JPS591658A - Corrosion-and heat-resistant steel for boiler tube - Google Patents

Corrosion-and heat-resistant steel for boiler tube

Info

Publication number
JPS591658A
JPS591658A JP10962982A JP10962982A JPS591658A JP S591658 A JPS591658 A JP S591658A JP 10962982 A JP10962982 A JP 10962982A JP 10962982 A JP10962982 A JP 10962982A JP S591658 A JPS591658 A JP S591658A
Authority
JP
Japan
Prior art keywords
less
asi
corrosion
heat
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10962982A
Other languages
Japanese (ja)
Inventor
Mizuo Sakakibara
榊原 瑞夫
Toshio Fujita
利夫 藤田
Satoshi Araki
荒木 敏
Tsunetoshi Takahashi
高橋 常利
Hideaki Ito
英明 伊藤
Haruo Shimada
島田 春男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10962982A priority Critical patent/JPS591658A/en
Publication of JPS591658A publication Critical patent/JPS591658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE:To obtain a steel for a boiler tube with superior corrosion resistance, heat resistance and toughness, by adding specified percentages of C, Si, Mn, Cr, Ni and N to Fe and by regulating the austenite stabilizing index to a specified range. CONSTITUTION:A steel consisting of, by weight, 0.02-0.12% C, 1.7-3.5% Si, 0.5-2.5% Mn, 15.0-26.0% Cr, 10.0-30.0% Ni, 0.10-0.25% N and the balance Fe with inevitable impurities and having -1-3 austenite stabilizing index ASI expressed by the equation is prepared. <=1.0% Nb, >=1.0% Ti (Nb+Ti <=1.0%), <=0.01% B, <=0.1% Al and <=0.05% Ca may be added to the steel. Thus, a steel for a boiler tube ensuring corrosion and heat resistances at high temp. and toughness after long-time use is obtd.

Description

【発明の詳細な説明】 本発明は石炭燃焼、重油燃焼雰囲気における高温度での
耐食性に優れ、かつ強度が高いとともに高温度に長時間
さらされた後にも−高い靭性を有するがイラチューブ用
耐食耐熱用鋼に関するものである。
Detailed Description of the Invention The present invention provides corrosion resistance for flat tubes that have excellent corrosion resistance at high temperatures in coal combustion and heavy oil combustion atmospheres, and have high strength and high toughness even after being exposed to high temperatures for long periods of time. This relates to heat-resistant steel.

近年エネルギー資源の供給不安定による高騰が続いてお
り、省資源、省エネルギー化が叫ばれ、産業用設備はこ
の流れに従い改良される傾向にある。火力発電設備にお
いてもこの傾向は顕著であり、蒸気条件を高温高圧化す
ることにより熱効率の改善を図り、高性能火力発電設備
へと移行する動向にある。すなわち現状の蒸気条件は5
38℃、245 kg/cIn”が採用されているが、
これを650℃、350kg々−に改善することが考え
られている。しかしこのためには現状の火力発電用がイ
ラチューブに用いられているSUS 321 HTB 
、 5US347HTBではその特性が高温強度及び筒
部耐食性の観点から不十分であり、新規な材料の開発が
切に望まれている。
In recent years, prices have continued to rise due to the unstable supply of energy resources, and resource and energy conservation has been called for, and industrial equipment has tended to be improved in accordance with this trend. This trend is also noticeable in thermal power generation equipment, and there is a trend toward improving thermal efficiency by raising the steam conditions to higher temperatures and pressures, and moving toward high-performance thermal power generation equipment. In other words, the current steam condition is 5
38℃, 245 kg/cIn” is adopted,
It is being considered to improve this to 650°C and 350 kg. However, for this purpose, SUS 321 HTB, which is currently used for the Iratube for thermal power generation, is required.
, 5US347HTB has insufficient properties in terms of high temperature strength and cylindrical corrosion resistance, and the development of a new material is strongly desired.

本発明はかかる動向を賀歌に開発されたもので、高温度
での耐食性、耐熱性と長時間使用後の靭性を確保した全
く新しい型のがイラチューブ用鋼である。
The present invention was developed in recognition of this trend, and is a completely new type of steel for flat tubes that ensures corrosion resistance at high temperatures, heat resistance, and toughness after long-term use.

一般に高温度の空気中においてCrの耐酸化性が優れて
おり、耐食耐熱用鋼として高Cr化が計られている。本
3明は火力発電燃焼雰囲気中において従来の知見に反し
、15.0〜26.0%の範囲内でのCr含inの差は
耐食性にほとんど影響を与えないこと全知見し、この雰
囲気において、耐食性を向上させるだめの唯一の元素と
してSIを見い出したことに基づいている。すなわちS
lを1.7チ以上添加すると添加量が増すにつれ耐食性
が飛躍的に向上する。しかし周知のように鋼中のSI含
M鎗を増加させて行くとσ相が生成し、高温強度が低下
する。壕だ長時間高温にさらしだ後靭性が著しく低下す
るため長時間の使用にあたっては信頼性の点で問題があ
った。本発明ではとのσ相生成を回避するための新しい
知見を得、ASI(オーステナイト安定化指数)という
概念を導入L% 81の有効利用範囲を拡大し、耐食性
耐熱性及び使用後靭性の面から信頼性の高い+3”イラ
チューブ用耐食耐熱用鋼を開発したものである。
Generally, Cr has excellent oxidation resistance in high-temperature air, and efforts are being made to increase the Cr content as corrosion-resistant and heat-resistant steel. The present study found that, contrary to conventional knowledge, the difference in Cr content within the range of 15.0 to 26.0% has little effect on corrosion resistance in the combustion atmosphere of thermal power generation. This is based on the discovery of SI as the only element that improves corrosion resistance. That is, S
When 1.7 or more liters are added, corrosion resistance improves dramatically as the amount added increases. However, as is well known, when the SI-containing M-containing steel is increased, a σ phase is generated and the high-temperature strength is reduced. After being exposed to high temperatures for a long period of time, the toughness of the trench deteriorates significantly, so there was a problem with reliability during long-term use. In the present invention, we have obtained new knowledge to avoid the formation of σ phase with and introduced the concept of ASI (Austenite Stabilization Index), expanding the range of effective use of L%81, and improving the corrosion resistance, heat resistance, and toughness after use. We have developed a highly reliable corrosion-resistant and heat-resistant steel for +3" flat tubes.

ASIはオーステナイトマトリッークスの安定性を示す
指針でマ) IJソックス安定であればσ相等異相の金
属間化合物が生成し難くなる。ASIK彰響を及ぼす元
素としてC、Nl 、 Mn +’ N r Cr #
 Slが知見されそれら元素の効果を総合的に検討した
結果、A、SIを以下の ASI = (21C+Nl +’+1.5Mn+11
.5N+7 )−(3Sl+Cr)式で現わした場合に
、高温強度及び使用後靭性に対する元素効果を良く整理
出来ることを見出した。
ASI is a guideline that indicates the stability of the austenitic matrix.) If the IJ socks are stable, intermetallic compounds of different phases such as σ phase will be difficult to form. C, Nl, Mn +' N r Cr # as elements that affect ASIK
As a result of the discovery of Sl and the effects of these elements, A and SI were changed to the following ASI = (21C+Nl +'+1.5Mn+11
.. It has been found that elemental effects on high-temperature strength and post-use toughness can be well organized when expressed by the formula 5N+7)-(3Sl+Cr).

すなわちASIが−1〜3の範囲で最も高温強度及び高
温長時間時効後の靭性が高い。
That is, when the ASI is in the range of -1 to 3, the high-temperature strength and the toughness after high-temperature long-term aging are the highest.

以下に本発明における各成分元素を限定した理由につい
て述べる。
The reasons for limiting each component element in the present invention will be described below.

Slは第1図に示すように添加量が増加するに従って人
工灰(41% Na25o4+ 51%[i’e 2 
(Sn4 ) 5 +896 V2o5)中、650℃
×2βoh腐食後のg素置が減少する。従来SUS 3
47 HTB等が用いられている538℃においてはこ
の腐食減量が約350m9/crn2であることがら、
650℃においても実用的に350ψ讐以下の腐食減量
を確保することが必要と考えられる。従って本発明にお
いては81の下限を1.70%とした。これ以上のSl
を添加して行けば行くほど耐食性は向上するが、slは
前述のように強力なσ相生成元素であり、このσ相の生
成を抑制するためにASI値を制御する必要があるが、
ASIの式中81の増加に伴いバランスが大きくずれる
とC、Mn’、 Nでは制御出来ずN1を添加してバラ
ンスを保つ必要が生じてくる。このため過度の添加は工
業的経済性をそこなうことになる。従って81の上限を
3.5優に限定した。この中でも好ましいsiの含it
は2.1〜3.0%の範囲にある。又さらに最も効果的
な含肩量は2.6〜3.0係の範囲である。
As shown in Figure 1, as the added amount increases, Sl becomes artificial ash (41% Na25o4+ 51%
(Sn4) 5 +896 V2o5), 650°C
×2βohThe g element after corrosion decreases. Conventional SUS 3
47 At 538°C, where HTB etc. are used, this corrosion loss is about 350 m9/crn2.
It is considered necessary to practically ensure a corrosion loss of 350 ψ or less even at 650°C. Therefore, in the present invention, the lower limit of 81 is set to 1.70%. No more SL
Corrosion resistance improves as sl is added, but as mentioned above, sl is a strong σ-phase forming element, and it is necessary to control the ASI value to suppress the formation of this σ phase.
If the balance deviates greatly as 81 increases in the ASI formula, it cannot be controlled with C, Mn', and N, and it becomes necessary to maintain the balance by adding N1. Therefore, excessive addition will impair industrial economy. Therefore, the upper limit of 81 was limited to 3.5 well. Among these, preferable si content is
is in the range of 2.1-3.0%. Furthermore, the most effective shoulder content is in the range of 2.6 to 3.0.

また第2図に示すようにASIが−1〜3の範囲で70
0℃、1000h時効後の靭性が高い。ASIがマイナ
ス側から0に近づくKつれてσ相生成は減少し0になる
。従ってASIがOに近づくにつれて靭性は向上する。
Also, as shown in Figure 2, ASI is 70 in the range of -1 to 3.
High toughness after aging at 0°C for 1000 hours. As ASI approaches 0 from the negative side, σ phase generation decreases to 0. Therefore, as the ASI approaches O, the toughness improves.

一方ASIが0以上の場合σ相は生成されないが粒界に
析出するM23C61iが増加し、ASIが増加するに
従い、靭性は低下する。しかしマトリ、クス自体が延性
をもって−いるためにASIが一7以下で靭性がほぼ0
に近くなるのに比べ、ASIが0以上の場合はV E2
0が約5kg・mで飽和している。本発明においては工
業的見地からvE2oが7kg・m以上あれば良いと考
えられASIの範囲を−1〜3とした。しかしもっと長
時間の時効においてさらにV E2 oが低下する可能
性が有り、最も望ましくはASrが−0,5〜2の範囲
にある。
On the other hand, when ASI is 0 or more, no σ phase is generated, but M23C61i precipitates at grain boundaries increases, and as ASI increases, toughness decreases. However, since matrices and clays themselves have ductility, when the ASI is 17 or less, the toughness is almost 0.
When ASI is 0 or more, V E2
0 is saturated at approximately 5 kg/m. In the present invention, from an industrial standpoint, it is considered that vE2o of 7 kg·m or more is sufficient, so the ASI range is set to -1 to 3. However, there is a possibility that V E2 o will further decrease during aging for a longer time, and most preferably, ASr is in the range of -0.5 to 2.

Cは高温強度を保持するために下段を0.02%とした
。また過度の添加は炭化物の析出量を増大せしめ時効後
の靭性を低下させるため上限を0.12%とした。
C was set at 0.02% in the lower row to maintain high-temperature strength. Moreover, excessive addition increases the amount of carbide precipitation and reduces toughness after aging, so the upper limit was set at 0.12%.

Mnの下限は通常鋼中に含有されるSを固定するに足り
る電として0.5%にしだ。又Mnは耐食性、高温強度
及び靭性に対しASIにより影響する。すなわちASI
を調整するためにN1の代りに安価な元素としてMnを
添加するが、過度の添加は溶製上のトラブル、熱間加工
上のトラグルを生じ、かえって経済性をそこなう。この
ため上限を2.5チとしだ。
The lower limit of Mn is usually 0.5%, which is sufficient to fix S contained in steel. Mn also influences corrosion resistance, high temperature strength and toughness through ASI. That is, ASI
Mn is added as an inexpensive element in place of N1 in order to adjust the temperature, but excessive addition causes trouble in melting and trouble in hot working, which actually impairs economic efficiency. For this reason, the upper limit is set at 2.5 inches.

Nlは高温強度、靭性を向上させる。本発明においては
650℃で使用する場合に、従来の5US347 HT
B以上の強度が必要であり、下限を10.0チとした。
Nl improves high temperature strength and toughness. In the present invention, when used at 650°C, conventional 5US347 HT
A strength of B or higher is required, and the lower limit was set at 10.0 inches.

Ni量を増量して行くと高温強度、靭性は向上するので
多量の添加が望ましいがASI値で規定され上限は30
.01以下である。
Increasing the amount of Ni improves high temperature strength and toughness, so it is desirable to add a large amount, but the upper limit is 30 as specified by the ASI value.
.. 01 or less.

Crは前述したように人工灰中650℃での耐食性には
ほとんど効果がないことから高温強度及び靭性の面から
は少い方が好ましいと考えられるが、デイラチューブの
場合内面に流れる水、水蒸気等による腐食を考え通常の
5US304 、321 。
As mentioned above, Cr has almost no effect on corrosion resistance in artificial ash at 650°C, so from the viewpoint of high-temperature strength and toughness, a small amount of Cr is considered preferable. Considering the corrosion caused by etc., the normal 5US304, 321.

347.316等オーステナイトステンレス鋼の含有す
るレベルとした。すなわち下限を15.0%、上限を2
6.0%とした。
The level was set to include austenitic stainless steel such as 347.316. In other words, the lower limit is 15.0% and the upper limit is 2.
It was set at 6.0%.

Nは通常低温度域での強度を向上させるが、高温度域で
はその効果が少く、むしろ逆にクリープ強度を低下させ
るという報告もある。しかし本発明の鋼においてはNは
700℃におけるクリープ強度を向上させる効果を有し
ており、その効果が顕著に現われる値0.1係を下限と
した。又N量が増加すると窒化物を多量に生成し、かえ
って靭性を低下せしめると同時に他の特性−例えば溶接
性等を劣化させるため望ましくなく上限を0.25%と
した。
Although N usually improves strength in a low temperature range, there are also reports that this effect is less in a high temperature range, and that it actually reduces creep strength. However, in the steel of the present invention, N has the effect of improving the creep strength at 700°C, and the lower limit was set to a value of 0.1, at which this effect becomes noticeable. Furthermore, if the amount of N increases, a large amount of nitrides will be produced, which will actually lower the toughness and at the same time deteriorate other properties such as weldability, which is not desirable and the upper limit was set at 0.25%.

上述の主要元素のほかに必要に応じて以下の成分元素を
添加することができる。
In addition to the above-mentioned main elements, the following component elements can be added as necessary.

Nb及びTIは炭窒化物形成効果があり、本発明におい
てもNb及びTIを添加して行くと、その量に従い鋼中
のC,Nを固定し、微細分散させることからクリープ強
度が向上する。しかしこれらの添加元素を増大すると高
温戻で粗大な窒化物が生成し、鋼中のM効C及びN駄を
減じると同時に加工性、溶接性の面で好ましくない。従
ってそれぞれの添7JD童の最大を1.C1とし、Nb
+TIの場合もa甥においても1.0チと限定した。
Nb and TI have the effect of forming carbonitrides, and in the present invention, when Nb and TI are added, C and N in the steel are fixed and finely dispersed according to the amount, thereby improving creep strength. However, if the content of these additive elements is increased, coarse nitrides will be formed during high-temperature return, which will reduce the M effect, C and N in the steel, and at the same time be unfavorable in terms of workability and weldability. Therefore, the maximum for each of the 7 JD children is 1. C1, Nb
In the case of +TI and a-nephew, it was limited to 1.0 chi.

Bの添刀口は高温強度を改善することを目的に添加され
る。多量の添加は硼化物の生成、溶接性の低下をきたし
、好ましくなく、溶接性の低下が致命的にならない範囲
とし上限を0.01%に限定した。
B is added for the purpose of improving high temperature strength. Addition of a large amount causes the formation of borides and a decrease in weldability, which is undesirable.The upper limit was set at 0.01% so that the decrease in weldability would not become fatal.

At及びCmは鋼中の脱酸元素としてその1種もしくは
両者を添加する。Atは高温耐食性を向上させる効果が
あるといわれているが、本発明においてはその効果が明
らかでない。従ってAtはCaと同様に脱酸元素として
添加し本発明鋼の製品の健全性を向上させるため通常鋼
の製造範囲における脱酸量を添加する。従って上限をA
t 0.1 %、Ca O,0,5q6とした。
At or both of At and Cm are added as deoxidizing elements in the steel. Although At is said to have the effect of improving high-temperature corrosion resistance, this effect is not clear in the present invention. Therefore, like Ca, At is added as a deoxidizing element, and in order to improve the soundness of the steel product of the present invention, the deoxidizing amount is added within the manufacturing range of ordinary steel. Therefore, the upper limit is A
t 0.1%, Ca O, 0.5q6.

以下に実施力をもって説明する。This will be explained in terms of practicality below.

第1表に成分を示した鋼のA−Hは本発明鋼で■〜Pは
比較鋼である。S1含有量の低い!鋼ではASIは満足
しているが、耐食性が著しく悪い。
Of the steels whose components are shown in Table 1, A to H are the steels of the present invention, and ■ to P are comparative steels. Low S1 content! Steel has a satisfactory ASI, but its corrosion resistance is extremely poor.

本発明の一つの特徴は耐食性に有り、J−Pの比較鋼に
おいては耐食性を付与するために本発明の81の範囲内
で製造した。しかし、本発明鋼A−Hとそれぞれ比較す
るとASIが適切でないためにクリープ破断時間及び時
効後靭性が著しく低いことがわかり、本発明鋼の優位性
が明らかである。
One feature of the present invention is corrosion resistance, and the comparative steel of J-P was manufactured within the range of 81 of the present invention in order to impart corrosion resistance. However, when compared with the steels of the present invention A to H, it was found that the creep rupture time and toughness after aging were extremely low due to inappropriate ASI, and the superiority of the steels of the present invention is clear.

本発明鋼は通常オーステナイトステンレス鋼の製造され
る工程において製造される。すなわち電炉、転炉その他
の通常の溶製法が採用出来、鋼塊に鋳込み分塊工程を通
るか、連鋒鋳造によりビレットを製造し、熱間押出しか
圧延による製管が行なわれる。その後直接または冷牽加
工等を行った後1050℃〜1200℃に溶体化処理後
使用に供せられる。
The steel of the present invention is produced in the same process that normally produces austenitic stainless steel. That is, electric furnaces, converters, and other conventional melting methods can be used, and a billet is produced by casting a steel ingot and going through a blooming process, or by continuous casting, and then pipe-making is performed by hot extrusion or rolling. Thereafter, it is subjected to direct or cold drawing processing and then solution treatment at 1050°C to 1200°C before being used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は人工灰中の腐食試験によって得られたSI添加
量と腐食減量との関係図、第2図は700℃xtooo
h時効後の靭性とASIとの関係図であるO 浮/ 図 第2回 Sr
Figure 1 is a diagram of the relationship between the amount of SI added and the corrosion weight loss obtained from a corrosion test in artificial ash, and Figure 2 is a diagram of the relationship between the amount of SI added and the corrosion weight loss obtained from a corrosion test in artificial ash.
h A diagram showing the relationship between toughness and ASI after aging.

Claims (1)

【特許請求の範囲】[Claims] (1)C0,02〜0,12チ、Si1.7〜3.5チ
。 Mn O,5〜2.5 % 、 Cr 15.0〜26
.−0%、N110.O〜30.0%、 NO,10〜
0.25 %を含有し、残部がFe及び不可避的不純物
よりなり、以下の式に示すASIが−1〜3の範囲にあ
ることを特徴とするがイラチューブ用耐食耐熱用鋼。 ASI = (2IC+Ni +O5Mn +11.5
N+ 7 )−(38l−1−Or)(2)C0,02
〜0.12チ、S11.7〜3.5チ。 Mn 0.5〜2.5 % 、 Cr 15.0〜26
.0 % 、 N110.0〜30.0 % 、 NO
,10〜0.25tIb1さらにNb 。 T1の1種又は2種をNb1.0%以下、T11.0チ
以下、Nb+TIの場合i、o*以下を含有し、残部が
Fe及び不可避的不純物よシなシ、以下の式に示すAS
Iが−1〜3の範囲にあることを特徴とするメイラチュ
ーブ用耐食耐熱用鋼。 ASI = (21C+ Nl + 0.5Mn + 
11.5N+7 )  (38l+Cr )(3)C0
,02〜0.1 296  、 81 1.7〜3.5
 チ 。 Mn  0.5〜2.5 %  、  Cr  15.
0〜26.0%  、Nl  10.0〜30.0係、
NO,10〜0.25チ、さらにBo、01チ以下を含
有し、残部Fe及び不可避的不純物よりなり、以下の式
に示すASIが−1〜3の範囲にあることを特徴とする
がイラチューブ用耐食耐熱用鋼。 ASI =(21C+Nl +0.5Mn+ 11.5
N+7 )−(BSI +Cr )(4)  C0,0
2〜0.12係、S11.7〜3.5%。 Mn 0.5−2.5%、 Cr 15.Q 〜26.
0% 、 Ni 10.0〜30.0%、 −N O,
10〜0.25俤、さ6にAt0.1チ以下、Ca0.
0596以下の1種もしくは2種を含有し、残部がFe
及び不可避的不純物よりなシ、以下の式に示すASIが
−1〜3の範囲にあることを特徴とするメイラチューブ
用耐食耐熱用鋼。 ASI=(21C+Nl+ 0.5Mn+11.5N+
7 )−(aSl+Cr)(5)C0,02〜0.12
チ、S11.7〜3.5%。 Mn 0.5〜2.5 % 、  Cr  1 5.0
〜2 6.0% 、  N110.0〜30.0係、N
O,10〜0.25係、さらにNb 、 TIの1種又
は2種をNb1.Oチリ下、T11.0チ以下、Nb+
TIの場合1.0%以下とBo、01係以下を含有し、
残部がFe及び不可避的不純物よりなり、以下の式に示
すASIが−1ん3の範囲にあることを特徴とするがイ
ラチューブ用耐食耐熱用鋼。 ASI =(21C+Ni+0.5Mn+11.5N+
7)  (3Sl+Cr)(6)C0,02〜0.12
係、S11.7〜3.5係。 Mn O,5〜2.5 % 、 Cr 15.0〜26
.0 % 、 Ni10.0〜30.0チ、NO,10
〜0.25係、さらにNb 、 TIの1種又は2種を
Nb1.0%以下、T11.0%以下、Nb+Tlの場
合1.(l以下とAt0.1係以下、CaO,05%以
下の1種もしくは2柚を含有し、残部がFe及び不可避
的不純物よりなり、以下の式に示すASIが−1〜3の
範囲にあることを特徴とするボイラチューブ用耐食耐熱
用鋼。 ASI =(21C+Ni+0.5Mn +11.5N
+7) −(3Sl+Cr)(7)C0,02〜0.1
2%、811.7〜3.5係。 Mn 0.5〜2.5 %  、  Cr  1 5.
0〜26.0 %  、  Ni10.0〜30.0%
 、 NO,10−0,25% 、さらにBo、01%
以下とAt O,1%以下、Ca0.05%以下の1種
もしくは2種を含有し、残部がFe及び不可避的不純物
よりなり、以下の式に示すASIが−1〜3の範囲にあ
ることを特徴とするボイラチューブ用耐食耐熱用鋼。 ASI=(21C+N1+O5Mn+11.5N+、7
)−(3Sl+Cr)(8)C0,02〜0.12係、
811.7〜3.5係。 Mn 0.5−〜2.5 % 、 C’r 15.0〜
26.0%、 N110.0〜30.0 % 、 NO
,10〜0.25%、さらにNb 、 TIの1種又は
2種をNb1.0チ以下、T11.0チ以下、Nb +
 Tl t7)場合1.0係以下とB O,01チ以下
さらにAtO,1チ以下、Ca0.01%以下の1種も
しくは2種を含有し、残部がFe及び不可避的不純物よ
りなり、以下の式に示すASIが−1〜3の範囲にある
ことを特徴とするボイラチューブ用耐食耐熱用鋼。 ASI= (21C+N1 +0.5Mn+11.5N
+7)−(3SI+Cr)
(1) C0.02 to 0.12 inches, Si 1.7 to 3.5 inches. MnO, 5-2.5%, Cr 15.0-26
.. -0%, N110. O ~ 30.0%, NO, 10 ~
0.25%, the remainder being Fe and unavoidable impurities, and having an ASI shown by the following formula in the range of -1 to 3. A corrosion-resistant and heat-resistant steel for flat tubes. ASI = (2IC+Ni +O5Mn +11.5
N+7)-(38l-1-Or)(2)C0,02
~0.12 inch, S11.7~3.5 inch. Mn 0.5-2.5%, Cr 15.0-26
.. 0%, N110.0-30.0%, NO
, 10-0.25tIb1 and further Nb. AS shown in the following formula, containing one or two types of T1, Nb 1.0% or less, T11.0 or less, i, o* or less in the case of Nb + TI, and the balance is Fe and unavoidable impurities.
A corrosion-resistant and heat-resistant steel for mailer tubes, characterized in that I is in the range of -1 to 3. ASI = (21C+Nl+0.5Mn+
11.5N+7) (38l+Cr)(3)C0
,02~0.1 296 ,81 1.7~3.5
blood . Mn 0.5-2.5%, Cr 15.
0 to 26.0%, Nl 10.0 to 30.0,
It is characterized by containing 10 to 0.25 H of NO, and 0.1 H or less of Bo, with the balance consisting of Fe and unavoidable impurities, and having an ASI shown by the following formula in the range of -1 to 3. Corrosion-resistant and heat-resistant steel for tubes. ASI = (21C+Nl +0.5Mn+ 11.5
N+7)-(BSI+Cr)(4) C0,0
2-0.12 ratio, S11.7-3.5%. Mn 0.5-2.5%, Cr 15. Q ~26.
0%, Ni 10.0-30.0%, -NO,
10 to 0.25 t, At 0.1 or less, Ca 0.
Contains one or two of the following: 0596 or less, with the remainder being Fe
A corrosion-resistant and heat-resistant steel for mailer tubes, which is free from inevitable impurities and has an ASI expressed by the following formula in the range of -1 to 3. ASI=(21C+Nl+ 0.5Mn+11.5N+
7)-(aSl+Cr)(5)C0.02~0.12
H, S11.7-3.5%. Mn 0.5-2.5%, Cr15.0
~2 6.0%, N110.0~30.0, N
O, 10 to 0.25, and one or two of Nb and TI to Nb1. O chili below, T11.0 chi or less, Nb+
In the case of TI, it contains 1.0% or less and Bo, 01 or less,
A corrosion-resistant and heat-resistant steel for flat tubes, characterized in that the remainder consists of Fe and unavoidable impurities, and the ASI shown by the following formula is in the range of -1 to 3. ASI = (21C+Ni+0.5Mn+11.5N+
7) (3Sl+Cr)(6)C0.02~0.12
Section S11.7-3.5. MnO, 5-2.5%, Cr 15.0-26
.. 0%, Ni10.0~30.0chi, NO,10
~0.25%, and one or both of Nb and TI, Nb 1.0% or less, T11.0% or less, and in the case of Nb+Tl, 1. (Contains one or two types of citron, At 0.1 or less, CaO, 0.05% or less, and the remainder consists of Fe and unavoidable impurities, and the ASI shown in the following formula is in the range of -1 to 3. Corrosion-resistant and heat-resistant steel for boiler tubes, characterized by: ASI = (21C + Ni + 0.5Mn + 11.5N
+7) −(3Sl+Cr)(7)C0.02~0.1
2%, Section 811.7-3.5. Mn 0.5-2.5%, Cr 1 5.
0~26.0%, Ni10.0~30.0%
, NO, 10-0, 25%, and further Bo, 01%
Contains one or two of the following: At O, 1% or less, Ca 0.05% or less, with the remainder consisting of Fe and unavoidable impurities, and the ASI shown in the formula below is in the range of -1 to 3. Corrosion-resistant and heat-resistant steel for boiler tubes. ASI=(21C+N1+O5Mn+11.5N+, 7
)-(3Sl+Cr)(8)C0.02~0.12,
Section 811.7-3.5. Mn 0.5-2.5%, C'r 15.0-
26.0%, N110.0-30.0%, NO
, 10 to 0.25%, and one or two of Nb and TI, Nb 1.0 or less, T 11.0 or less, Nb +
Tl t7) If it contains 1.0% or less, BO, 0.01% or less, AtO, 1% or less, and Ca0.01% or less, the remainder is Fe and unavoidable impurities, and the following: A corrosion-resistant and heat-resistant steel for boiler tubes, characterized in that the ASI shown by the formula is in the range of -1 to 3. ASI= (21C+N1 +0.5Mn+11.5N
+7)-(3SI+Cr)
JP10962982A 1982-06-25 1982-06-25 Corrosion-and heat-resistant steel for boiler tube Pending JPS591658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10962982A JPS591658A (en) 1982-06-25 1982-06-25 Corrosion-and heat-resistant steel for boiler tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10962982A JPS591658A (en) 1982-06-25 1982-06-25 Corrosion-and heat-resistant steel for boiler tube

Publications (1)

Publication Number Publication Date
JPS591658A true JPS591658A (en) 1984-01-07

Family

ID=14515121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10962982A Pending JPS591658A (en) 1982-06-25 1982-06-25 Corrosion-and heat-resistant steel for boiler tube

Country Status (1)

Country Link
JP (1) JPS591658A (en)

Similar Documents

Publication Publication Date Title
US4086085A (en) Austenitic iron alloys
JP3096959B2 (en) Low Mn and low Cr ferrite heat resistant steel with excellent high temperature strength
JPH02200756A (en) High strength heat resisting steel excellent in workability
JPS58197248A (en) Heat resistant alloy
JPH01275739A (en) Low si high strength and heat-resistant steel tube having excellent ductility and toughness
JPH02217439A (en) High strength low alloy steel having excellent corrosion resistance and oxidation resistance
JPH0813102A (en) Austenitic heat resistant steel excellent in high temperature strength
JPH0364589B2 (en)
US5350559A (en) Ferrite steel which excels in high-temperature strength and toughness
JPS591658A (en) Corrosion-and heat-resistant steel for boiler tube
US4653684A (en) Welding material for austenite stainless steel having high Si content and method of application
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
JPS61179833A (en) Highly corrosion resistant austenitic stainless steel having superior strength at high temperature
JPS591657A (en) Corrosion-and heat-resistant steel for boiler tube
JPH06145906A (en) Ferritic stainless steel excellent in resistance to corrosion by water condensation
JP3524708B2 (en) Carbon steel with excellent high-temperature strength
JP3242418B2 (en) High-strength low-carbon Cr-Mo steel sheet with excellent low-temperature crack resistance and SR crack resistance
JPS63183155A (en) High-strength austenitic heat-resisting alloy
JP3194207B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel
JPS61147835A (en) Austenitic steel having high corrosion resistance and satisfactory strength at high temperature
JP2976777B2 (en) Austenitic heat-resistant cast steel
JPS61147836A (en) Austenitic steel having high corrosion resistance and satisfactory strength at high temperature
JPH06136488A (en) Ferritic stainless steel excellent in workability, high temperature salt damage resistance, and high temperature strength
JP2857248B2 (en) Low carbon Cr-Mo steel sheet with excellent high temperature strength and weld crack resistance
JPS5964752A (en) Austenitic steel excellent in weldability and high- temperature strength