JPS59163755A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS59163755A
JPS59163755A JP3687783A JP3687783A JPS59163755A JP S59163755 A JPS59163755 A JP S59163755A JP 3687783 A JP3687783 A JP 3687783A JP 3687783 A JP3687783 A JP 3687783A JP S59163755 A JPS59163755 A JP S59163755A
Authority
JP
Japan
Prior art keywords
alloy
negative electrode
tin
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3687783A
Other languages
Japanese (ja)
Other versions
JPH0364987B2 (en
Inventor
Yoshinori Toyoguchi
豊口 吉徳
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Takashi Iijima
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3687783A priority Critical patent/JPS59163755A/en
Priority to DE8484901015T priority patent/DE3483244D1/en
Priority to EP84901015A priority patent/EP0144429B1/en
Priority to PCT/JP1984/000086 priority patent/WO1984003590A1/en
Priority to US06/873,093 priority patent/US4683182A/en
Publication of JPS59163755A publication Critical patent/JPS59163755A/en
Publication of JPH0364987B2 publication Critical patent/JPH0364987B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material

Abstract

PURPOSE:To obtain a nonaqueous electrolyte secondary battery having a high energy density and a long charge-and-discharge life and being excellently safe and reliable by causing lithium or the like to be absorbed by a negative electrode material consisting of an alloy during charging and causing the negative electrode material to discharge lithium ion or the like into electrolyte during discharging by using an alloy principally consisting of tin to form a negative electrode. CONSTITUTION:Either an alloy principally consisting of tin and containing at least one element chosen from among bismuth, cadmium and indium, or an alloy prepared by adding lead to the above alloy is used to form a negative electrode. Such a negative electrode consisting of an alloy absorbs alkali metal ion contained in electrolyte during charging and discharges alkali metal ion into the electrolyte during discharging.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池用の負極の改良に係るも
ので、この改良の結果、高エネルギー密度で充放電寿命
が長く、安全性、信頼性に優れた充電可能な電池を提供
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improvement in a negative electrode for a non-aqueous electrolyte secondary battery.As a result of this improvement, it has a high energy density, a long charge/discharge life, safety, The present invention provides a rechargeable battery with excellent reliability.

従1米例の構成とその問題点 現在1で、リチウム、ナトリウムなどのアルカリ金属を
負極とする非水電解質二次電池とし7ては。
Configuration of Example 1 and Its Problems Currently 1 is a non-aqueous electrolyte secondary battery with an alkali metal such as lithium or sodium as the negative electrode.

たとえば、二硫化チタン(TiS2 ) ”cはじめ各
種の層間化合wJなどを正極活物質として用匹5電解質
としては、炭酸プロピレン(以後PCと略ず)などの有
機溶媒に過塩素酸リチウム(LiCl04)などを溶解
した有機電解質を用いる電池の開発が活発に進められて
さた。この二次電池の特徴は、負極にリチウムを用いる
ことにより、電池電圧が高くなり、高エネルギー密度の
二次電池となることである。
For example, titanium disulfide (TiS2) and various intercalation compounds WJ are used as a positive electrode active material, while lithium perchlorate (LiCl04) is used as an electrolyte in an organic solvent such as propylene carbonate (hereinafter abbreviated as PC). The development of batteries using organic electrolytes in which lithium, etc. are dissolved has been actively progressing.The feature of this secondary battery is that by using lithium in the negative electrode, the battery voltage can be increased, making it a high energy density secondary battery. It is what happens.

しかし、この種の二次電池は、現在、まだ実用化されて
いない。その主な理由は、充放電回数(サイクル)の寿
命が短かぐ、また充放電に際しての充放電効率が低いた
めである。この原因は、リチウム負極の劣化によるとこ
ろが非常に太さい。
However, this type of secondary battery has not yet been put into practical use. The main reasons for this are that the life span of the number of charging and discharging cycles (cycles) is short, and the charging and discharging efficiency during charging and discharging is low. This is largely due to the deterioration of the lithium negative electrode.

すなわち、現在のリチウム負極はニッケルなどのスクリ
ーン状集電体に板状の金属リチウムを圧着したものが主
に用いられているが、放電時に金属リチウムは、電解質
中にリチウムイオンとして溶解する。しかし、これを充
電して、放電前のような板状のリチウムに析出させるこ
とは難しく、デンドライト状(樹枝状)のリチウムが発
生してこれが根元より折れて脱落したシ、あるいは、小
球状(苔状)に析出したリチウムが集電体より脱離する
などの現象が起こる。このため充放電が不能の電池とな
ってし葦つ。また、発生したデンドライトにの金属リチ
ウムが、正極、負極間を隔離しているセパレータを貫通
して、正極に接し短絡を起こし、電池の機能を失なわせ
るようなことも度々中じる。
That is, current lithium negative electrodes are mainly used in which plate-shaped metallic lithium is pressed onto a screen-shaped current collector made of nickel or the like, but metallic lithium dissolves in the electrolyte as lithium ions during discharge. However, it is difficult to charge the lithium and deposit it into the plate-shaped lithium that it was before discharging. Phenomena such as lithium deposited in a moss-like form detaching from the current collector occur. As a result, it becomes a battery that cannot be charged or discharged. In addition, metallic lithium from the generated dendrites often penetrates the separator separating the positive and negative electrodes and contacts the positive electrode, causing a short circuit and causing the battery to lose its function.

このような負極の欠点を改良するための方法は従来から
名種試みられている。一般的には、負極集電体の相料金
替えて析出するリチウムとの密着性を良くしたり、ある
いは、電解質中にデンドライト発生防止の添加剤を加え
たりする方法が報告されている。しかし、これらの方法
は必ずしも効果的ではない。すなわち、集電体材料に関
しては、集電体材料に直接析出するリチウムに有効であ
るが、更に充電(析出)′ff:続けると析出リチウム
上果は消失する。また添加剤に関しても、充放電サイク
ルの初期では有効であるが、サイクルが進むと電池内で
の酸化還元反応などにより分解し、その効果がなくなる
ものが殆んどである。さらに最近は負極として、リチウ
ムとの合金を用いることが提案されている。この例とし
ては、リチウム−アルミニウム合金がよく知られている
。この場合は、一応均一の合金が形成されるが、充放電
をくり返すとその均一性を消失し、特にリチウム量を多
くすると電極が微粒化し崩壊するなどの欠点があった。
Various methods have been tried in the past to improve these drawbacks of negative electrodes. Generally, methods have been reported in which the phase charge of the negative electrode current collector is changed to improve adhesion to the precipitated lithium, or an additive to prevent dendrite formation is added to the electrolyte. However, these methods are not always effective. That is, regarding the current collector material, it is effective for lithium deposited directly on the current collector material, but if charging (deposition) 'ff: continues further, the deposited lithium will disappear. Furthermore, most additives are effective at the beginning of the charge/discharge cycle, but as the cycle progresses, they decompose due to oxidation-reduction reactions within the battery and lose their effectiveness. Furthermore, recently it has been proposed to use an alloy with lithium as a negative electrode. A well-known example of this is lithium-aluminum alloy. In this case, a somewhat uniform alloy is formed, but this uniformity disappears when charging and discharging are repeated, and especially when the amount of lithium is increased, the electrode becomes atomized and collapses.

また、銀とアルカリ金属との固溶体を用いることも提案
されている(特開昭56−7386)。
It has also been proposed to use a solid solution of silver and an alkali metal (Japanese Unexamined Patent Publication No. 7386/1986).

この場合は、アルミニウムとの合金のような崩壊はない
とされているが、十分に速く合金化するリチウムの量は
少なく、金属状のリチウムが合金化しないま\析出する
場合があり、これを防ぐために多孔体の使用などを推奨
している。したがって。
In this case, it is said that there is no collapse like in alloying with aluminum, but the amount of lithium that alloys quickly enough is small, and metallic lithium may precipitate without being alloyed. To prevent this, the use of porous materials is recommended. therefore.

大電流の充電効率は悪く、筐たリチウム量の多い合金は
、充放電による微細化が徐々に加速され、サイクル寿命
が急激に減少する。
Charging efficiency at large currents is poor, and alloys with a large amount of lithium in the case gradually accelerate micronization due to charging and discharging, resulting in a rapid decrease in cycle life.

この他には、−リチウム−水銀合金を用いる考案(特開
昭57−98978)、リチウム−鉛合金′を用いる考
案(特開昭57−14/1869 )かあ・S0シかし
、リチウム−水銀合金の場合は、放電心・′、テより、
負極は液状粒子の水銀となり電極形状全課持しなくなる
。捷だ、リチウム−鉛合金の場合は、i’8.1血の充
放電による微細粉化は銀固溶体以上であり、このため合
金中の鉛量を80%位にすることが望ましいとされてい
るが、これでは高エネルギー密度電′ftJL金実現で
きない。以上のように非水電解質二次電池用負極として
は、実用上満足でさるものは、寸だ見い出されていない
といえる。
In addition to this, there is a device using a lithium-mercury alloy (Japanese Patent Laid-Open No. 57-98978), a device using a lithium-lead alloy (Japanese Patent Laid-Open No. 57-14/1869), In the case of mercury alloy, from the discharge core ′, Te,
The negative electrode becomes liquid particles of mercury, and the electrode shape is no longer maintained. In the case of a lithium-lead alloy, the fineness of powder due to charging and discharging of i'8.1 blood is greater than that of a silver solid solution, so it is said that it is desirable to keep the amount of lead in the alloy at around 80%. However, this makes it impossible to realize high energy density electricity. As described above, it can be said that no practically satisfactory negative electrode for non-aqueous electrolyte secondary batteries has been found.

したがって、優れた負極としては、アルカリ金属の吸蔵
量が人さく、しかも放出や吸蔵速度の人なる負極材料の
開発が望1れている。
Therefore, as an excellent negative electrode, it is desired to develop a negative electrode material that has a reasonable amount of alkali metal occlusion, and also has variable release and occlusion speeds.

発明の目的 本発明は、負極材料を特定することにより、単位体積当
りの充放電量の多い、葦た充放電寿命の長い、良好な特
性を1示す非水電解質二次電池用負極を提供するもので
ある。
OBJECTS OF THE INVENTION The present invention provides a negative electrode for non-aqueous electrolyte secondary batteries that exhibits good characteristics such as a large charge/discharge amount per unit volume and a long charge/discharge life by specifying a negative electrode material. It is something.

発萌の構成 本発明の二次電池は、スズ丑たはスズを主成分とする合
金を負極材料に用いることを特徴とし。
The secondary battery of the present invention is characterized in that tin or an alloy containing tin as a main component is used as the negative electrode material.

充電により負極材料に用いた金属や合金中に、リチウム
を吸蔵せしめ、放電により電解質中にリチウムイオン放
出させるものである。
Charging causes lithium to be occluded in the metal or alloy used as the negative electrode material, and discharging causes lithium ions to be released into the electrolyte.

実施例の説明 前記のように本発明の二次電池においては、負極材料合
金に、充電にょジリチウムを吸蔵させ、放電により電解
質中にリチウムイオン全放出させるものであるので、し
たがって充電により、スズとリチ?ムの合金、またはス
ズ合金とリチウムの合金が出来ることになる。本発明で
述べる負極材料とは、リチウムとの合金を作る以前の金
属スズやスズ合金のことである。
DESCRIPTION OF EMBODIMENTS As mentioned above, in the secondary battery of the present invention, charging lithium is occluded in the negative electrode material alloy, and all lithium ions are released into the electrolyte by discharging. Richi? This results in the creation of alloys of tin and lithium, or alloys of tin and lithium. The negative electrode material described in the present invention refers to metallic tin or tin alloy before forming an alloy with lithium.

例えば重量パーセントで70%のスズと30%のビスマ
スよりなる合金を用いた時の充放電反応は(1)式のよ
うになる。
For example, when an alloy consisting of 70% tin and 30% bismuth by weight is used, the charge/discharge reaction is expressed by equation (1).

・・・・・・(1) に 式中、(Sn(′70)−Bi(30):]Lixは充
電により生成高 シタ、スズ、ビスマス、リチウム合金全示してお金 り、本発明で定義した負極材料とは(1)式中ではい 5n(70)−Bi(30)のことである。
...... (1) In the formula, (Sn('70)-Bi(30):] Lix represents all high-temperature, tin, bismuth, and lithium alloys produced by charging, and is defined in the present invention. The negative electrode material in formula (1) is 5n(70)-Bi(30).

、、!え、え、t工、1□、。、)よ。よ5.7  ′
41カやよ、ヮヶウ、ヵ、1ヶ、1、□  ′必要はな
く、(2)式のように負極中に吸蔵されたりる ・・・・・・(2) を 量を変えるようにして、充放電かでさること(は当各 然である。1だ(2)式においても負極材料が5n(y
o)な −Bi (30)であることは自明である。
,,! Eh, eh, t-work, 1□. ,)Yo. Yo5.7'
41 kayo, ヮgau, ka, 1 ka, 1, □ ' It is not necessary, and it will be occluded in the negative electrode as shown in equation (2)... by changing the amount of (2) , it is natural that the negative electrode material is 5n(y
It is obvious that -Bi (30).

蔵 1だ、スズを主成分とする合金とは、合金中最相 も重量が多い金属がスズである合金とする。Warehouse 1. An alloy whose main component is tin is the highest phase in the alloy. It is also an alloy in which the heavy metal is tin.

ゆ 発明者らは5.スズやスズを主成分とする合金をケ 負極材料として、アルカリ金属イオンを含む非水実 解質中で充電を行うことにより、高率充電全行でもアル
カリ金属の析出が起らずに負極材料中アルカリ金属が吸
蔵され、さらに放電を行うと電流効率で吸蔵されたアル
カリ金属がアルカリ属イオンとして電解質量に放出さ汎
ることを見出した。また充放電をくり返し行っても負極
材の微細粉化が起らず、良好な非水電解質二次型の負極
特性を示すことがわかった。
5. By using tin or a tin-based alloy as the negative electrode material and charging it in a non-aqueous real solute containing alkali metal ions, the negative electrode material can be used without alkali metal precipitation even during all high-rate charging cycles. It was discovered that intermediate alkali metals are occluded, and when further discharge is performed, the occluded alkali metals are released into the electrolytic mass as alkali ions due to the current efficiency. It was also found that the negative electrode material did not become finely powdered even after repeated charging and discharging, and exhibited good non-aqueous electrolyte secondary negative electrode characteristics.

負極材料として、金属スズとスズを主成分とす合金を比
較すると合金の方が良好な負極特性をした。スズ金主成
分とする合金の他の成分とし、鉛、カドミウム、ビスマ
ス、インジウムなど加えて作った合金の多くは、微視的
に見ると。
When comparing metallic tin and alloys mainly composed of tin as negative electrode materials, the alloys had better negative electrode characteristics. When viewed microscopically, many alloys made by adding lead, cadmium, bismuth, indium, etc. to other alloys that have tin as their main component are gold.

金属成分や、金属間化合物などの多くの相からっており
、均一なものではない。充電により吸されたリチウムな
どのアルカリ金属は合金中のと相の間の界面に沿って、
早い速度で拡散してくと考えられ、高率充放電全行うと
スズを主成とする合金を用いる方が良好であった。以下
に捲例を示す。
It consists of many phases such as metal components and intermetallic compounds, and is not uniform. Alkali metals such as lithium absorbed by charging are absorbed along the interface between the and phases in the alloy.
It is thought that it diffuses at a fast rate, and it was better to use an alloy mainly composed of tin when performing high rate charging and discharging. An example of winding is shown below.

第1図に示したセルを構成して、各種金属や合金の非水
電解質二次電池の負極の特性を調べた。
The cell shown in FIG. 1 was constructed and the characteristics of the negative electrode of a non-aqueous electrolyte secondary battery made of various metals and alloys were investigated.

第1図中、Aは検討した金属2合金よυなる試験極、B
は5i02 よりなる正極、Cは照合電極としてのリチ
ウム板である。各々の電極のり−ドEム。
In Fig. 1, A is the test electrode υ of the two metal alloys studied, and B
C is a positive electrode made of 5i02, and C is a lithium plate as a reference electrode. Glue each electrode.

EB+EcvCはニッケル純金用いた。試験極Aは第2
図に示すように、 I CIn×1 c1n厚さI M
Mの金属あるいは合金D[、リードとしてニッケルリボ
ンE人をとりつけた。電解質には、1モル/lのLiC
lO4を溶かしたpcを用いた。
Pure nickel gold was used for EB+EcvC. Test pole A is the second
As shown in the figure, I CIn×1 c1n thickness I M
M metal or alloy D[, a nickel ribbon E was attached as a lead. The electrolyte contains 1 mol/l of LiC
PC in which lO4 was dissolved was used.

金属や合金の非水電解質二次電池の負極としての特性を
測定するために、試験極Aの電位が、リチウム照合電極
Cに対してo mVになる壕で5 mAの定電流でカソ
ード方向に充電した。この条件では、試験極上にリチウ
ムは折出せず、合金中に入る。試験極Aの電位がomV
に達した後、照合電極Cに対して1.○Vになるまで5
mAの定電流でアノード方向に放電し、その後充電、放
電を同じ条件で繰り返した。キ≠表には、試験極Aに用
いた合金、金属の第1ザイクルと第10サイクルにおけ
る充電電気量、放電電気量、および効率どして放電電気
量を充電電気量で除したもの、サイクル特性として第1
−Oサイクルの放電電気量全第1サイクルの放電電気量
で除したものを示す。充電電気量、放電電気量、効率、
サイクル特性の数値が大である程よい負極と言える。で
た表中に記号で示した試験極の第10ザイクルでの充電
曲線を第3図に、放電曲線を第4図に示す。
In order to measure the properties of a metal or alloy as a negative electrode for a non-aqueous electrolyte secondary battery, a constant current of 5 mA was applied in the direction of the cathode in a trench where the potential of the test electrode A was 0 mV with respect to the lithium reference electrode C. Charged. Under these conditions, lithium cannot be deposited on the test electrode and enters the alloy. The potential of test electrode A is omV
After reaching 1. for reference electrode C. ○5 until it becomes V
It was discharged toward the anode with a constant current of mA, and then charging and discharging were repeated under the same conditions. The table shows the amount of electricity charged, amount of electricity discharged, and efficiency (the amount of electricity discharged divided by the amount of electricity charged) of the alloy and metal used in test electrode A in the first cycle and the 10th cycle, and the cycle The first characteristic is
-The amount of electricity discharged in the O cycle is divided by the amount of electricity discharged in the first cycle. Charge electricity amount, discharge electricity amount, efficiency,
It can be said that the higher the cycle characteristic value, the better the negative electrode. The charging curve in the 10th cycle of the test electrode indicated by the symbol in the table is shown in FIG. 3, and the discharging curve is shown in FIG. 4.

以−ヒの結果より、非水電解質二次電池用負極材料と1
−2で、従来より用いられて米たアルミニウム。
From the results below, we found that negative electrode materials for non-aqueous electrolyte secondary batteries and 1
-2, traditionally used aluminum.

鉛、銀、水銀に比べ、本発明のスズあるいはスズを主成
分とする合金が良好であることがわかる。
It can be seen that tin or an alloy containing tin as a main component of the present invention is better than lead, silver, and mercury.

1だスズとスズ合金全比較すると合金の方が良好な特性
を示している。←表中には、ビスマス舎@を作るのに使
用した他の成分である金属単体の@llり特性をも示し
た。これより、各成分の金属単体1:り合金を用いた方
が性能が向上していた。
Comparing tin and tin alloys, the alloys show better properties. ←The table also shows the properties of other metals used to make Bismuth Sha. From this, the performance was improved when an alloy of 1 metal of each component was used.

また男4表に示したようにスズ−ビスマス合金で示−t
ように、他の成分量が増加する程、性能は向上する傾向
が見られた。
Also, as shown in Table 4, tin-bismuth alloy
As can be seen, there was a tendency for performance to improve as the amount of other components increased.

なお、負極材料として水銀を用いた場合、充放電電気量
が小さいのは、水銀の食塩電解におけるナトリウムアマ
ルガム中のナトリウムが0.2s福度しかないことと関
連しているかもしれない。
Note that when mercury is used as the negative electrode material, the small amount of charge and discharge electricity may be related to the fact that sodium in the sodium amalgam in mercury salt electrolysis has only a 0.2 s luck.

上記実施例では、負極電極拐料にリチウムを吸蔵、放出
させる例を示した。リチウム以外にもナトリウムやカリ
ウムなどのアルカリ金属の吸蔵。
In the above embodiment, an example was shown in which lithium was inserted into and released from the negative electrode material. In addition to lithium, it also absorbs alkali metals such as sodium and potassium.

放出を行わせる負極を構成することも可能である。It is also possible to construct a negative electrode that causes emission.

また電解質として、実施例に示したLiClO4f溶解
したPCだけでなく、L13N(窒化リチウム)やLi
I (ヨウ化リチウム)のような固体電解質を用いた場
合でも、従来のアルミニウム、鉛、銀。
In addition, as an electrolyte, not only LiClO4f dissolved PC shown in the example, but also L13N (lithium nitride) and Li
Conventional aluminum, lead, silver, even when using solid electrolytes such as I (lithium iodide).

水銀に比べ本発明のビスマスまたはビスマスを主成分と
する合金を負極材料とする方が優れた猾・)1が得られ
た。
Compared to mercury, the use of bismuth or an alloy containing bismuth as a main component of the present invention as a negative electrode material produced a better result.

発明の効果 以上のようにスズ、またけ主成分をスズとする合金を負
極材料とするCとにより、充放電電気量の多い、サイク
ル特性の良い、すなわち充放電寿命の長い信頼性に優れ
た非水電解質電池を得ることができる。
As described above, the use of tin and C, which uses an alloy containing tin as the main component as the negative electrode material, provides a large amount of charge and discharge electricity, good cycle characteristics, that is, excellent reliability with a long charge and discharge life. A non-aqueous electrolyte battery can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は負極特性の検討に用いたセルの構成図、第2図
は試験極の側面図、第3図および第4図は充電曲線図と
放電曲線図である。 A・・・・・・試験極、B・・・・・・正極、C・・・
・・・照合電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2 図 免4tn−間(時間) 第4図 8K  4Il v4−  m(rf)Mノ■事件の表
示 昭和58年4i5′許願第 36877 号2発明の名
称 非水電解質二次電池 3補正をする者 事イ′1との関係      特   許   出  
 願  人住 所  大阪府門真市大字門真1006番
地名 称 (582)松下電器産業株式会社代表名  
     山   下   俊   彦4代理人 〒5
71 住 所  大阪府門真市大字門真1006番地松下電器
産業株式会社内 γ、補正の内容 (1)明細書の特許請求の範囲の欄を別紙のように訂正
します。 (2)明細書第6頁第4〜8行の記載を次のように訂正
します。 「本発明は、アルカリ金属イオンを含む非水電解質と、
可逆性正極と、充電時に電解質中のアルカリ金属イオン
を吸蔵し、放電時に前記金属イオンを電解質中へ放出す
る機能を有する合金からなる負極とを備える非水電解質
二次電池において、前記負極の合金として、スズを主成
分とする合金を用いるものである。さらに詳しくは、ス
ズを主成分とし、他の成分としてビスマス、カドミウム
及びインジウムよりなる群から選んだ少なくとも1種を
含む合金、またはさらに鉛を加えた合金を用いることを
特徴とする。」(3)  同第6頁第13〜14行の「
スズとリチウムとの合金、または」を削除します。 (4)同第6頁第16〜17行の「金属スズや」を削除
します。 (5)同第7頁下から2行目の「スズや」を削除します
。 (6)同第8頁第19行の「・・・・・・良好であった
。」と「以下に」との間に次の文を挿入します。 [合金のうちでは、実施例で示すようにスズ鉛合金が最
も特性が悪かった。しかし、このスズ鉛合金にカドミウ
ムやビスマス、インジウムなどの他の成分を加えて3元
系以上の合金にした場合には、優れた特性を示した。こ
のことからも、合金中のアルカリ金属の拡散には、相と
相との間の界面が重要な役割を果していることがわかる
。」 (7)同第9頁第4行の「SiO2」を「T I S 
2 Jと訂正し丑す。 (8)同第13頁第3行の「スズあるいは」を削除し丑
す。 (9)同第13頁第6行末尾の「ビスマス」を「スズ」
と訂正します。 00  同第14頁第6行の「ビスマスまたはビスマス
」を「スズ」と訂正します。 9時 同第14頁第9行の「スズ、または」を削除しま
す。 2、特許請求の範囲 (1)充電時に電解質中のアルカリ金属イオンを吸を主
成分とし、他の成分としてビスマス、カドミ(2)充電
時に電解質中のアルカリ金属イオンを吸有する一極を備
え、前記合金が、スズを主成分とし、他の成分としてビ
スマス、カドミウム及びインジウムよりなる群から選ん
だ少なくとも1種と鉛を含む合金である非水電解質二次
電池。
FIG. 1 is a configuration diagram of a cell used for examining negative electrode characteristics, FIG. 2 is a side view of a test electrode, and FIGS. 3 and 4 are charging and discharging curve diagrams. A...Test electrode, B...Positive electrode, C...
...Reference electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Fig. 2 Fig. 2 Immunization 4tn-time (hours) Fig. 4 8K 4Il v4- m (rf) Mno Relationship with Person A'1 Patent Issuance
Address: 1006 Kadoma, Kadoma City, Osaka Name (582) Representative name of Matsushita Electric Industrial Co., Ltd.
Toshihiko Yamashita 4 agents 〒5
71 Address: Matsushita Electric Industrial Co., Ltd., 1006 Kadoma, Kadoma City, Osaka Prefecture Contents of Amendment (1) The scope of claims column of the specification will be corrected as shown in the attached sheet. (2) The statement on page 6, lines 4 to 8 of the specification is corrected as follows. “The present invention provides a non-aqueous electrolyte containing alkali metal ions,
In a non-aqueous electrolyte secondary battery comprising a reversible positive electrode and a negative electrode made of an alloy that has the function of occluding alkali metal ions in an electrolyte during charging and releasing the metal ions into the electrolyte during discharging, the alloy of the negative electrode As such, an alloy whose main component is tin is used. More specifically, it is characterized by using an alloy containing tin as a main component and at least one selected from the group consisting of bismuth, cadmium, and indium as another component, or an alloy further containing lead. ” (3) “
Alloys with tin and lithium, or remove. (4) "Metal tin" on page 6, lines 16-17 will be deleted. (5) Delete "Suzunya" in the second line from the bottom of page 7. (6) Insert the following sentence between "...It was good." and "Below" on page 8, line 19. [Among the alloys, the tin-lead alloy had the worst characteristics as shown in the examples. However, when other components such as cadmium, bismuth, and indium were added to this tin-lead alloy to form a ternary or higher alloy, it showed excellent properties. This also shows that the interface between the phases plays an important role in the diffusion of the alkali metal in the alloy. ” (7) “SiO2” on page 9, line 4 of the same page is replaced with “T I S
2 Correct it to J. (8) Delete ``Tin or'' in the third line of page 13. (9) "Bismuth" at the end of line 6 on page 13 of the same year is replaced with "tin"
I will correct it. 00 "Bismuth or bismuth" in line 6 of page 14 will be corrected to "tin." 9 o'clock Delete "tin or" in line 9 of page 14. 2. Scope of Claims (1) A main component that absorbs alkali metal ions in the electrolyte during charging, and other components such as bismuth and cadmium (2) A single pole that absorbs alkali metal ions in the electrolyte during charging; A nonaqueous electrolyte secondary battery, wherein the alloy is an alloy containing tin as a main component and at least one member selected from the group consisting of bismuth, cadmium, and indium and lead as other components.

Claims (1)

【特許請求の範囲】[Claims] (1)充電時に電解質中のアルカリ金属イオンを吸蔵し
、放電時に上記金′属イオン全電解質中に放出する機能
を有し、負極材料として、金属スズまたは、スズ金主数
々とする合金を用いることを特徴とする非水電解質二次
電池。 @)負極材料は、主成分全ビスマスとする合金とし、添
加成分としてカドミウム、鉛、ビスマス。 インジウムのうち少くとも一つを用いることを特徴とす
る特許請求の範囲第1項記載の非水電解質二次電池。
(1) It has the function of storing alkali metal ions in the electrolyte during charging and releasing the metal ions into the entire electrolyte during discharging, and uses metal tin or an alloy mainly containing tin and gold as the negative electrode material. A non-aqueous electrolyte secondary battery characterized by: @) The negative electrode material is an alloy whose main component is all bismuth, with additional components of cadmium, lead, and bismuth. The non-aqueous electrolyte secondary battery according to claim 1, characterized in that at least one of indium is used.
JP3687783A 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery Granted JPS59163755A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3687783A JPS59163755A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery
DE8484901015T DE3483244D1 (en) 1983-03-07 1984-03-06 RECHARGEABLE ELECTROCHEMICAL DEVICE AND NEGATIVE POLE THEREOF.
EP84901015A EP0144429B1 (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus and negative pole therefor
PCT/JP1984/000086 WO1984003590A1 (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus and negative pole therefor
US06/873,093 US4683182A (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3687783A JPS59163755A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS59163755A true JPS59163755A (en) 1984-09-14
JPH0364987B2 JPH0364987B2 (en) 1991-10-09

Family

ID=12482008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3687783A Granted JPS59163755A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS59163755A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068095A (en) * 1999-08-25 2001-03-16 Hyogo Prefecture Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2002508577A (en) * 1998-03-26 2002-03-19 ミネソタ マイニング アンド マニュファクチャリング カンパニー Tin alloy electrode composition for lithium batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508577A (en) * 1998-03-26 2002-03-19 ミネソタ マイニング アンド マニュファクチャリング カンパニー Tin alloy electrode composition for lithium batteries
JP2001068095A (en) * 1999-08-25 2001-03-16 Hyogo Prefecture Negative electrode for lithium secondary battery and lithium secondary battery using the same

Also Published As

Publication number Publication date
JPH0364987B2 (en) 1991-10-09

Similar Documents

Publication Publication Date Title
JP3148293B2 (en) Non-aqueous electrolyte secondary battery
JPS6057188B2 (en) Chemical battery with rechargeable lithium-aluminum negative electrode
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
EP0139756B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPS59163755A (en) Nonaqueous electrolyte secondary battery
JPH0425676B2 (en)
JPS6086760A (en) Nonaqueous electrolyte secondary battery
JPH0412587B2 (en)
JPH0441471B2 (en)
JP3358482B2 (en) Lithium secondary battery
JPS59163761A (en) Nonaqueous electrolyte secondary battery
JPS59163757A (en) Nonaqueous electrolyte secondary battery
JP2004047406A (en) Nonaqueous electrolyte secondary battery
JPH0412586B2 (en)
JPS63143744A (en) Lithium battery
JPH0364988B2 (en)
JPS6049565A (en) Nonaqueous electrolyte secondary battery
EP0144429B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPH0412585B2 (en)
JPS62140358A (en) Nonaqueous electrolyte secondary cell
JP2804577B2 (en) Non-aqueous electrolyte battery
JPS62145650A (en) Nonaqueous electrolyte secondary cell
JPS60167265A (en) Nonaqueous electrolyte secondary battery
JPS634554A (en) Organic electrolyte secondary battery
JPS59186276A (en) Nonaqueous electrolyte secondary battery