以下−の式に示すASIが〜1〜3の範囲にあ
ることを特徴とするポイラチー−ゾ用耐食耐熱用鋼。 ASI=(21C+N1+0.5Mn+11.5N+7
)  (3S1+Cr+Mo)(6)  CO,02〜
0.12 % 、 Sl 1.7〜3.5 % 。 Mn O,5〜2.5 % 、 cr 15.0〜26
.0%、 N110.0〜31.0%、 Mo 1,0
 %以下、NO,10〜0.25%、さらにNb 、 
TIの1種又は2種をNb1、 Oqb以下、 Tl 
1. O%以下、 Nb+Ti (7)場合i、。 チ以下とAt O,11以下、Ca0.051以下の1
種もしくF!、2af=に含有し、残部がFa及び不可
避的不純物よシなり、以下の式に示すASIが−1〜3
の範囲にあることを特徴とするボイラチューブ用耐食耐
熱用鋼。 ASI=(21C+Ni+O5Mn+11.5N+7)
  (3Si+Cr+Mo)(7)co、02〜0.1
2%、flil、7〜3.5%。 Mn O,5〜2.5 % 、 Cr 15.0〜26
.0 % 、 Ni10.0〜31.0 % 、 No
 1.0 %以下、NO,10〜0.25%、さらK 
B O,01%以下とAt0.1%以下。 Ca0.05%以下の1種もしくは2種を含有し、残部
がFe及び不可避的不純物よりなシ、以下の弐に示すA
SIが−1〜3の範囲にあることを特徴とする?イラチ
ーーブ用耐食耐熱用鋼。 ASI =(21p+Ni +0.5Mn+ 11.5
N+ 7 ) −(381+Cr +Mo )(8) 
 CO,02〜0.12%、Si’1.7〜3.5%。 Mn   0.5 〜2.5  %   、   Cr
   1  5.0 〜2  6.0  %   、 
  N110.0〜31.0%、 Mo 1.0 %以
下、No、10〜0.25チ、さらにNb 、 TIの
1種又は2種をNb1.0%以下、Ti1.0%以下、
 Nb+Ti (7)場合1.0チ以下とBo、01チ
以下さらにAt O,1チ以下。 CaO,01%以下の1種もしくは2mを含有し、残部
がFe及び不可避的不純物よりなシ、以下の式に示すA
SIが−1〜3の範囲にあることt−特徴とする?イラ
チーープ用耐食耐熱用鋼。 ASI=(21C+Ni+0.5Mn+11.5N+7
)  (3S))Cr十Mo)
(1) C0.02-0.12 excellent, all, 7-3.5 chi. Mn 0.5-2.5%, Cr 15.0-2-
6.0%, Ni10.0-31.0%, M
o It is characterized by containing 1.0% or less, N0110 to 0.25%, the remainder being Fe and unavoidable impurities, and having an ASI expressed by the following formula in the range of -1 to 3? Corrosion-resistant and heat-resistant steel for Iracheap. ASI=(2IC+Ni+0.5Mn+11.5N+7
) (3Sl+Cr+Mo) (2) C0,02~0.
12 To, Si 1.7-3.5 yen. MnO, 5-2.5% -Cr 15.0-26.
0% *N110.0~31.0%, Mo
1.0% or less, NO, 10-0.25%, and Nb
, TI type 1 or 2 total Nb 1.0 or less, Ti1
.. It is characterized by containing Oq6 or less, 1.0tI6 or less in the case of Nb + TI, the remainder being Fe and unavoidable impurities, and having an ASI shown by the following formula in the range of -1 to 3. Heat-resistant steel. As I-(21C+N1 +0.5Mn+11.5house7)-(381+Cr+Mo)(3)C0,02~
0.12 Chi, Si 1゜ 7~3.5
. Mn 0.5-2.5%, Or 15.0-26.0
%, N110.0-31.0%, Mo1
.. 04 or less, NO, 10-0.25%, and Bo, 0
A corrosion-resistant and heat-resistant steel for lachie F-zo. AS I = (21C+Nf +0.5Mn+ 11
.. 5N+ 7) −(3S 1 +Cr +Mo)(
4) C0.02~0.12, Sil, 7~3.5
忤. MnO, 5, ~ 2.5%, C'r
1 5.0 ~ 2 6.0 96, N
110.0-31.0%, Mo 1.0% or less,
NO, 10-0.25%, and AtO, 1% or less, C
AS containing one or two of a0.051 or less, the remainder being Fe and unavoidable impurities, and represented by the following formula:
A corrosion-resistant and heat-resistant steel for flat tubes, characterized in that I is in the range of -1 to 3. AS I = (21C+Ni +0.5Mn+ 11
.. 5N+7)-(3S i +Cr +Mo)(5)
CO, 02-0.12%, Sl 1.7-3
.. 5%. Mn 0.5-2.5%, Cr 15.0-26.0
4, N110,0~31.0'Ir, Mo
1.0% or less, NO, 10-0.25, and Nb
, one or two types of TI with Nb1, 0% or less, Ti1.
0% or less, in the case of Nb + TI, 1.0 or less and Bo,
1. A corrosion-resistant and heat-resistant steel for poirachyzo, characterized in that it contains 0.01% or less, the remainder consists of Fe and unavoidable impurities, and has an ASI expressed by the following formula in the range of 1 to 3. ASI=(21C+N1+0.5Mn+11.5N+7
) (3S1+Cr+Mo)(6) CO,02~
0.12%, Sl 1.7-3.5%. MnO, 5-2.5%, cr 15.0-26
.. 0%, N110.0-31.0%, Mo 1.0
% or less, NO, 10-0.25%, further Nb,
One or two types of TI Nb1, Oqb or less, Tl
1. 0% or less, Nb+Ti (7) case i. 1 or less, At O, 11 or less, Ca 0.051 or less
Seed Moshi F! , 2af=, the remainder is Fa and unavoidable impurities, and the ASI shown in the following formula is -1 to 3.
Corrosion-resistant and heat-resistant steel for boiler tubes, characterized by being in the range of . ASI=(21C+Ni+O5Mn+11.5N+7)
(3Si+Cr+Mo)(7)co, 02~0.1
2%, flil, 7-3.5%. MnO, 5-2.5%, Cr 15.0-26
.. 0%, Ni10.0-31.0%, No
1.0% or less, NO, 10-0.25%, even K
BO, 0.01% or less and At 0.1% or less. Containing one or two types of Ca 0.05% or less, the balance being Fe and unavoidable impurities, A shown in 2 below
Characterized by an SI in the range of -1 to 3? Corrosion and heat resistant steel for Irachieve. ASI = (21p+Ni +0.5Mn+ 11.5
N+7) -(381+Cr+Mo)(8)
CO, 02-0.12%, Si'1.7-3.5%. Mn 0.5-2.5%, Cr
1 5.0 to 2 6.0%,
N110.0-31.0%, Mo 1.0% or less, No. 10-0.25%, and one or both of Nb and TI, Nb 1.0% or less, Ti 1.0% or less,
In the case of Nb+Ti (7), Bo is 1.0 or less, Bo is 01 or less, and At O is 1 or less. Containing 0.01% or less of one type or 2m of CaO, with the remainder being Fe and unavoidable impurities, A shown in the following formula
Is it characterized by SI being in the range of -1 to 3? Corrosion-resistant and heat-resistant steel for Iracheap. ASI=(21C+Ni+0.5Mn+11.5N+7
) (3S))CrMo)
JP10963082A 1982-06-25 1982-06-25 Corrosion-and heat-resistant steel for boiler tube Pending JPS591657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10963082A JPS591657A (en) 1982-06-25 1982-06-25 Corrosion-and heat-resistant steel for boiler tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10963082A JPS591657A (en) 1982-06-25 1982-06-25 Corrosion-and heat-resistant steel for boiler tube

Publications (1)

Publication Number Publication Date
JPS591657A true JPS591657A (en) 1984-01-07

Family

ID=14515144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10963082A Pending JPS591657A (en) 1982-06-25 1982-06-25 Corrosion-and heat-resistant steel for boiler tube

Country Status (1)

Country Link
JP (1) JPS591657A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333549A (en) * 1986-07-29 1988-02-13 Nippon Kokan Kk <Nkk> Austenitic steel tube for boiler having resistance to corrosion by coal ash and its manufacture
JPH0383764A (en) * 1989-08-26 1991-04-09 Fuji Photo Film Co Ltd Automatic negative-sticking device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333549A (en) * 1986-07-29 1988-02-13 Nippon Kokan Kk <Nkk> Austenitic steel tube for boiler having resistance to corrosion by coal ash and its manufacture
JPH0383764A (en) * 1989-08-26 1991-04-09 Fuji Photo Film Co Ltd Automatic negative-sticking device

Similar Documents

Publication Publication Date Title
EP1194606B1 (en) Heat resistant austenitic stainless steel
JPH02200756A (en) High strength heat resisting steel excellent in workability
JP5838933B2 (en) Austenitic heat resistant steel
JPS59176501A (en) Boiler tube
JPH0114305B2 (en)
JP3982069B2 (en) High Cr ferritic heat resistant steel
JPH01275739A (en) Low si high strength and heat-resistant steel tube having excellent ductility and toughness
JPH02217439A (en) High strength low alloy steel having excellent corrosion resistance and oxidation resistance
JPH0813102A (en) Austenitic heat resistant steel excellent in high temperature strength
JPH0364589B2 (en)
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
JPS591657A (en) Corrosion-and heat-resistant steel for boiler tube
JPS61113749A (en) High corrosion resistance alloy for oil well
JP4523696B2 (en) TIG welding material for austenitic heat resistant steel with excellent high temperature strength
JPH0586463B2 (en)
JPS63183155A (en) High-strength austenitic heat-resisting alloy
JP3524708B2 (en) Carbon steel with excellent high-temperature strength
JP3242418B2 (en) High-strength low-carbon Cr-Mo steel sheet with excellent low-temperature crack resistance and SR crack resistance
JPS62243742A (en) Austenitic stainless steel having superior creep rupture strength
JPH02156049A (en) Heat resisting steel for ethylene decomposition furnace tube
JPH06136488A (en) Ferritic stainless steel excellent in workability, high temperature salt damage resistance, and high temperature strength
US5211911A (en) High vanadium austenitic heat resistant alloy
JP4271311B2 (en) Ferritic heat resistant steel
JPS591658A (en) Corrosion-and heat-resistant steel for boiler tube
JPS60162757A (en) Austenitic stainless steel having high corrosion resistance at high temperature