JPH0364988B2 - - Google Patents

Info

Publication number
JPH0364988B2
JPH0364988B2 JP58036881A JP3688183A JPH0364988B2 JP H0364988 B2 JPH0364988 B2 JP H0364988B2 JP 58036881 A JP58036881 A JP 58036881A JP 3688183 A JP3688183 A JP 3688183A JP H0364988 B2 JPH0364988 B2 JP H0364988B2
Authority
JP
Japan
Prior art keywords
alloy
lithium
negative electrode
lead
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58036881A
Other languages
Japanese (ja)
Other versions
JPS59163758A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58036881A priority Critical patent/JPS59163758A/en
Priority to PCT/JP1984/000086 priority patent/WO1984003590A1/en
Priority to US06/873,093 priority patent/US4683182A/en
Priority to EP84901015A priority patent/EP0144429B1/en
Priority to DE8484901015T priority patent/DE3483244D1/en
Publication of JPS59163758A publication Critical patent/JPS59163758A/en
Publication of JPH0364988B2 publication Critical patent/JPH0364988B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は非水電解質二次電池用の負極の改良に
係るもので、この改良の結果高エネルギー密度で
充放電寿命が長く、安全性、信頼性に優れた充電
可能な電池を提供するものである。 従来例の構成とその問題点 現在まで、リチウム、ナトリウムなどのアルカ
リ金属を負極とする非水電解質二次電池として
は、たとえば、二硫化チタン(TiS2)をはじめ
各種の層間化合物などを正極活物質として用い、
電解質としては、炭酸プロピレン(以後PCと略
す)などの有機溶媒に過塩素酸リチウム
(LiClO4)などを溶解した有機電解質を用いる電
池の開発が活発に進められてきた。この二次電池
の特徴は、負極にリチウムを用いることにより、
電池電圧が高くなり、高エネルギー密度の二次電
池となることである。 しかし、この種の二次電池は、現在、まだ実用
化されていない。その主な理由は、充放電回数
(サイクル)の寿命が短かく、また充放電に際し
ての充放電効率が低いためである。この原因は、
リチウム負極の劣化によるところが非常に大き
い。すなわち、現在のリチウム負極は、ニツケル
などのスクリーン状集電体に板状の金属リチウム
を圧着したものが主に用いられているが、放電時
に金属リチウムは、電解質中にリチウムイオンと
して溶解する。しかし、これを充電して、放電前
のような板状のリチウムに析出させることは難し
く、デンドライト状(樹枝状)のリチウムが発生
してこれが根元より折れて脱落したり、あるい
は、小球状(苔状)に析出したリチウムが集電体
より脱離するなどの現象が起こる。このため充放
電が不能の電池となつてしまう。また、発生した
デンドライト状の金属リチウムが、正極、負極間
を隔離しているセパレータを貫通して、正極に接
し短絡を起こし、電池の機能を失なわせるような
ことも度々生じる。 このような負極の欠点を改良するための方法は
従来から各種試みられている。一般的には、負極
集電体の材料を替えて析出するリチウムとの密着
性を良くしたり、あるいは、電解質中にデンドラ
イト発生防止の添加剤を加えたりする方法が報告
されている。しかし、これらの方法は必ずしも効
果的ではない。すなわち、集電体材料に関して
は、集電体材料に直接析出するリチウムに有効で
あるが、更に充電(析出)を続けると析出リチウ
ム上へリチウムを析出することになり、集電体材
料の効果は消失する。また添加剤に関しても、充
放電サイクルの初期では有効であるが、サイクル
が進むと電池内での酸化還元反応などにより分解
し、その効果がなくなるものが殆んどである。さ
らに最近は負極として、リチウムとの合金を用い
ることが提案されている。この例としては、リチ
ウム−アルミニウム合金がよく知られている。こ
の場合は、一応均一の合金が形成されるが、充放
電をくり返すとその均一性を消失し、特にリチウ
ム量を多くすると電極が微粒化し崩壊するなどの
欠点があつた。また、銀とアルカリ金属との固溶
体を用いることも提案されている(特開昭56−
7386)。この場合は、アルミニウムとの合金のよ
うな崩壊はないとされているが、十分に速く合金
化するリチウムの量は少なく、金属状のリチウム
が合金化しないまゝ析出する場合があり、これを
防ぐために多孔体の使用などを推奨している。し
たがつて、大電流の充電効率は悪く、またリチウ
ム量の多い合金は、充放電による微細化が徐々に
加速され、サイクル寿命が急激に減少する。 この他には、リチウム−水銀合金を用いる考案
(特開昭57−98978)、リチウム−鉛合金を用いる
考案(特開昭57−141869)がある。しかし、リチ
ウム−水銀合金の場合は、放電により、負極は液
状粒子の水銀となり電極形状を保持しなくなる。
また、リチウム−鉛合金の場合は、電極の充放電
による微細粉化は、銀固溶体以上であり、このた
め合金中の鉛量を80%位にすることが望ましいと
されているが、これでは高エネルギー密度電池を
実現できない。以上のように非水電解質二次電池
用負極としては、実用上満足できるものは、まだ
見い出されていないといえる。 したがつて、優れた負極としては、アルカリ金
属の吸蔵量が大きく、しかも放出や吸蔵速度の大
なる負極材料の開発が望まれている。 発明の目的 本発明は負極材料を特定することにより、単位
体積当りの充放電量の多い、また充放電寿命の長
い、良好な特性を示す非水電解質二次電池を提供
するものである。 発明の構成 本発明は、アルカリ金属イオンを含む非水電解
質と、可逆性正極と、充電時に電解質中のアルカ
リ金属イオンを吸蔵し、放電時に前記金属イオン
を電解質中に放出する機能を有する合金からなる
負極とを備え、前記負極の合金として鉛合金を用
いるものである。さらに詳しくは、この鉛合金と
して、鉛を主成分とし、他の成分としてカドミウ
ム、ビスマス及びインジウムよりなる群から選ん
だ少なくとも1種を含む合金、またはさらにスズ
を加えた合金を用いることを特徴とする。 実施例の説明 前記のように本発明の二次電池においては、負
極材料合金に、充電によりリチウムを吸蔵させ、
放電により電解質中にリチウムイオンを放出させ
るものであるので、充電により鉛合金とリチウム
の合金が出来ることになる。本発明で述べる負極
材料とは、リチウムとの合金を作る以前の鉛合金
のことである。 例えば重量パーセントで70%の鉛と30%のカド
ミウムよりなる合金 〔Pb(70)−Cd(30)〕を用いた時の充放電反応は
(1)式のようになる。 〔Pb(70)−Cd(30)〕+xLi++xe 充電 ―――→ ←――― 放電〔Pb(70)−Cd(30)〕Lix ……(1) 式中〔Pb(70)−Cd(30)〕Lixは充電により生成
した鉛−カドミウム−リチウム合金を示してお
り、本発明で定義した負極材料とは(1)式中では
Pb(70)−Cd(30)のことである。 また、充放電の範囲としては、(1)式のように完
全に負極中よりリチウムがなくなるまで放電する
必要はなく、(2)式のように負極中に吸蔵されたリ
チウム量を変えるようにして、充放電ができるこ
とは当然である。 〔Pb(70)−Cd(30)〕Lix+yLi++ye 充電 ―――→ ←――― 放電〔Pb(70)−Cd(30)〕Lix+y ……(2) (2)式においても負極材料がPb(70)−Cd(30)で
あることは自明である。 また鉛を主成分とする合金とは、合金中最も重
量が多い金属が鉛である合金とする。 発明者らは、鉛を主成分とする合金を負極材料
として、アルカリ金属イオンを含む非水電解質中
で充電を行うことにより、高率充電を行つてもア
ルカリ金属の析出が起らずに負極材料中にアルカ
リ金属が吸蔵され、さらに放電を行うと高電流効
率で吸蔵されたアルカリ金属がアルカリ金属イオ
ンとして電解質中に放出されることを見い出し
た。また充放電をくり返し行つても負極材料の微
細粉化が起らず、良好な非水電解質二次電池の負
極特性を示すことがわかつた。 負極材料として、金属鉛と鉛を主成分とする合
金を比較すると合金の方が良好な負極特性を示し
た。鉛を主成分とする合金の他の成分として、ビ
スマス、カドミウム、スズ、インジウムなどを加
えて作つた合金の多くは、微視的に見ると、各金
属成分や金属間化合物などの多くの相からなつて
おり、均一なものではない。充電により吸蔵され
たリチウムなどのアルカリ金属は合金中と相の間
の界面に沿つて、早い速度で拡散してゆくと考え
られ、高率充放電を行うと鉛を主成分とする合金
を用いる方が良好であつた。したがつて金属鉛を
用いた場合に比べ、充放電電気量、サイクル特性
の両方とも向上することになる。 第1図に示したセルを構成して、各種金属や合
金の非水電解質二次電池の負極の特性を調べた。
第1図中、Aは検討した金属、合金よりなる試験
極、BはTiS2よりなる正極、Cは照合電極とし
てのリチウム板である。各々の電極のリードEA
EB,ECにはニツケル線を用いた。試験極Aは第
2図に示すように、1cm×1cm厚さ1mmの金属あ
るいは合金Dに、リードとしてニツケルリボン
EAをとりつけた。電解質には、1モル/の
LiClO4を溶かしたPCを用いた。試験極Aの液槽
Hと照合極Cの液槽Gとは連通管Iで接続されて
いる。金属や合金の非水電解質二次電池の負極と
しての特性を測定するために、試験極Aの電位
が、リチウム照合電極Cに対してOmVになるま
で5mAの定電流でカソード方向に充電した。こ
の条件では、試験極上にリチウムは析出せず合金
中に入る。試験極Aの電位がOmVに達した後、
照合電極Cに対して1.0Vになるまで、5mAの
定電流でアノード方向に放電し、その後充電、放
電を同じ条件で繰り返した。表には、試験極Aに
用いた合金、金属の第1サイクルと第10サイクル
における充電電気量、放電電気量、および効率と
して放電電気量を充電電気量で除したもの、サイ
クル特性として第10サイクルの放電電気量を第1
サイクルの放電電気量で除したものを示す。充電
電気量、放電電気量、効率、サイクル特性の数値
が大である程よい負極と言える。また表中に記号
で示した試験極Aの第10サイクルでの充電曲線を
第3図に、放電曲線を第4図に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to the improvement of negative electrodes for non-aqueous electrolyte secondary batteries, and as a result of this improvement, rechargeable batteries with high energy density, long charging/discharging life, and excellent safety and reliability. It provides: Conventional configurations and their problems Until now, non-aqueous electrolyte secondary batteries that use alkali metals such as lithium or sodium as negative electrodes have used various intercalation compounds such as titanium disulfide (TiS 2 ) as positive electrode active materials. used as a substance,
Batteries that use organic electrolytes such as lithium perchlorate (LiClO 4 ) dissolved in organic solvents such as propylene carbonate (hereinafter abbreviated as PC) have been actively developed. The feature of this secondary battery is that by using lithium for the negative electrode,
The battery voltage increases, resulting in a secondary battery with high energy density. However, this type of secondary battery has not yet been put into practical use. The main reason for this is that the life of the number of charging and discharging times (cycles) is short and the charging and discharging efficiency during charging and discharging is low. The cause of this is
This is largely due to the deterioration of the lithium negative electrode. That is, current lithium negative electrodes are mainly made by pressing a plate of metallic lithium onto a screen-shaped current collector such as nickel, but during discharge, the metallic lithium dissolves in the electrolyte as lithium ions. However, it is difficult to charge this and deposit it into the plate-shaped lithium that it was before discharging, and dendrite-like (dendritic) lithium may be generated that breaks off from the base and falls off, or it may break off from the base and fall off. Phenomena such as lithium deposited in a moss-like form detaching from the current collector occur. This results in a battery that cannot be charged or discharged. Furthermore, the generated dendrite-like metallic lithium often penetrates the separator that separates the positive and negative electrodes and comes into contact with the positive electrode, causing a short circuit and causing the battery to lose its functionality. Various methods have been tried in the past to improve these drawbacks of negative electrodes. Generally, methods have been reported in which the material of the negative electrode current collector is changed to improve its adhesion to the precipitated lithium, or an additive to prevent the formation of dendrites is added to the electrolyte. However, these methods are not always effective. In other words, with regard to the current collector material, it is effective for lithium that is deposited directly on the current collector material, but if the charging (deposition) continues, lithium will be deposited on the precipitated lithium, and the effect of the current collector material will be reduced. disappears. Furthermore, most additives are effective at the beginning of the charge/discharge cycle, but as the cycle progresses, they decompose due to oxidation-reduction reactions within the battery and lose their effectiveness. Furthermore, recently it has been proposed to use an alloy with lithium as a negative electrode. A well-known example of this is lithium-aluminum alloy. In this case, a somewhat uniform alloy is formed, but this uniformity disappears when charging and discharging are repeated, and especially when the amount of lithium is increased, the electrode becomes atomized and collapses. It has also been proposed to use a solid solution of silver and an alkali metal (Japanese Unexamined Patent Publication No. 1986-
7386). In this case, it is said that there is no collapse like in alloying with aluminum, but the amount of lithium that alloys quickly enough is small, and metallic lithium may precipitate without being alloyed. To prevent this, the use of porous materials is recommended. Therefore, charging efficiency at large currents is poor, and alloys with a large amount of lithium gradually accelerate micronization due to charging and discharging, resulting in a rapid decrease in cycle life. In addition, there are ideas using a lithium-mercury alloy (Japanese Patent Laid-Open No. 57-98978) and a idea using a lithium-lead alloy (Japanese Patent Laid-Open No. 57-141869). However, in the case of a lithium-mercury alloy, the negative electrode becomes liquid particle mercury due to discharge and no longer maintains its electrode shape.
In addition, in the case of lithium-lead alloys, the fineness due to charging and discharging of the electrode is greater than that of silver solid solution, and therefore it is said that it is desirable to keep the amount of lead in the alloy at around 80%. High energy density batteries cannot be realized. As described above, it can be said that a practically satisfactory negative electrode for non-aqueous electrolyte secondary batteries has not yet been found. Therefore, as an excellent negative electrode, it is desired to develop a negative electrode material that has a large amount of alkali metal occlusion and a high desorption and occlusion rate. OBJECTS OF THE INVENTION The present invention provides a non-aqueous electrolyte secondary battery that exhibits good characteristics such as a large charge/discharge amount per unit volume and a long charge/discharge life by specifying a negative electrode material. Structure of the Invention The present invention comprises a non-aqueous electrolyte containing alkali metal ions, a reversible positive electrode, and an alloy having the function of occluding alkali metal ions in the electrolyte during charging and releasing the metal ions into the electrolyte during discharging. A lead alloy is used as the alloy of the negative electrode. More specifically, the lead alloy is characterized by using an alloy containing lead as a main component and at least one selected from the group consisting of cadmium, bismuth, and indium as another component, or an alloy further containing tin. do. Description of Examples As described above, in the secondary battery of the present invention, lithium is occluded in the negative electrode material alloy by charging,
Since lithium ions are released into the electrolyte by discharging, an alloy of lead alloy and lithium is formed by charging. The negative electrode material described in the present invention is a lead alloy before forming an alloy with lithium. For example, when using an alloy [Pb(70)-Cd(30)] consisting of 70% lead and 30% cadmium by weight, the charge-discharge reaction is
It becomes as shown in equation (1). [Pb (70) − Cd (30)] + xLi + + xe Charge --- → ← --- Discharge [Pb (70) − Cd (30)] Li x ...... (1) In the formula [Pb (70) − Cd(30)]Li x indicates a lead-cadmium-lithium alloy produced by charging, and the negative electrode material defined in the present invention is
It refers to Pb(70)−Cd(30). In addition, as for the range of charging and discharging, it is not necessary to discharge until lithium is completely removed from the negative electrode as in equation (1), but it is necessary to change the amount of lithium occluded in the negative electrode as in equation (2). It goes without saying that it can be charged and discharged. [Pb (70) − Cd (30)] Li x + yLi + +ye Charge ---→ ← --- Discharge [Pb (70) − Cd (30)] Li x+y ...(2) Equation (2) It is obvious that the negative electrode material is Pb(70)-Cd(30). Furthermore, an alloy whose main component is lead is an alloy in which lead is the heaviest metal in the alloy. The inventors have discovered that by using a lead-based alloy as the negative electrode material and charging it in a nonaqueous electrolyte containing alkali metal ions, the negative electrode can be maintained without alkali metal precipitation even during high-rate charging. It was discovered that alkali metals are occluded in the material, and when further discharge is performed, the occluded alkali metals are released into the electrolyte as alkali metal ions with high current efficiency. It was also found that the negative electrode material did not become finely powdered even after repeated charging and discharging, and exhibited good negative electrode characteristics of a non-aqueous electrolyte secondary battery. When comparing lead metal and an alloy mainly composed of lead as negative electrode materials, the alloy showed better negative electrode characteristics. Many alloys made by adding other components such as bismuth, cadmium, tin, and indium to alloys whose main component is lead contain many phases such as each metal component and intermetallic compounds when viewed microscopically. It is not uniform. Alkali metals such as lithium absorbed by charging are thought to diffuse at a high rate along the interface between the alloy and the phase, and when high-rate charging and discharging is performed, alloys containing lead as the main component are used. It was better. Therefore, compared to the case where metallic lead is used, both the amount of charge and discharge electricity and the cycle characteristics are improved. The cell shown in FIG. 1 was constructed and the characteristics of the negative electrode of a non-aqueous electrolyte secondary battery made of various metals and alloys were investigated.
In FIG. 1, A is a test electrode made of the studied metal or alloy, B is a positive electrode made of TiS2 , and C is a lithium plate as a reference electrode. Lead E A of each electrode,
Nickel wires were used for E B and E C. As shown in Figure 2, the test electrode A is a metal or alloy D with a size of 1 cm x 1 cm and a thickness of 1 mm, with a nickel ribbon as a lead.
I installed E A. The electrolyte contains 1 mol/
PC in which LiClO 4 was dissolved was used. The liquid tank H of the test electrode A and the liquid tank G of the reference electrode C are connected by a communication pipe I. In order to measure the characteristics of a metal or alloy nonaqueous electrolyte secondary battery as a negative electrode, the test electrode A was charged toward the cathode with a constant current of 5 mA until the potential of the test electrode A became OmV with respect to the lithium reference electrode C. Under these conditions, lithium does not precipitate on the test electrode but enters the alloy. After the potential of test electrode A reaches OmV,
It was discharged toward the anode at a constant current of 5 mA until the voltage reached 1.0 V with respect to reference electrode C, and then charging and discharging were repeated under the same conditions. The table shows the amount of electricity charged and the amount of electricity discharged in the first and 10th cycles of the alloy and metal used in test electrode A, the efficiency calculated by dividing the amount of electricity discharged by the amount of electricity charged, and the cycle characteristics of the 10th cycle. The amount of electricity discharged during the cycle is
The value is divided by the amount of electricity discharged during the cycle. It can be said that the larger the numerical values of the amount of charging electricity, the amount of discharging electricity, the efficiency, and the cycle characteristics are, the better the negative electrode is. Further, the charging curve and the discharging curve at the 10th cycle of test electrode A, which are indicated by symbols in the table, are shown in FIG. 3 and FIG. 4, respectively.

【表】【table】

【表】 以上の結果より、非水電解質二次電池用負極材
料として、従来より用いられて来たアルミニウ
ム、鉛、銀、水銀に比べ、本発明の鉛を主成分と
する合金が良好であることがわかつた。 また鉛と鉛合金を比較すると合金の方が良好な
特性を示している。表中には、鉛合金を作るのに
使用した他の成分である金属単体の負極特性をも
示した。これにより、各成分の金属単体より合金
を用いた方が性能が向上していた。また表に示し
たように鉛−スズ合金で示すように、他の成分量
が増加する程、性能は向上する傾向が見られた。 合金組成中の主成分である鉛の量については、
表の8に示したように、重量パーセントで35%以
上が適当と思われる。 なお、負極材料として水銀を用いた場合、充放
電電気量が小さいのは、水銀の食塩電解における
ナトリウムアマルガム中のナトリウムが0.2%程
度しかないことと関連しているかもしれない。 さらに、負極材料の機械的安定性について検討
した。 5mAの定電流充放電では、鉛合金は全て微細
化は起らなかつた。次に、長時間、、低率充電を
想定して、負極材料を電解質中で金属リチウムと
短絡された。短絡させることにより負極材料中に
は最大量のリチウムが吸蔵されることになる。表
に示した1〜9の合金のうち、2〜4の鉛−スズ
合金において、合金の微細粉化が起り、他の合金
では起らなかつた。8、9の合金のように、鉛、
スズを含む合金でも、他の成分が含まれている
と、微細粉化が起らなかつた。鉛、スズのみで構
成されている合金でも、スズが多い程、微細粉化
の程度は小さかつた。 以上より、鉛を主成分とする合金を用いること
により、リチウムの吸蔵、放出を行う良好な負極
が得られることになり、吸蔵リチウム量が多くな
ると電極の微細化が起る鉛−スズ合金でも、さら
に他の成分カドミウム、ビスマス、インジウムの
1種を添加することにより良好な負極材料とな
る。 上記実施例では、負極電極材料にリチウムを吸
蔵、放出させる例を示した。リチウム以外にもナ
トリウムやカリウムなどのアルカリ金属の吸蔵、
放出を行わせる負極を構成することも可能であ
る。 また電解質として、実施例に示したLiClO4
溶解したPCだけでなく、Li3N(窒化リチウム)
やLiI(ヨウ化リチウム)のような固体電解質を用
いた場合でも、従来のアルミニウム、鉛、銀、水
銀に比べて本発明の鉛を主成分とする合金を負極
材料とする方が優れた特性が得られた。 発明の効果 以上のように主成分を鉛とする合金を負極材料
とすることにより、充放電電気量の多い、サイク
ル特性の良い、すなわち充放電寿命の長い信頼性
に優れた非水電解質電池を得ることができる。
[Table] From the above results, the lead-based alloy of the present invention is better as a negative electrode material for nonaqueous electrolyte secondary batteries than the conventionally used aluminum, lead, silver, and mercury. I found out. Also, when lead and lead alloys are compared, the alloys show better properties. The table also shows the negative electrode characteristics of other metals used to make the lead alloy. As a result, the performance was improved by using an alloy rather than using individual metals of each component. Furthermore, as shown in the table, as shown in the lead-tin alloy, there was a tendency for the performance to improve as the amount of other components increased. Regarding the amount of lead, which is the main component in the alloy composition,
As shown in Table 8, a weight percentage of 35% or more seems appropriate. Note that when mercury is used as the negative electrode material, the small amount of charge and discharge electricity may be related to the fact that the sodium content of the sodium amalgam in mercury salt electrolysis is only about 0.2%. Furthermore, we investigated the mechanical stability of the negative electrode material. With constant current charging and discharging at 5 mA, no refinement occurred in any of the lead alloys. Next, the negative electrode material was short-circuited with metallic lithium in the electrolyte, assuming long-term, low-rate charging. By short-circuiting, the maximum amount of lithium is occluded in the negative electrode material. Among alloys 1 to 9 shown in the table, alloy pulverization occurred in lead-tin alloys 2 to 4, but not in the other alloys. Like alloys 8 and 9, lead,
Even in alloys containing tin, pulverization did not occur when other components were included. Even in alloys composed only of lead and tin, the degree of pulverization was smaller as the amount of tin increased. From the above, it is possible to obtain a good negative electrode that absorbs and desorbs lithium by using an alloy whose main component is lead, and even with lead-tin alloys where the electrode becomes finer when the amount of absorbed lithium increases. By further adding one of other components such as cadmium, bismuth, and indium, a good negative electrode material can be obtained. In the above embodiment, an example was shown in which lithium was inserted into and released from the negative electrode material. In addition to lithium, occlusion of alkali metals such as sodium and potassium,
It is also possible to construct a negative electrode that allows emission to take place. Furthermore, as an electrolyte, not only PC in which LiClO 4 is dissolved as shown in the example, but also Li 3 N (lithium nitride) can be used.
Even when using a solid electrolyte such as or LiI (lithium iodide), the negative electrode material made of the lead-based alloy of the present invention has superior properties compared to conventional aluminum, lead, silver, and mercury. was gotten. Effects of the Invention As described above, by using an alloy containing lead as the main component as the negative electrode material, a highly reliable non-aqueous electrolyte battery with a large charge/discharge capacity, good cycle characteristics, and a long charge/discharge life can be created. Obtainable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は負極特性の検討に用いたセルの構成
図、第2図は試験極の側面図、第3図および第4
図は充電曲線図と放電曲線図である。 A……試験極、B……正極、C……照合電極。
Figure 1 is a block diagram of the cell used for examining the negative electrode characteristics, Figure 2 is a side view of the test electrode, Figures 3 and 4.
The figure shows a charging curve diagram and a discharging curve diagram. A...test electrode, B...positive electrode, C...verification electrode.

Claims (1)

【特許請求の範囲】 1 充電時に電解質中のアルカリ金属イオンを吸
蔵し、放電時に前記金属イオンを電解質中に放出
する機能を有する合金からなる負極を備え、前記
合金が、鉛を主成分とし、他の成分としてカドミ
ウム、ビスマス及びインジウムよりなる群から選
んだ少なくとも1種を含む合金である非水電解質
二次電池。 2 充電時に電解質中のアルカリ金属イオンを吸
蔵し、放電時に前記金属イオンを電解質中に放出
する機能を有する合金からなる負極を備え、前記
合金が、鉛を主成分とし、他の成分としてカドミ
ウム、ビスマス及びインジウムよりなる群から選
んだ少なくとも1種とスズを含む合金である非水
電解質二次電池。
[Scope of Claims] 1. A negative electrode made of an alloy that has the function of occluding alkali metal ions in an electrolyte during charging and releasing the metal ions into the electrolyte during discharging, the alloy having lead as a main component, A nonaqueous electrolyte secondary battery that is an alloy containing at least one member selected from the group consisting of cadmium, bismuth, and indium as another component. 2. A negative electrode made of an alloy that has the function of storing alkali metal ions in the electrolyte during charging and releasing the metal ions into the electrolyte during discharging, the alloy containing lead as a main component and cadmium as other components, A nonaqueous electrolyte secondary battery that is an alloy containing at least one member selected from the group consisting of bismuth and indium and tin.
JP58036881A 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery Granted JPS59163758A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58036881A JPS59163758A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery
PCT/JP1984/000086 WO1984003590A1 (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus and negative pole therefor
US06/873,093 US4683182A (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus
EP84901015A EP0144429B1 (en) 1983-03-07 1984-03-06 Rechargeable electrochemical apparatus and negative pole therefor
DE8484901015T DE3483244D1 (en) 1983-03-07 1984-03-06 RECHARGEABLE ELECTROCHEMICAL DEVICE AND NEGATIVE POLE THEREOF.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58036881A JPS59163758A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS59163758A JPS59163758A (en) 1984-09-14
JPH0364988B2 true JPH0364988B2 (en) 1991-10-09

Family

ID=12482114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58036881A Granted JPS59163758A (en) 1983-03-07 1983-03-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS59163758A (en)

Also Published As

Publication number Publication date
JPS59163758A (en) 1984-09-14

Similar Documents

Publication Publication Date Title
JP3148293B2 (en) Non-aqueous electrolyte secondary battery
JPS59186274A (en) Manufacture of nonaqueous electrolyte secondary battery
US4844996A (en) Lithium cell
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
EP0139756B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JPS6086760A (en) Nonaqueous electrolyte secondary battery
JP3152307B2 (en) Lithium secondary battery
JPH0364987B2 (en)
JPH0441471B2 (en)
JPH0412587B2 (en)
JPH0364988B2 (en)
JPH0421986B2 (en)
JPH0412585B2 (en)
JP3268938B2 (en) Nickel-hydrogen storage battery
JPH0412586B2 (en)
EP0144429B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPH01274359A (en) Nonaqueous electrolyte secondary battery
JPS59163757A (en) Nonaqueous electrolyte secondary battery
JPS6049565A (en) Nonaqueous electrolyte secondary battery
JPS59163756A (en) Nonaqueous electrolyte secondary battery
JP2858374B2 (en) Non-aqueous electrolyte secondary battery
JPH10308237A (en) Lithium secondary battery
JPH0773050B2 (en) Organic electrolyte secondary battery
JPH0711957B2 (en) Non-aqueous secondary battery