JPS59162206A - Manufacture of fine nickel and cobalt powder - Google Patents

Manufacture of fine nickel and cobalt powder

Info

Publication number
JPS59162206A
JPS59162206A JP3655883A JP3655883A JPS59162206A JP S59162206 A JPS59162206 A JP S59162206A JP 3655883 A JP3655883 A JP 3655883A JP 3655883 A JP3655883 A JP 3655883A JP S59162206 A JPS59162206 A JP S59162206A
Authority
JP
Japan
Prior art keywords
nickel
cobalt
powder
fine
hydrazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3655883A
Other languages
Japanese (ja)
Other versions
JPH0249364B2 (en
Inventor
Hisao Hayashi
林 尚男
Yoshinobu Nakamura
芳信 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP3655883A priority Critical patent/JPS59162206A/en
Publication of JPS59162206A publication Critical patent/JPS59162206A/en
Publication of JPH0249364B2 publication Critical patent/JPH0249364B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain uniform, noncoagulable and fine Ni or Co powder having a narrow grain size distribution by a wet process in large quantities in a high yield by carrying out reduction with sodium borohydride and hydrazine and by treating the resulting coagulated body of fine metallic powder with glue or alcohol. CONSTITUTION:Sodium borohydride such as NaBH4 or Na2B2H6 and hydrazine are simultaneously added to an aqueous soln. contg. Ni or Co ions to reduce the ions in the soln. to a coagulated body of fine metallic powder. The coagulated body can be simply separated from the soln. in a short time. The coagulated body separated and held in a filter is washed with glue and/or alcohol to obtain dispersed fine Ni or Co powder. By this method the grain size can be controlled to <=2mum easily and freely.

Description

【発明の詳細な説明】 本発明は湿式法によるニッケル及びコバルト微粉末の製
造方法に係り、詳しくは粒度分布幅が小さく均一で、非
凝集性のニッケル及びコバルトの金属微粉末の製造方法
に関する 近時ニッケル及びコバルトの金属微粉末は粉末冶金分野
だけでな(、電子工業分野において、へ銀、パラジウム
等の貴金属に替って、例えば電子部品用ペースト材料等
として実用化されつつある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing fine nickel and cobalt powder by a wet process, and more specifically, a method for producing fine nickel and cobalt metal powder that has a small and uniform particle size distribution and is non-agglomerative. Fine metal powders of nickel and cobalt are being put into practical use not only in the field of powder metallurgy (but also in the electronics industry), for example, as paste materials for electronic parts, instead of precious metals such as silver and palladium.

ニッケル及びコバル()微粉を得る従来の製造方法とし
ては、 (1)  ニッケル又はコバルトのカーボニル塩を熱分
解する方法 (2)ニッケル又はコバルトの酸化物あるいは塩を融点
以下の温度で水素または炭素で還元する方法 (3)真空あるいは不活性ガス中でニッケルメタルを蒸
発凝縮せしめるガス中蒸発法 等が広く知られている。
Conventional manufacturing methods for obtaining fine powder of nickel and cobalt include (1) thermal decomposition of carbonyl salts of nickel or cobalt; (2) oxidation of nickel or cobalt oxides or salts with hydrogen or carbon at a temperature below the melting point; Method of Reduction (3) The evaporation method in gas, in which nickel metal is evaporated and condensed in vacuum or inert gas, is widely known.

(1)の方法は広く工業的に実施されている方法である
が、得られるニッケル粉末は粒径0.5〜10μmと粒
度分布幅が広く粒子形状も一定しないものであり、さら
に電子工業分野で必要とする粒径の小さい粒度分布幅の
小さいものとするには、粉砕、篩分けを必要とし、製品
の収率も悪い。
Method (1) is a method that is widely practiced industrially, but the resulting nickel powder has a wide particle size distribution of 0.5 to 10 μm, and the particle shape is not uniform. In order to obtain the required small particle size and narrow particle size distribution width, crushing and sieving are required, and the yield of the product is also poor.

また(2)の方法は酸化物あるいは塩等の化合物の粒度
、粒子形態の影響が顕著であること及び高温で反応させ
るため粒子の焼結が生じ易い等の欠点がある。更に(3
)の方法は温度、雰囲気の圧力などにより蒸発速度が支
配され、金属微粉末の製造能力は極めて低く、大量の金
属微粉末を連続して製造しにくい欠点を有する。
In addition, method (2) has drawbacks such as the significant influence of the particle size and particle morphology of compounds such as oxides or salts, and the fact that the reaction is carried out at high temperatures, which tends to cause sintering of the particles. Furthermore (3
The method (2) has the drawback that the evaporation rate is controlled by temperature, atmospheric pressure, etc., and the production capacity of fine metal powder is extremely low, making it difficult to continuously produce a large amount of fine metal powder.

また、従来実施されていた電気化学的還元法及び化学的
還元法等の湿式法で得られる粉末番1、その粒度分布が
0.5〜200μmのどとく粒径が広い範囲に分布する
と同時に粒子形状も一定しな℃・ものであり、さらに粉
砕、篩分けを必要とする。
In addition, powder No. 1 obtained by conventional wet methods such as electrochemical reduction method and chemical reduction method has a particle size distribution of 0.5 to 200 μm, a wide range of particle size, and a particle shape. Also, the temperature is not constant and requires further crushing and sieving.

また、化学的還元法では、燐(P)、ホウ素(B)等の
不純物を数%〜10数%含有し、その製品収率も低かっ
た。
Further, in the chemical reduction method, impurities such as phosphorus (P) and boron (B) were contained in a range of several percent to ten-odd percent, and the product yield was low.

これら湿式法で得られる微粉末は一般に粒径力;小さく
なるほど通常の沖過法では回収が困難であると言った処
理上多くの問題点を有して℃・た。
The fine powders obtained by these wet methods generally have many problems in processing, such as the smaller the particle size, the more difficult it is to recover by the normal filtration method.

本発明は、これら従来法の欠点を解消すべくなされたも
ので、その目的は湿式法によりかつ簡便な設備で容易に
直径2μm以下に自由に粒度をコントロールし、粒度分
布幅が小さく、均一で、非凝集性の高純度のニッケル及
びコ/くルト金属微粉末を大量に高収率で製造する方法
を提供することにある。
The present invention was made to eliminate these drawbacks of conventional methods, and its purpose is to easily and freely control the particle size to a diameter of 2 μm or less using a wet method and with simple equipment, and to achieve a uniform particle size distribution with a small width. The object of the present invention is to provide a method for producing non-agglomerated, high-purity nickel and co/metal metal fine powders in large quantities and at a high yield.

本発明者らは、前記目的を達成すべく種々研究を重ねた
結果、ニッケルまたはコノくルトをイオンとして含有す
る硫酸ニッケル、硫酸コバルト、塩化ニッケル、塩化コ
バルト、硝酸ニッケル、硝酸コバルト等々の水溶液(以
下ニッケルイオン水溶液、コバルトイオン水溶液という
)に水素化ホウ素ナトリウA (NaBH4の他Na、
B2H6、Na2B aHso及びNa2B6Hg等の
ホウ化水素とNaの付加化合物に当る組成の化合物の総
称をいう。以下SBHと称す。)及びヒドラジン(NH
2NH,)  を同時に混合添加し、溶液中のニッケル
またはコバルトを金属微粉凝集体に還元した後、詐金輝
微粉凝集体を膠及び/またはアルコールで処理すること
により直径2μm以下の粒度分布幅が小さく、均一な非
凝集性の高純度のニッケル及びコバルト金属微粉末が得
られることを見出し本発明を完成したものである。
As a result of various studies to achieve the above object, the present inventors have discovered that aqueous solutions of nickel sulfate, cobalt sulfate, nickel chloride, cobalt chloride, nickel nitrate, cobalt nitrate, etc. containing nickel or conolite as ions ( (hereinafter referred to as nickel ion aqueous solution, cobalt ion aqueous solution), sodium borohydride A
A general term for compounds with compositions corresponding to addition compounds of borohydride and Na, such as B2H6, Na2B aHso, and Na2B6Hg. Hereinafter referred to as SBH. ) and hydrazine (NH
2NH,) is mixed and added at the same time to reduce the nickel or cobalt in the solution to metal fine powder aggregates, and then the false gold powder aggregates are treated with glue and/or alcohol to reduce the particle size distribution width with a diameter of 2 μm or less. The present invention was completed by discovering that uniform, non-agglomerated, highly pure nickel and cobalt metal fine powders can be obtained.

すなわち本発明は、ニッケルイオン溶液またはコバルト
イオン溶液にSBH及びヒドラジンを同時に混合添加し
、前記溶液中めニッケルまたはコバルトイオンを金属微
粉凝集体に還元した後、該金属微粉凝集体を膠及び/ま
たはアルコールで処理することにより金属微粉分散体を
鞠るととを特徴とするニッケル及びコバルト微粉末の製
造法にある。
That is, in the present invention, SBH and hydrazine are simultaneously mixed and added to a nickel ion solution or a cobalt ion solution, the nickel or cobalt ions in the solution are reduced to metal fine powder aggregates, and then the metal fine powder aggregates are treated with glue and/or A method for producing fine nickel and cobalt powder, characterized by dispersing a fine metal powder dispersion by treating it with alcohol.

本発明によるニッケル及びコバルト微粉末の製造法にお
いては、ニッケルイオン溶液またはコバルトイオン溶液
の声を苛性ソーダ、苛性カリ、アンモニア等、好ましく
はアンモニア及び硫酸塩酸等の鉱酸好ましくは硫酸によ
り6.0〜10、好ましくは8.0〜9.5に保ち、ま
た、水溶液の温度を30〜90°C1好ましくは40〜
80°Cに保ち、前記水溶液中のニッケルまたはコバル
ト含有量に対しモル比(SBH/N1orCo、   
 /N1orCo )において、1.25x10 〜0
.125好ましくは2.5XlO〜0,05量のSBH
及び05〜2.5好ましくは1.0〜2.0量のヒドラ
ジンを混合し水溶液としたものを添加する。この操作に
より水溶液中のニッケルまたはコバルトは金属微粉凝集
体に還元され、沢過助剤または凝集剤を使用することな
く、自然重力p過、減圧Pbにより簡単に短時間で固液
分離できる。固液分離され、治過器に保持された上記ニ
ッケルまたはコバルトの金属微粉凝集体に膠及び/また
はアルコール、好ましくは膠及びアルコールを添加洗滌
し、ニッケルまたはコバルトの金属微粉分散体とする。
In the method for producing fine nickel and cobalt powder according to the present invention, a nickel ion solution or a cobalt ion solution is mixed with a mineral acid such as caustic soda, caustic potash, ammonia, etc., preferably ammonia and a mineral acid such as sulfuric acid, preferably sulfuric acid, to give a concentration of 6.0 to 10 , preferably 8.0 to 9.5, and the temperature of the aqueous solution to 30 to 90°C, preferably 40 to
The molar ratio (SBH/N1orCo,
/N1orCo), 1.25x10~0
.. 125 preferably 2.5XlO to 0.05 amount of SBH
and 05 to 2.5, preferably 1.0 to 2.0, of hydrazine are mixed and an aqueous solution is added. By this operation, nickel or cobalt in the aqueous solution is reduced to fine metal powder aggregates, and solid-liquid separation can be easily performed in a short time by natural gravity p-filtration and reduced pressure Pb without using a filtering aid or flocculant. Glue and/or alcohol, preferably glue and alcohol, are added to the nickel or cobalt metal fine powder aggregate, which is separated into solid and liquid and held in a filtration device, and washed to obtain a nickel or cobalt metal fine powder dispersion.

この操作において使用する膠は濃度0.5〜5g/lの
水溶液として、ニッケルまたはコバルトの金属微粉量に
対して0.1〜5重量パーセントを添加し処理する。
The glue used in this operation is treated as an aqueous solution with a concentration of 0.5 to 5 g/l, and 0.1 to 5 percent by weight is added to the amount of nickel or cobalt metal fine powder.

続いて水により過剰の膠を洗浄後、アルコールを添加す
ることにより水を置換除去する。尚アルコールは水を置
換するアルコールであればどんなものでもよいが、メタ
ノール、エタノールが好ましい。この様にして得られた
金属微粉分散体は、真空乾燥、凍結乾燥等特殊な乾燥法
を使用することなく、通常の乾燥法、雰囲気にて温度6
0〜909060〜60分乾燥することにより直径2μ
m以下の粒度分布幅の小さい、均一な微粉末とすること
ができる。
Subsequently, after washing excess glue with water, alcohol is added to remove the water by displacement. The alcohol may be any alcohol as long as it displaces water, but methanol and ethanol are preferred. The metal fine powder dispersion obtained in this way can be dried at a temperature of 6.5 cm using a normal drying method in an atmosphere without using special drying methods such as vacuum drying or freeze drying.
0~909060~2μ in diameter by drying for 60 minutes
A uniform fine powder with a narrow particle size distribution width of m or less can be obtained.

前記還元反応において、ニッケルまたはコバルトイオン
溶液の濃度は特に限定されないが、取扱い液量及び反応
フントロールの点よす0.5〜4,0m5!−に′が好
ましい。
In the reduction reaction, the concentration of the nickel or cobalt ion solution is not particularly limited, but it is 0.5 to 4.0 m5 depending on the amount of liquid handled and reaction load! − and ′ are preferred.

以上のごとき本発明方法によると、従来内蓋とされてい
た直径2μm以下のニッケル及びコバルトの金属微粉末
を湿式法により、乾式法に比較して、簡便な設備で容易
に大量に高収率で製造できるという優れた効果を有し、
さらに得られた金属微粉末は粒度分布幅か小さく均一な
非凝集性の粉末であり、比表面積は1〜10 m / 
9 s純度99.5%以上の優れた特性をも有し電子工
業分野において使用可能なものである。
According to the method of the present invention as described above, nickel and cobalt fine metal powders with a diameter of 2 μm or less, which were conventionally used as inner lids, can be easily produced in large quantities using a wet method with simple equipment and in high yield compared to the dry method. It has the excellent effect of being able to be manufactured with
Furthermore, the obtained metal fine powder is a uniform non-agglomerated powder with a small particle size distribution width, and a specific surface area of 1 to 10 m /
It also has excellent properties with a purity of 99.5% or higher and can be used in the electronic industry.

以下、本発明を実施例および比較例に基づいてさらに具
体的に説明するが、本発明はこれら実施例に限定される
ものではない。
Hereinafter, the present invention will be explained in more detail based on Examples and Comparative Examples, but the present invention is not limited to these Examples.

実施例1 硫mニッケル(NiS04・6H20)を水に溶解し、
アンモニア(NH,OH)及び硫酸(H2804)によ
り溶液中の声を調整した。一方8BH及びヒドラジンを
混合し水に溶解したヒドラジン水溶液を第1表に示す如
き、−及び反応温度を保持しながら添加し、水溶液中の
ニッケルを金属微粉凝集体に還元した。
Example 1 Nickel sulfate (NiS04.6H20) was dissolved in water,
The voice in solution was adjusted by ammonia (NH,OH) and sulfuric acid (H2804). On the other hand, an aqueous hydrazine solution in which 8BH and hydrazine were mixed and dissolved in water was added while maintaining the - and reaction temperature as shown in Table 1, and the nickel in the aqueous solution was reduced to metal fine powder aggregates.

この場合、硫酸ニッケル水溶液々量及び濃度、混合添加
した8BH及びヒドラジンの量(mol)及びSBH/
Niモル比、ヒドラジン/Niモル比、ヒドラジン水溶
液中のヒドラジン濃度、−及び反応温度条件を第1表に
示す如く変更し試験篇1〜5を行なった。
In this case, the amount and concentration of the nickel sulfate aqueous solution, the amount (mol) of 8BH and hydrazine mixed and added, and the SBH/
Tests 1 to 5 were conducted by changing the Ni molar ratio, hydrazine/Ni molar ratio, hydrazine concentration in the hydrazine aqueous solution, and reaction temperature conditions as shown in Table 1.

次で生成した金属微粉凝集体含有スラリーを自然重力濾
過器により治過し、濾過器中に保持されたニッケル微粉
凝集体を水にて通液洗滌涙過→渉度2g/lの膠溶液1
1を通液濾過→水にて通液洗滌流過→メタノール(CH
30H) 1 lを通液濾過、の各処理をしだ後80℃
、60分の乾燥条件にて乾燥しニッケル微粉末を得た。
The slurry containing fine metal powder aggregates generated in the next step was filtered using a natural gravity filter, and the nickel fine powder aggregates retained in the filter were washed with water.
1. Liquid filtration → Washing and filtration with water → Methanol (CH
30H) After each process of liquid filtration and filtration of 1 liter, heat at 80°C.
The powder was dried under drying conditions for 60 minutes to obtain fine nickel powder.

各試験例において得られた微粉末景及びその特性値を第
2表に示す。
Table 2 shows the fine powder appearance and its characteristic values obtained in each test example.

第2表並びに添付の試験扁1より得られたNi微粉末の
20.000倍の走査電子顕微鏡参考写真屋1に明らか
な如く比表面積が大で平均粒径は何れも2μ以下で走査
電子顕微鏡による観察によるとその粒度分布幅が非常に
小さく均一な非凝集性のニッケル微粉末であることがわ
かった。
As is clear from Table 2 and the attached test plate 1, the Ni powder obtained from the scanning electron microscope 20.000 times larger has a large specific surface area, and the average particle size is less than 2 μm. According to the observation by , it was found to be a non-agglomerated fine nickel powder with a very small and uniform particle size distribution.

実施例2 硫酸コバル) (CoS04・7H20)を水に溶解し
、アンモニア水(NH40H)及び硫酸(H2SO4)
により溶液中の〆]を90に調整したコバルト濃度=2 0、5 mol / lの水溶液51KSBH6,25
X10モル(SBH/COモル比2.5X1D−2)及
びヒドラジン5モル(ヒドラジン700モル比2.0)
を混合し、水に溶解したヒドラジン濃度20重量%の水
溶液を反応p)(9,0、反応温度70°Cに保持しな
がら添加し、コバルトを金属微粉凝集体に還元した後、
実施例1と同様な処理を行なった後コバルト微粉末14
5Iを得た。そのC(l純度は99.5%比表面積2.
277L″/y、平均粒径0.5μmであり、走査電子
顕微鏡による観察にて、その粒径範囲は0、4〜0.6
μmと粒度分布幅が小さく均一な粉末であることがわか
った。
Example 2 Cobal sulfate) (CoS04.7H20) was dissolved in water, aqueous ammonia (NH40H) and sulfuric acid (H2SO4)
Cobalt concentration = 20.5 mol/l aqueous solution 51 KSBH6.25 with the cobalt concentration adjusted to 90 by
X10 moles (SBH/CO molar ratio 2.5X1D-2) and 5 moles of hydrazine (hydrazine 700 molar ratio 2.0)
An aqueous solution of hydrazine dissolved in water with a concentration of 20% by weight was added to reaction p) (9,0, while maintaining the reaction temperature at 70 ° C., and after reducing cobalt to metal fine powder aggregates,
After performing the same treatment as in Example 1, fine cobalt powder 14
I got 5I. Its C (l purity is 99.5% specific surface area 2.
277L''/y, average particle size 0.5 μm, and the particle size range was 0.4 to 0.6 when observed with a scanning electron microscope.
It was found that the powder was uniform with a small particle size distribution width of μm.

尚得られたCO微粉末の20.000倍の走査電子顕微
鏡写真を参考写真、亮2として添付した。
A scanning electron micrograph of the obtained CO fine powder at a magnification of 20,000 times is attached as a reference photograph, Ryo 2.

比較側1 実施例1及び2と同様な方法で調整した濃度0.5m0
1/l、pl′I90のニッケルイオン水溶液またはコ
バルトイオン水溶液51VC8BH,1,875モル(
SBH/Ni又はCOのモル比0.75 )また目ヒド
ラジン5モル(ヒドラジン/ Ni又はCoのモル比2
.0)を反応温度60℃に保持しながら、SBH及びヒ
ドラジンを夫々単独で添加し、生成した粉末スラリーを
実施例1と同様な方法で処理し粉末を得た。
Comparison side 1 Concentration 0.5m0 adjusted in the same manner as Examples 1 and 2
1/l, pl'I90 nickel ion aqueous solution or cobalt ion aqueous solution 51VC8BH, 1,875 mol (
SBH/Ni or CO molar ratio 0.75) or hydrazine 5 mol (hydrazine/Ni or Co molar ratio 2
.. While maintaining the reaction temperature of 0) at 60° C., SBH and hydrazine were added individually, and the resulting powder slurry was treated in the same manner as in Example 1 to obtain powder.

各々の粉末をX線回折及び化学分析した結果、ニッケル
イオン水溶液にSBHを単独添加した場合、生成Ni粉
末はNiOとNi2Bの混合ピークを示し、Ni品位9
0%、B品位5%であった。同様にSBHをコバルトイ
オン水溶液に単独添加した場合も生成CO粗粉末メタル
コバルトとコバルトホライドの混合物でありCO品位8
6% B品位4%であった。ヒドラジンをニッケル水溶
液又はコバルトイオン水溶液に単独添加した場合夫々生
成した粉末は硫酸ニッケルヒドラジン及び硫酸コバルト
ヒドラジンであった。すなわち、本発明の目的を達成す
るためNiイオン又はCOイオンを含有する溶液にSB
H及びヒドラジンの同時添加が必須であることを示して
いる。
As a result of X-ray diffraction and chemical analysis of each powder, when SBH was added alone to a nickel ion aqueous solution, the produced Ni powder showed a mixed peak of NiO and Ni2B, and the Ni grade was 9.
0%, B grade 5%. Similarly, when SBH is added alone to a cobalt ion aqueous solution, the CO produced is a mixture of coarse powder metal cobalt and cobalt holide, and the CO grade is 8.
6% B grade 4%. When hydrazine was added alone to an aqueous nickel solution or an aqueous cobalt ion solution, the powders produced were nickel hydrazine sulfate and cobalt hydrazine sulfate, respectively. That is, in order to achieve the purpose of the present invention, SB is added to a solution containing Ni ions or CO ions.
This shows that simultaneous addition of H and hydrazine is essential.

比較例2 実施例1の試験慕1及び実施例2と同様な方法で生成し
たニッケルまたはコバルト微粉凝集体を膠及び/または
アルコール処理することなく単に水にて洗浄し、濾過後
、80℃、240分乾燥し、ニッケルまたはコバルト微
粉各々14..5 g、 146Fを得た。生成した微
粉末のX線回折及び走査電子顕微鏡観察の結果、酸化物
のピークが認められると同時に、凝集、固結が著しく、
超音波分散によっても容易に分散しなかった。
Comparative Example 2 A nickel or cobalt fine powder aggregate produced in the same manner as Test 1 of Example 1 and Example 2 was simply washed with water without being treated with glue and/or alcohol, and after filtration, it was heated at 80°C. Dry for 240 minutes and add nickel or cobalt fine powder for 14 minutes each. .. 5 g of 146F was obtained. As a result of X-ray diffraction and scanning electron microscopy observation of the produced fine powder, oxide peaks were observed, and at the same time, significant agglomeration and caking occurred.
It was not easily dispersed even by ultrasonic dispersion.

即ちこの結果より膠及び/またはアルコール処理が本発
明目的達成のために必要であることが判る。
That is, from this result, it can be seen that glue and/or alcohol treatment is necessary to achieve the object of the present invention.

叙上の実施例及び比較例に明らかな如く本発明によるニ
ッケル及びコバルト微粉末の製造法は従来の湿式法によ
り得られる微粉末よりその特性において優れかつ簡便な
設備を用いて大量に高収率で製造しうるもので甚だ有用
な発明である。
As is clear from the above examples and comparative examples, the method for producing fine nickel and cobalt powder according to the present invention has superior properties to fine powders obtained by conventional wet methods, and can be produced in large quantities at high yields using simple equipment. It is an extremely useful invention as it can be manufactured using

代理人 弁理士  木 村 三 朗Agent: Patent Attorney Sanro Kimura

Claims (4)

【特許請求の範囲】[Claims] (1)  ニッケルイオンを含有する水溶液またはコバ
ルトイオンを含有する水溶液に水素化ホウ素ナトリウム
及びヒドラジンを同時に混合添加し、前記水溶液中のニ
ッケルまたはコバルトを金属微粉凝集体に還元し、該金
属微粉凝集体を膠及び/またはアルコールで処理するこ
とにより金属微粉分散体を得ることを特徴とするニッケ
ル及びコバルト微粉末の製造法。
(1) Mixing and adding sodium borohydride and hydrazine simultaneously to an aqueous solution containing nickel ions or an aqueous solution containing cobalt ions, reducing nickel or cobalt in the aqueous solution to metal fine powder aggregates, and reducing the metal fine powder aggregates. A method for producing nickel and cobalt fine powder, which comprises obtaining a metal fine powder dispersion by treating nickel and cobalt fine powder with glue and/or alcohol.
(2)前記還元に当り水溶液のpHを6.0〜10、温
度を60〜90℃に保持することを特徴とする特許請求
の範囲第1項記載のニッケル及びコバルト微粉末の製造
法。
(2) The method for producing fine nickel and cobalt powder according to claim 1, characterized in that during the reduction, the pH of the aqueous solution is maintained at 6.0 to 10 and the temperature is maintained at 60 to 90°C.
(3)前記水素化ホウ素ナトリウム及びヒドラジンを混
合添加するに当り、水溶液中のニッケルまたはコバルト
含有量に対し、水素化ホウ素ナトリウムのモル比が1.
25 X 10−’−0,125、ヒドラジンのモル比
が0.5〜2.5であることを特徴とする特許請求の範
囲第1項記載のニッケル及びコバルト微粉末の製造法。
(3) When adding the sodium borohydride and hydrazine together, the molar ratio of sodium borohydride to the nickel or cobalt content in the aqueous solution is 1.
25 X 10-'-0,125, and the molar ratio of hydrazine is 0.5 to 2.5. The method for producing fine nickel and cobalt powder according to claim 1.
(4)前記金属微粉凝集体に膠濃度0.5〜5 g/l
。 の水溶液をニッケルまたはコバルト微粉末量に対し0.
1〜5重量%添伽処理することを特徴とする特許請求の
範囲第1項記載のニッケル及びコバルト微粉末の製造法
(4) A glue concentration of 0.5 to 5 g/l in the metal fine powder aggregate
. of an aqueous solution of 0.0% for the amount of nickel or cobalt fine powder.
2. The method for producing fine nickel and cobalt powder according to claim 1, wherein the nickel and cobalt fine powders are added in an amount of 1 to 5% by weight.
JP3655883A 1983-03-08 1983-03-08 Manufacture of fine nickel and cobalt powder Granted JPS59162206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3655883A JPS59162206A (en) 1983-03-08 1983-03-08 Manufacture of fine nickel and cobalt powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3655883A JPS59162206A (en) 1983-03-08 1983-03-08 Manufacture of fine nickel and cobalt powder

Publications (2)

Publication Number Publication Date
JPS59162206A true JPS59162206A (en) 1984-09-13
JPH0249364B2 JPH0249364B2 (en) 1990-10-30

Family

ID=12473080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3655883A Granted JPS59162206A (en) 1983-03-08 1983-03-08 Manufacture of fine nickel and cobalt powder

Country Status (1)

Country Link
JP (1) JPS59162206A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415491B1 (en) * 1997-12-12 2004-01-31 미츠이 긴조쿠 고교 가부시키가이샤 Nickel fine powder and process for producing the same
CN1319685C (en) * 2005-01-13 2007-06-06 南京大学 Production for nanometer nickel powder
JP2010202943A (en) * 2009-03-04 2010-09-16 Mitsuboshi Belting Ltd Metal colloid particle aggregate and method for producing the same
CN103706804A (en) * 2013-12-25 2014-04-09 南昌航空大学 Environment-friendly preparing method of nickel nanocrystalline
CN104001551A (en) * 2014-05-30 2014-08-27 绍兴文理学院 Poly(tert-butyl acrylamide) nanosphere loaded Ni-B catalyst as well as preparation method and application of poly(tert-butyl acrylamide) nanosphere loaded Ni-B catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395165A (en) * 1977-01-31 1978-08-19 Murata Manufacturing Co Minute particle metal nickel powder manufacturing process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395165A (en) * 1977-01-31 1978-08-19 Murata Manufacturing Co Minute particle metal nickel powder manufacturing process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415491B1 (en) * 1997-12-12 2004-01-31 미츠이 긴조쿠 고교 가부시키가이샤 Nickel fine powder and process for producing the same
CN1319685C (en) * 2005-01-13 2007-06-06 南京大学 Production for nanometer nickel powder
JP2010202943A (en) * 2009-03-04 2010-09-16 Mitsuboshi Belting Ltd Metal colloid particle aggregate and method for producing the same
CN103706804A (en) * 2013-12-25 2014-04-09 南昌航空大学 Environment-friendly preparing method of nickel nanocrystalline
CN104001551A (en) * 2014-05-30 2014-08-27 绍兴文理学院 Poly(tert-butyl acrylamide) nanosphere loaded Ni-B catalyst as well as preparation method and application of poly(tert-butyl acrylamide) nanosphere loaded Ni-B catalyst
CN104001551B (en) * 2014-05-30 2016-02-17 绍兴文理学院 The Ni-B Catalysts and its preparation method of poly-N-tert-butyl acrylamide nanosphere load and application

Also Published As

Publication number Publication date
JPH0249364B2 (en) 1990-10-30

Similar Documents

Publication Publication Date Title
WO2015115427A1 (en) Manufacturing method for nickel powder
KR100486604B1 (en) Method for manufacturing nano-scale copper powders by wet reducing process
JP3961826B2 (en) Method for producing high density and large particle size cobalt hydroxide or cobalt mixed hydroxide and product produced by this method
JP6610425B2 (en) Method for producing nickel powder
JP2017150063A5 (en)
KR100490668B1 (en) Method for manufacturing nano-scale silver powders by wet reducing process
CN115477293A (en) Preparation method of anhydrous iron phosphate with low impurity and high specific surface area
Sinha et al. Synthesis of nanosized copper powder by an aqueous route
CN104741622B (en) The preparation method of a kind of high pure copper powder
JPS59162206A (en) Manufacture of fine nickel and cobalt powder
JPH0557324B2 (en)
CA1151881A (en) Cobalt metal powder by hydrogen reduction
WO2017073392A1 (en) Method for producing seed crystal of cobalt powder
KR100420605B1 (en) Cabalt Metal Agglomerates, a Process of the Same and Their Use
RU2410205C2 (en) Method of producing ultra-dispersed metal powder
JPH01136910A (en) Manufacture of granular fine metal powder
JPS58224103A (en) Production of fine copper powder
US4761177A (en) Production of cobalt and nickel powder
JP2017155253A (en) Production method of nickel powder
Stroia et al. A new route for synthesis and characterization of macroporous granular silver
JP2834199B2 (en) Method for producing ultrafine tungsten particles
KR100490678B1 (en) Method for manufacturing nano-scale nickel powders by wet reducing process
JP3505133B2 (en) Surface conductive nickel oxyhydroxide and method for producing the same
RU2283208C2 (en) Silver powder production method
JP7007650B2 (en) Nickel powder manufacturing method