JPS5915922A - Scanner - Google Patents

Scanner

Info

Publication number
JPS5915922A
JPS5915922A JP57126252A JP12625282A JPS5915922A JP S5915922 A JPS5915922 A JP S5915922A JP 57126252 A JP57126252 A JP 57126252A JP 12625282 A JP12625282 A JP 12625282A JP S5915922 A JPS5915922 A JP S5915922A
Authority
JP
Japan
Prior art keywords
deflection
optical system
plane
acousto
optic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57126252A
Other languages
Japanese (ja)
Inventor
Kazuhiko Matsuoka
和彦 松岡
Masayuki Usui
臼井 正幸
Kazuo Minoura
一雄 箕浦
Takeshi Baba
健 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57126252A priority Critical patent/JPS5915922A/en
Publication of JPS5915922A publication Critical patent/JPS5915922A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To scan a surface to be scanned at a high speed and to make constitution compact by using an acoustooptic element as the 1st deflector and a rotary mirror or the like as the 2nd deflector and combining the same with plural light source parts. CONSTITUTION:Plural light source parts 1a, 1b are provided, and after the 1st deflection is applied thereto with an acoustooptic element 2, a rotary mirror 3 is used as a deflection means for applying the 2nd deflection within the plane intersecting orthogonally with the deflected scanning surface by the 1st deflection. The light source part 1b is disposed within the plane intersecting orthogonally with the plane of the 1st deflection. The modulated luminous flux generated from the part 1b passes through the optical path shown by broken lines, receives the effect similar to the effect for the luminous flux from the part 1a and is imaged as a spot B on the surface 4 to be scanned. Said spot scans simultaneously with the spot A on the surface 4 in the direction of the 2nd deflection according to the rotation of the mirror 3. The optical system is so set in this case that the main rays of the luminous fluxes from the parts 1a, 1b intersect with each other in the region P2 indicating the position where the element 2 applies deflecting effect on the incident luminous fluxes.

Description

【発明の詳細な説明】 本発明は、複数の光束を用いて被走査面上を高速且つ高
密度に走査する走査装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a scanning device that scans a surface to be scanned at high speed and with high density using a plurality of light beams.

従来高速走査を実現する一方式として、回転多面鏡を偏
向器として使用しこれを高速度回転する方式は良く知ら
れている。
Conventionally, as one method for realizing high-speed scanning, a method in which a rotating polygon mirror is used as a deflector and is rotated at high speed is well known.

しかしながら上記方式を実施するに際しては、良好な結
像性能を安定して得る為に部品の加工、組立にあたって
厳しい条件が要求される。又多面鏡の鏡面数を増す試み
は、偏向する光束の径、偏向角等偏向効率との兼ね合い
も有り多面鏡を太きぐする必要が生じ、従って偏向装置
が大型化して好ましくない。
However, when implementing the above method, strict conditions are required for processing and assembling parts in order to stably obtain good imaging performance. Further, attempts to increase the number of mirror surfaces of a polygon mirror are not desirable because the diameter of the beam to be deflected, the angle of deflection, etc., and the need to increase the diameter of the polygon mirror are necessary, which increases the size of the deflection device.

更なる方式として、変調器として使用する音響光学素子
を複数の変調信号で同時に駆動して、それぞれが独立に
変調された複数の変調光を同時に発生し、被走査面上で
複数のビームスポットを同時に走査させることにより高
速化を企る方式も広く知られている。この方式に於いて
は一つの変調信号による変調光の強度が他の変調信号の
影響を受ける為に、変調信号数に応じて変調光の強度が
変化すると云う欠点を有する。
As a further method, an acousto-optic element used as a modulator is simultaneously driven with multiple modulation signals to simultaneously generate multiple modulated lights, each of which is modulated independently, to create multiple beam spots on the scanned surface. A method that attempts to increase speed by scanning simultaneously is also widely known. This method has the disadvantage that the intensity of modulated light by one modulation signal is affected by other modulation signals, and therefore the intensity of modulated light changes depending on the number of modulation signals.

従ってそれ全補正する為の手段が必要と成り装置が複雑
化して好ましくない。
Therefore, a means for correcting all of them is required, which makes the device complicated, which is not preferable.

更なる方式としては、第1偏向器として音響光学素子を
使用し、それにより形成される偏向面と直交する平面内
で回転鏡の如き第2偏向器を使用し、一本の走査用ビー
ムで複数の走査ラインを並行して走査することにより高
速化を計るものである。
A further method is to use an acousto-optic element as the first deflector, and use a second deflector such as a rotating mirror in a plane perpendicular to the deflection plane formed by the acousto-optic element, so that a single scanning beam is used. The speed is increased by scanning multiple scan lines in parallel.

本発明の目的は高速で被走査面を走査出来、且つコンパ
クトな構成の走査装置を提供することにある。
An object of the present invention is to provide a scanning device that can scan a surface to be scanned at high speed and has a compact configuration.

本発明の更なる目的は、被走査面上を良好な結像スポッ
トで且つ高密度に走査することが出来る走査装置を提供
することにある。
A further object of the present invention is to provide a scanning device that can scan a surface to be scanned with a good imaging spot and at high density.

本発明に係る装置は、上記従来例の内、第1の偏向器と
して音響光学素子を、第2の偏向器とし機械的な偏向装
置を用いるタイプの走査装置を改良することにより、上
記目的を達成せんとしたもので、複数の光源部を前記走
査系と適切に組み合わせることにより、被走査面を高速
で走査し、且つコンパクトな4i’&成を達成したもの
である。
The device according to the present invention achieves the above object by improving the conventional scanning device of the type that uses an acousto-optic element as the first deflector and a mechanical deflector as the second deflector. By appropriately combining a plurality of light source sections with the scanning system, the surface to be scanned can be scanned at high speed, and a compact 4i'& structure can be achieved.

第1図及び第2図には本発明に係る走査装置の一実施例
を示す図で、第1図は、第1偏向器による偏向走査面(
第1偏向器で偏向された光束が経時的に形成する面で、
本明細書では偏向走査面はこの面のことを意味する)に
於ける展開図、第2図は第2偏向器による偏向走査面に
於ける展開図を示す。
1 and 2 are diagrams showing an embodiment of the scanning device according to the present invention, and FIG. 1 shows the deflection scanning surface (
A surface formed over time by the light beam deflected by the first deflector,
In this specification, the deflection scanning plane means this plane), and FIG. 2 shows a development view of the deflection scanning plane by the second deflector.

第1図に於いて1 a 、 11)は情報信号に応じて
変調された信号光を発生する光源部を示し、例えばガス
レーザーと変調器の組合せ、或は自己変調可能な半導体
レーザーを用いる。2は図示する第1偏向走査面内で光
束を偏向する第1偏向器であり、音響光学素子である。
In FIG. 1, reference numeral 1a, 11) indicates a light source section that generates signal light modulated in accordance with an information signal, and uses, for example, a combination of a gas laser and a modulator, or a self-modulating semiconductor laser. Reference numeral 2 denotes a first deflector that deflects a light beam within the first deflection scanning plane shown, and is an acousto-optic element.

3は第2偏向走査面内で光束を偏向する第2偏向器であ
り、例えば回転鏡の如き機械的偏向器である。
A second deflector 3 deflects the light beam within the second deflection scanning plane, and is, for example, a mechanical deflector such as a rotating mirror.

4は被走査面である。まず第1図に示す、第1偏向走査
面内での光束の振舞について述べる。
4 is a surface to be scanned. First, the behavior of the light beam within the first deflection scanning plane shown in FIG. 1 will be described.

光源部工から発生された変調光束はコリメート機能、ビ
ーノ、断面形状整形機能等を有する第1光学系11を通
過した後、第1偏向走査面に於いてはパワーを有さない
シリンドリカル光学系である第2光学系12を通過して
音響光学素子2にコリメート光の状態で入射する。音響
光学素子2により偏向された光束は第2光学系2と同様
に、第1偏向走査面に於いてはパワーを有さないシリン
ドリカル光学系である第3光学系13を通過した後、第
1偏向走査面内にのみパワーを有するシリンドリカル光
学系である第4光学系14により回転鏡3の鏡面近傍に
第1偏向面と直交する線状に一旦結像され、更にアナモ
フィックな第5光学系15により被走査面4上に結像さ
れる。第5光学系15は第1偏向走査面内に於いて、回
転!a、3の鏡面と被走査面4を光学的に共役な関係と
する事により鏡面の回転軸に対する角度誤差を補正する
機能を有する。
The modulated light beam generated from the light source unit passes through the first optical system 11 which has a collimating function, a beacon, a cross-sectional shape shaping function, etc., and then passes through a cylindrical optical system having no power on the first deflection scanning plane. The light passes through a certain second optical system 12 and enters the acousto-optic element 2 in the form of collimated light. The light beam deflected by the acousto-optic element 2 passes through the third optical system 13, which is a cylindrical optical system having no power on the first deflection scanning plane, like the second optical system 2, and then passes through the third optical system 13, which is a cylindrical optical system having no power on the first deflection scanning plane. A fourth optical system 14, which is a cylindrical optical system having power only in the deflection scanning plane, forms an image in the vicinity of the mirror surface of the rotating mirror 3 in a line perpendicular to the first deflection surface, and further an anamorphic fifth optical system 15. An image is formed on the surface to be scanned 4. The fifth optical system 15 rotates in the first deflection scanning plane! By creating an optically conjugate relationship between the mirror surfaces a and 3 and the surface to be scanned 4, it has a function of correcting the angular error of the mirror surface with respect to the rotation axis.

上記配置に於いて、音響光学素子2が光束t−第1偏向
走査面内で偏向する事により回転鏡3の鏡面付近の線像
は第1偏向走査面内で移動し、従って結像スポットは被
走査面4上を第1偏向方向に走査する。
In the above arrangement, as the acousto-optic element 2 deflects the light beam t within the first deflection scanning plane, the line image near the mirror surface of the rotary mirror 3 moves within the first deflection scanning plane, and therefore the imaging spot The surface to be scanned 4 is scanned in the first deflection direction.

次に第2図を用いて第2偏向器の偏向走査面内での光束
の挙動について説明する。光源部1aから発生した変調
光束は、第1光学系11、第2光学系12を通過した後
、便宜上図示された平面pi上で結像する光束として音
響光学素子2へ入射する。その後光束は第3光学系13
によりコリメート光束とされた後、第4光学系14を通
過し、回転鏡3にコリメート光の状態で入射する。そし
て回転鏡3によって第2偏向方向に偏向されると共に第
5光学系15によって被走査面4上にA点として結像さ
れる。第2偏向走査面内に於いて被走査面4上を等速走
査する為に、第4光学系15には回転鏡3の回動特性に
応じた歪み特性を持たせる事も可能である。
Next, the behavior of the light beam within the deflection scanning plane of the second deflector will be explained using FIG. The modulated light flux generated from the light source section 1a passes through the first optical system 11 and the second optical system 12, and then enters the acousto-optic element 2 as a light flux that forms an image on a plane pi shown for convenience. After that, the luminous flux is transmitted to the third optical system 13.
After being made into a collimated light beam, it passes through the fourth optical system 14 and enters the rotating mirror 3 in the form of collimated light. Then, it is deflected in the second deflection direction by the rotating mirror 3 and is imaged as a point A on the scanned surface 4 by the fifth optical system 15 . In order to scan the surface to be scanned 4 at a constant speed in the second deflection scanning plane, the fourth optical system 15 can be provided with distortion characteristics corresponding to the rotation characteristics of the rotating mirror 3.

第1図に示す第1偏向面内に於いて音響光学素子20へ
入射する光束は高密度化の目的の為には「1】広い光束
である事が望ましい。しかしながら入射光束径が広がれ
ばアクセス時間が増大し高速化の目的とは相反する。こ
の欠点を解消する為に本発明に於いては、光源部1aと
は独立な変調信号により動作する更なる光源部1bを第
1偏向面とは直交する平面内に配置する。光源部1bか
ら発生される変調光束は破線で示す光路を通り前記光源
部1aからの光束と同様の作用を受け、被走査面4上に
B点として結像され、回転鏡3の回転に伴ないA点と同
時に第2偏向方向へ被走査面を走査する。
For the purpose of high density, it is desirable that the light beam incident on the acousto-optic element 20 in the first deflection plane shown in FIG. This increases the time and is contrary to the purpose of increasing the speed.In order to eliminate this drawback, in the present invention, an additional light source section 1b that operates by a modulation signal independent of the light source section 1a is used as the first deflection surface. are arranged in orthogonal planes.The modulated light flux generated from the light source section 1b passes through the optical path shown by the broken line, receives the same effect as the light flux from the light source section 1a, and is imaged as a point B on the scanned surface 4. As the rotating mirror 3 rotates, the surface to be scanned is scanned in the second deflection direction at the same time as point A.

この様に複数の光源部(la、lb)  を設け、各々
の光源部からの光束に、同じ様に偏向作用を与える必要
がある。特に、第1の偏向器である音響光学素子2では
、該素子に入射する位置によって、光束は偏向作用の受
は方を異にする。
In this way, it is necessary to provide a plurality of light source sections (la, lb) and give the same deflection effect to the light flux from each light source section. In particular, in the acousto-optic element 2, which is the first deflector, the direction of the deflection effect on the light beam differs depending on the position of incidence on the element.

第2図に示す領域P2は、音響光学素子2に於いて、入
射光束に対し偏向作用を与える位置を示すものである。
A region P2 shown in FIG. 2 indicates a position in the acousto-optic element 2 that gives a deflection effect to the incident light beam.

従って、各々の光源部(la。Therefore, each light source section (la.

lb)からの光束の主光線か、とのP2なる領域で交わ
る様に光学系を設定すれば、各々の光束は音響光学素子
2から等しく偏向作用を受けることになる。この為に第
2図に示す如く第2偏向器の偏向走査面内に於いては、
第1光学系11と第2光学系12との合成された糸の焦
点位置に、音響光学素子2の偏向作用領域P2が来る様
に、音響光学素子2は配されている。この様に音響光学
素子2を配することて、各々の光束に等しく偏向作用を
与える以外に、この事により音響光学素子の駆動パワー
を大きくする事なく、充分な光量を得る事が可能に成り
、駆動回路の簡便化に寄与できる。第3図には音響光学
素子2の偏向周波数(単位時間あたりの偏向回数)を回
転鏡3の偏向周波数よりも高く設定゛した場合に、被走
査面4上を結像スポットA。
If the optical system is set so that the principal ray of the luminous flux from lb) intersects in the region P2, each luminous flux will be equally deflected by the acousto-optic element 2. For this reason, as shown in FIG. 2, in the deflection scanning plane of the second deflector,
The acousto-optic element 2 is arranged so that the deflection action area P2 of the acousto-optic element 2 is located at the focal point of the combined thread of the first optical system 11 and the second optical system 12. By arranging the acousto-optic element 2 in this way, in addition to imparting an equal deflection effect to each light beam, this also makes it possible to obtain a sufficient amount of light without increasing the driving power of the acousto-optic element. , it can contribute to simplifying the drive circuit. FIG. 3 shows that when the deflection frequency (the number of deflections per unit time) of the acousto-optic element 2 is set higher than the deflection frequency of the rotating mirror 3, an image spot A is formed on the scanned surface 4.

Bが走査する様子全示す。音響光学素子2による第1偏
向でIの位置にあるスポットは同時に走査線A+ B、
+’を描く。第1偏向の帰線中に回転#!3による第2
偏向でスポットは11の位置に移動した後同時に走査線
A2B、f、描く。このように音響光学素子による1回
の偏向で光源部の数に応じた複数の走査線を同時に描く
事が可能であり、実効走査時間(単位面積を走査開始・
完了するのに必要な時間)f:短縮し、且づ高密度な走
査を行なう事が可能である。
The entire state of B scanning is shown. With the first deflection by the acousto-optic element 2, the spot at position I is simultaneously scanned by scanning lines A+B,
Draw +'. Rotation # during retrace of 1st deflection! 2nd by 3
After the spot moves to position 11 by deflection, scanning lines A2B and f are drawn at the same time. In this way, it is possible to draw multiple scanning lines at the same time according to the number of light sources with one deflection by the acousto-optic element, and the effective scanning time (from the start of scanning a unit area to
It is possible to shorten (time required to complete) f and perform high-density scanning.

別な観点に立ち実効走査時間を同一として比較すれば、
音響光学素子の偏向周波数を低減する事が可能と成り1
.駆動回路の簡便化に寄与できる。
If we compare the effective scanning times from a different perspective,
It is possible to reduce the deflection frequency of the acousto-optic element1.
.. This can contribute to simplifying the drive circuit.

上記目的の為に用いる複数の光源部として、半導体レー
ザーアレイ、LEDアレイは好適である。
Semiconductor laser arrays and LED arrays are suitable as the plurality of light sources used for the above purpose.

上記実施例で示した様に、第2偏向器3の倒れを補正す
る場合に於いて、被走査面上で良好な結像スポットを得
る為に望ましい事は、第2図に示す第2偏向走査面内で
複数の光束が回転鏡3の近傍の同地点P3で交差するよ
うに第3光学系13を配置する事である。即ち、第3光
学系13は前記P1と23点を光学的に共役な関係に保
っている。23点は第5光学系15にとって第2偏向走
査面内では入射瞳であると見做せる。然るに回転鏡3の
回転に伴ない第2偏向走査面内でP3が移動する場合が
有り、複数の光束がP3で交差していない場合には各光
束に対応する入射瞳が種々の移動を行ない、従って結像
性能が各光束毎に変化する。複数の光束の内任意の一つ
に対応した結像性能の変化に対しては、被走査面上で平
均して良好な結像性能が得られる位置に第5光学系15
を配置する事は可能であるが、他の光束については良好
な結像性能が得られる保証は無い。各光束の交差する位
置が回転鏡3から遠ざかるにつれてこの欠点は一層顕著
になる。この欠点を解消する為に上述の如く第2偏向走
査面内で複数の光束が回転@3の近傍の同地点P3で交
差する事が第2偏向走査面内で良好な結像性能を得る為
に重要な条件である。
As shown in the above embodiment, when correcting the inclination of the second deflector 3, in order to obtain a good imaging spot on the scanned surface, it is desirable to use the second deflector 3 as shown in FIG. The third optical system 13 is arranged so that a plurality of light beams intersect at the same point P3 near the rotating mirror 3 within the scanning plane. That is, the third optical system 13 maintains an optically conjugate relationship between the point P1 and the 23 points. The 23rd point can be regarded as the entrance pupil for the fifth optical system 15 in the second deflection scanning plane. However, as the rotating mirror 3 rotates, P3 may move within the second deflection scanning plane, and if multiple light beams do not intersect at P3, the entrance pupil corresponding to each light beam may move in various ways. , Therefore, the imaging performance changes for each light beam. For changes in imaging performance corresponding to any one of the plurality of light beams, the fifth optical system 15 is placed at a position on the scanned surface where good imaging performance can be obtained on average.
However, there is no guarantee that good imaging performance will be obtained for other light beams. This drawback becomes more noticeable as the position where each light beam intersects moves away from the rotating mirror 3. In order to solve this drawback, as mentioned above, multiple light beams intersect at the same point P3 near rotation @3 in order to obtain good imaging performance in the second deflection scanning plane. This is an important condition.

更に第1図に示す第1偏向走査面内に於いてP3は第5
光学系15にとっては物点と見做せ、従ってこの面内に
注目すればP3の位置で各光束が線状に交差して結像す
るように第4光学系エ4を配置する事は、回転鏡3の回
転に伴なう第5光学系15の物体距離の変化を各光束に
ついて同程度とし、第1偏向走査面内で良好な結像性能
を得る為に重要な条件である。
Furthermore, in the first deflection scanning plane shown in FIG.
For the optical system 15, it can be regarded as an object point, and therefore, if we focus on this plane, the fourth optical system E4 can be arranged so that each light beam intersects linearly and forms an image at the position P3. This is an important condition to ensure that the change in object distance of the fifth optical system 15 due to the rotation of the rotary mirror 3 is the same for each light beam, and to obtain good imaging performance within the first deflection scanning plane.

本発明に於いて更に望ましい事は、第2図に示す第2偏
向走査面内に於いて、音響光学素子2を通過する光束の
径が充分小さい事である。
What is more desirable in the present invention is that the diameter of the light beam passing through the acousto-optic element 2 is sufficiently small in the second deflection scanning plane shown in FIG.

このことにより音響光学素子2の駆動パワーを大きくす
る事なく被走査面上を走査するのに充分な光量を得る事
が可能となり、駆動回路の簡便化と共に走査速度の高速
化に寄与できる。上記目的を実現する為には、例えば充
分小さい光束径を持つ平行光束を音響光学素子2へ入射
させても良いし、第1光学系1、第2光学系2の合成系
により便宜上図示された平面pi上へ集束する光束とし
て入射させても実現できる。
This makes it possible to obtain a sufficient amount of light to scan the surface to be scanned without increasing the driving power of the acousto-optic element 2, which contributes to simplifying the driving circuit and increasing the scanning speed. In order to achieve the above purpose, for example, a parallel light beam having a sufficiently small diameter may be incident on the acousto-optic element 2, or a combination system of the first optical system 1 and the second optical system 2 may be used as illustrated for convenience. It can also be realized by making the light beam incident on the plane pi as a focused light beam.

仮想の平面P1は音響光学素子2の入射側にあっても出
射側にあっても良い。
The virtual plane P1 may be located on the incident side or the exit side of the acousto-optic element 2.

第2図には、第1光学系11にコリメート機能を持たせ
、更に第3光学系13の前側主点を上記仮想平面P1に
一致さぜる事により、第2光学系と第3光学系の合成系
をアフォーカル系として用いる一例を示している。
In FIG. 2, the first optical system 11 is provided with a collimating function, and the front principal point of the third optical system 13 is aligned with the above-mentioned virtual plane P1. An example of using the synthetic system as an afocal system is shown.

本発明に係る走査装置に於いては、上記目的を達成する
為の光学系の配置は、第1図、第2図に示される配置に
限定されるもので−1ない事を説明する為に、以下に他
の実施例金示す。第4図及び第5図は、本発明に係る装
置の他の実施例を示す図で、第4図は第1偏向走査面内
に於ける展開図、第5図は第2偏向走査面内に於ける展
開図である。
In order to explain that in the scanning device according to the present invention, the arrangement of the optical system for achieving the above object is not limited to the arrangement shown in FIGS. 1 and 2. Other examples are shown below. 4 and 5 are views showing other embodiments of the device according to the present invention, FIG. 4 is a developed view in the first deflection scanning plane, and FIG. 5 is a developed view in the second deflection scanning plane. This is a development diagram of the process.

尚、第1図及び第2図に示す部材と同一の部材には同じ
番号が付されている。第4図及び第5図に示す装置は、
第1偏向走査面に於ける光束の挙動はほぼ同じであるの
で、第4図に関しては説明を省く。第5図に於いて、購
数の光源部(la 、lb)からの光束は仮想平面I)
1上に結像する収れん光として音響光学素子2内部の同
地点P2を通過する。P2を通過した光束は第3光学系
13によシ発散光として回転鏡3の近傍の同地点P3を
通過し、第5光学系15により被走査面4上へ結像され
る。
Note that the same members as those shown in FIGS. 1 and 2 are given the same numbers. The apparatus shown in FIGS. 4 and 5 is
Since the behavior of the light flux on the first deflection scanning plane is almost the same, the explanation regarding FIG. 4 will be omitted. In Figure 5, the luminous flux from the light source section (la, lb) of the purchase quantity is on the virtual plane I)
The light passes through the same point P2 inside the acousto-optic element 2 as convergent light that forms an image on the acousto-optic element 2. The light beam that has passed through P2 passes through the third optical system 13 as a diverging light and passes through the same point P3 near the rotating mirror 3, and is imaged onto the scanned surface 4 by the fifth optical system 15.

この実施例に於いては、仮想平面Plと第3光学系工3
との位置は一致し、更に第3光学系は、P2とP3とを
瞳共役な関係とするフィールドレンズとしての機能を持
つ事により光学系の小型化に寄与している。
In this embodiment, the virtual plane Pl and the third optical system 3
Furthermore, the third optical system contributes to miniaturization of the optical system by having a function as a field lens that makes P2 and P3 have a pupil conjugate relationship.

尚、被走査面4上の結像スボツ)A、Bの間隔を変化さ
せる為には、複数の光源部の互いの間隔を、設置されて
いる平面内で変化させる事によって可能であるし、第2
偏向走査面内でのみ角倍率が可変なシリンドリカル・ズ
ーム°エキスパンダーを導入して、回転鏡へ入射する複
数の光束が互いに成す角度を変化させる事によっても可
能である。
In addition, in order to change the distance between the imaging spots A and B on the scanned surface 4, it is possible to change the distance between the plurality of light source sections within the plane in which they are installed. Second
This is also possible by introducing a cylindrical zoom degree expander whose angular magnification is variable only within the deflection scanning plane, and changing the angles formed by the plurality of light beams incident on the rotating mirror.

第6図は、上述した本発明に係る走査装置を適用したレ
ーザ・ビーム・プリンターの一実施例を示す斜視図であ
る。第6図に用いた光学系は、上述した実施例で示した
走査装置と同じ光学系であり、同じ番号を伺した部材は
同じ部材を示しているので、ここでは説明を省く。
FIG. 6 is a perspective view showing an embodiment of a laser beam printer to which the above-described scanning device according to the present invention is applied. The optical system used in FIG. 6 is the same optical system as the scanning device shown in the above-described embodiment, and the same numbers refer to the same members, so a description thereof will be omitted here.

尚、3′はガルバノミラ−14′は感光ドラムであり、
感光ドラム4′の周辺には図示してはいないが、感光ド
ラムに潜像を形成する為のプロセスに必要な部材、潜像
を顕画化する為の部材等が配置されており、これ等の部
材はやはり複写装置に於いては公知の部材であるので、
ここでは省いである。第6図に於いて、音響光学素子2
により光束が偏向される第1偏向走査面はX−z平面、
ガルバノミラ−3′により光束が偏向される第2偏向走
査面はx −y平面であり、感光ドラム4′の表面はy
 −z平面(第1偏向走査面と実質的に等価と見做せる
面)内で移動している。
In addition, 3' is a galvano mirror, 14' is a photosensitive drum,
Although not shown in the figure, around the photosensitive drum 4' there are arranged members necessary for the process of forming a latent image on the photosensitive drum, members for developing the latent image, etc. The members are also known members for copying devices, so
It is omitted here. In FIG. 6, the acousto-optic element 2
The first deflection scanning plane on which the light beam is deflected is the X-z plane,
The second deflection scanning plane on which the light beam is deflected by the galvanometer mirror 3' is the x-y plane, and the surface of the photosensitive drum 4' is the y-plane.
- It is moving within the z plane (a plane that can be considered to be substantially equivalent to the first deflection scanning plane).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明に係る走査装置の第1実施例
を示す図で、第1図は第1偏向走査面内での展開図、第
2図は第2偏向走査面内での展開図、第3図は本発明に
係る走査装置に於いて、被走査面上での走査線の軌跡を
示す図、第4図及び第5図は本発明に係る走査装置の第
2実施例を示す図で、第4図は第1偏向走査面内での展
開図、第5図は第2偏向走査面内での展開図、第6図は
本発明に係る走査装置を適用したレーザビームプリンタ
ーの斜視図。 la、lb・・・光源部、2・・・音響光学素子、3・
・・第2@向器、4・・・被走査面、11・・・第1光
学系、12・・・第2光学系、13・・・第3光学系、
14・・・第4光学系、15・・・第5光学系、P2・
・・偏向作用領域。 出願人  キャノン株式会社
1 and 2 are diagrams showing a first embodiment of the scanning device according to the present invention. FIG. 1 is a developed view in the first deflection scanning plane, and FIG. 2 is a developed view in the second deflection scanning plane. FIG. 3 is a diagram showing the locus of the scanning line on the surface to be scanned in the scanning device according to the present invention, and FIGS. 4 and 5 are diagrams showing a second embodiment of the scanning device according to the present invention. FIG. 4 is a developed view in the first deflection scanning plane, FIG. 5 is a developed view in the second deflection scanning plane, and FIG. 6 is a laser to which the scanning device according to the present invention is applied. A perspective view of a beam printer. la, lb... light source section, 2... acousto-optic element, 3.
...Second @direction device, 4...Scanned surface, 11...First optical system, 12...Second optical system, 13...Third optical system,
14...Fourth optical system, 15...Fifth optical system, P2.
...Deflection action area. Applicant Canon Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)音響光学素子で第1の偏向を与えた後、この第1
の偏向による偏向走査面とは直交する面内で第2の偏向
を与える偏向手段を有する走査装置に於いて、各々独立
した複数本の光束を供給可能な光源部が設けられており
、各々の光束の主光線が前記音響光学素子の偏向作用領
域で交わる様にした事を特徴とする走査装置。
(1) After applying the first deflection with the acousto-optic element, this first
In a scanning device having a deflection means that provides a second deflection in a plane orthogonal to the scanning plane, a light source unit capable of supplying a plurality of independent beams of light is provided, and each A scanning device characterized in that principal rays of the luminous flux intersect in a deflection action area of the acousto-optic element.
(2)  前記第2の偏向手段による偏向走査面内に於
いては、前記音響光学素子と第2の偏向を与える偏向手
段の間に配された光学系に関して、前記音響光学素子の
偏向作用領域と第2の偏向手段の偏向作用位置とはほぼ
共役である特許請求の範囲第1項記載の走査装置0
(2) In the deflection scanning plane by the second deflection means, the deflection action area of the acousto-optic element with respect to the optical system disposed between the acousto-optic element and the deflection means for providing the second deflection. and the deflection action position of the second deflection means are substantially conjugate.
JP57126252A 1982-07-20 1982-07-20 Scanner Pending JPS5915922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57126252A JPS5915922A (en) 1982-07-20 1982-07-20 Scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57126252A JPS5915922A (en) 1982-07-20 1982-07-20 Scanner

Publications (1)

Publication Number Publication Date
JPS5915922A true JPS5915922A (en) 1984-01-27

Family

ID=14930565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57126252A Pending JPS5915922A (en) 1982-07-20 1982-07-20 Scanner

Country Status (1)

Country Link
JP (1) JPS5915922A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257267A (en) * 1986-05-01 1987-11-09 Canon Inc Image recorder
WO2020200530A1 (en) * 2019-03-29 2020-10-08 Mycronic AB Long sweep length duv microlithographic beam scanning acousto-optical deflector and optics design

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257267A (en) * 1986-05-01 1987-11-09 Canon Inc Image recorder
WO2020200530A1 (en) * 2019-03-29 2020-10-08 Mycronic AB Long sweep length duv microlithographic beam scanning acousto-optical deflector and optics design
US11947241B2 (en) 2019-03-29 2024-04-02 Mycronic AB Long sweep length DUV microlithographic beam scanning acousto-optical deflector and optics design

Similar Documents

Publication Publication Date Title
US4390235A (en) Multibeam scanning apparatus provided with a function of changing magnification
US5463418A (en) Plural-beam scanning optical apparatus
US5510826A (en) Optical scanning apparatus
JPH02115814A (en) Light beam scanning device
JPH0153767B2 (en)
US4156555A (en) Apparatus and method for providing unblurred images with a continuously scanned light beam
JP3197804B2 (en) Multi-beam scanner
JPS5915922A (en) Scanner
JP2783481B2 (en) Inner drum scanning type recording device
JPH0618802A (en) Optical scanning device
JPH05264915A (en) Optical scanner
JP2727580B2 (en) Optical scanning device
JPH0459621B2 (en)
JPS5915216A (en) Optical scanner
JPS61262714A (en) Optical system for scanning plural beams
KR20230113630A (en) Pattern exposure device and pattern exposure method
JP2001133711A (en) Multibeam scanning optical system and recorder using the same
JPS5930521A (en) Optical scanner
JP2559501B2 (en) Laser beam shaping optics
JP2002287067A (en) Optical scanner
JP2002311373A (en) Optical scanner
JPS59116715A (en) Photoscanner
JPS62254115A (en) Light beam scanning device
JPS60172012A (en) Light scanning optical system
JPH02272517A (en) Light quantity control scanning optical system using plural beam light sources