JPS61262714A - Optical system for scanning plural beams - Google Patents

Optical system for scanning plural beams

Info

Publication number
JPS61262714A
JPS61262714A JP10633785A JP10633785A JPS61262714A JP S61262714 A JPS61262714 A JP S61262714A JP 10633785 A JP10633785 A JP 10633785A JP 10633785 A JP10633785 A JP 10633785A JP S61262714 A JPS61262714 A JP S61262714A
Authority
JP
Japan
Prior art keywords
light
optical system
optical
light source
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10633785A
Other languages
Japanese (ja)
Inventor
Masamichi Tatsuoka
立岡 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10633785A priority Critical patent/JPS61262714A/en
Publication of JPS61262714A publication Critical patent/JPS61262714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To take in light sufficiently from a light source part without expanding the size of an optical system by arranging an optical member for separating a beam spot based upon optical beams radiated from the 1st and 2nd optical sources on a photodetecting surface slightly in the direction rectangular to a scanning direction between one light source part and an optical coupler. CONSTITUTION:When semiconductor lasers 1a, 1b are arranged so as to polarize light in the arrow directions 16, 17 respectively, light projected from the semiconductor 1a is turned to a P component by a polarized beam splitter 9 (P is transmission and S is reflection) and almost 100% light is transmitted. Although light radiated from the semi-conductor laser 1b is polarized in the arrow 17 direction at first, the polarizing direction of the light is rotated by 90 deg. by a 1/2 waveform plate 7 and the light polarized in the arrow 18 polarizing direction is made incident on the polarized beam splitter 9. Since the incident light is an S component, almost 100% light is reflected. Consequently, the light from the light source part can be sufficiently taken in by using a half mirror or the like.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、複数の光源からの光ビームを合成し、各光ビ
ームが受光面で僅かの距離だけ離れたビームスポットと
して形成される様な走査光学系に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a scanning optical system in which light beams from a plurality of light sources are combined and each light beam is formed as a beam spot separated by a short distance on a light receiving surface. It is related to.

〔従来技術〕[Prior art]

近年レーザービームプリンターの様に1画像情報を光ビ
ームの変調信号に変換し、この変調信号で変調された光
ビームにより受光媒体上に画像を記録、する装置におい
ては、記録速度を向上させる為に、複数のビームを使用
する装置が提供されている。
In recent years, in devices such as laser beam printers that convert one image information into a light beam modulation signal and record an image on a light receiving medium with a light beam modulated by this modulation signal, in order to improve the recording speed, , an apparatus using multiple beams has been provided.

第1図は複数のビームを使用して走査記録を行なう装置
の従来の光学系を説明する図で、la。
FIG. 1 is a diagram illustrating a conventional optical system of an apparatus that performs scanning recording using a plurality of beams.

tbは発光源、2は光束を集光する為の対物レンズ、3
は回転多面鏡の如S(g内器、4は偏向された光束を結
像する為のレンズ、5は回転円筒体、6は回転円筒体表
面上に設置された感光媒体、laj、lb’は各々発光
源1a、lbに対応した走査線である。
tb is a light emitting source, 2 is an objective lens for condensing a luminous flux, 3
is a rotary polygon mirror S(g), 4 is a lens for imaging the deflected light beam, 5 is a rotating cylinder, 6 is a photosensitive medium installed on the surface of the rotating cylinder, laj, lb' are scanning lines corresponding to the light emitting sources 1a and lb, respectively.

この光学系において対物レンズ2及び走査レンズ4はい
ずれも回転対称の面で構成され、それらレンズの合成系
の結像倍率をβとするとき、走査線fa′、lb’)間
隔Pは発光源1a、lbの間隔Poに対して P=lβ1・Po       (1)の関係を有する
。一方、感光媒体面に集光される光束のFナンバーをV
とし、各発光光源から出射する光束の対物レンズ2で受
光されるFナンバーをFとすると F’=lβ1・F        (2)なる関係があ
る。(1)、(2)式よりとなり、走査線の間隔Pを小
さくしようとすると対物レンズ2のF値を大きく、すな
わち受光光束を少なくせねばならない、この時、感光媒
体上に到達する光束も必然的に少なくなり、高速記録を
行なう場合には光エネルギーが不足することになり好ま
しくない。
In this optical system, the objective lens 2 and the scanning lens 4 are both composed of rotationally symmetrical surfaces, and when the imaging magnification of the combined system of these lenses is β, the interval P between the scanning lines fa' and lb' is For the interval Po between 1a and 1b, there is a relationship of P=lβ1·Po (1). On the other hand, the F number of the light beam focused on the surface of the photosensitive medium is V
Assuming that the F number of the light flux emitted from each light emitting source and received by the objective lens 2 is F, there is the following relationship: F'=lβ1·F (2). From equations (1) and (2), if we try to reduce the interval P between the scanning lines, we must increase the F value of the objective lens 2, that is, reduce the received light flux.At this time, the light flux that reaches the photosensitive medium also decreases. Inevitably, the amount of light will decrease, and when high-speed recording is performed, there will be a shortage of optical energy, which is not preferable.

また上述の欠点を除去するために1発光源la、lbを
偏向面にほぼ水平に置く、第2図に示す光学装置がある
。第2図において同じ番号は第1図と同じものを示して
いる。かかる構成においてはlajと1b′の走査線の
間隔は必要な走査線間隔にすることが可能であるが光源
をセツティングする精度がきびしく、製造上困難である
Furthermore, in order to eliminate the above-mentioned drawbacks, there is an optical device shown in FIG. 2 in which one light emitting source la, lb is placed almost horizontally on the deflection plane. In FIG. 2, the same numbers indicate the same parts as in FIG. In such a configuration, it is possible to set the spacing between the scanning lines laj and 1b' to the required scanning line spacing, but the precision of setting the light source is severe and manufacturing is difficult.

la、lbを結ぶ直線と偏向面のなす角度が非常に小さ
いために、コリメーターレンズ2から出た光束はおのお
のの光束は平行であるが互いにコリメーターレンズ2の
光軸に対し角度をもってしまうため1回転多面鏡上では
おのおのの光束の反射位置が異なってしまう、したがっ
て走査光学系がポリゴンの倒れを補正する光学系でかつ
ポリゴン面上に副走査方向のみ結像し、その共役点をド
ラム面上に置く共役形倒れ補正光学系を使用すると、お
のおのの光束の反射位置が異なるため1両方の光束で非
対称な収差が発生してしま2という欠点がある。
Because the angle between the straight line connecting la and lb and the deflection surface is very small, the light beams coming out of the collimator lens 2 are parallel to each other, but they are at angles to the optical axis of the collimator lens 2. On a single-rotation polygon mirror, the reflection position of each light beam is different. Therefore, the scanning optical system is an optical system that corrects the inclination of the polygon, and forms an image on the polygon surface only in the sub-scanning direction, and the conjugate point is set on the drum surface. If a conjugate tilt correction optical system placed above is used, there is a drawback that since the reflection positions of each light beam are different, asymmetrical aberrations occur in both light beams.

又、感光媒体にコロナ放電を与えながら、上記複数の光
ビームで同時に感光媒体を走査し、画像の潜像を形成す
る方法においては、コロナ放電のチャージ量がほぼ等し
い感光媒体上を複数のビームで走査しなければ画像のコ
ントラストにむらが生じる。従って、複数のビームは感
光媒体上でできるだけその間隔が接近していることが望
ましい。
Furthermore, in the method of simultaneously scanning the photosensitive medium with the plurality of light beams while applying corona discharge to the photosensitive medium to form a latent image, the plurality of beams are scanned over the photosensitive medium with approximately the same amount of charge of corona discharge. If the image is not scanned, the contrast of the image will be uneven. Therefore, it is desirable that the plurality of beams be spaced as close as possible on the photosensitive medium.

〔発明の概要〕[Summary of the invention]

本発明の目的は、受光面上で隣接するビームスポットの
主走査方向と直交する副走査方向の間隔を密接した間隔
、例えば1/IB■■の間隔にしても、光学系を大型化
しなくても光源部からの光量を充分に取り込む事が可能
な複数ビーム走査光学系を提供することにある。
An object of the present invention is to maintain the distance between adjacent beam spots on the light receiving surface in the sub-scanning direction orthogonal to the main-scanning direction at a close interval, for example, 1/IB■■, without increasing the size of the optical system. Another object of the present invention is to provide a multiple beam scanning optical system capable of capturing a sufficient amount of light from a light source.

本発明の更なる目的は、光源部のセツティングが容易な
複数ビーム走査光学系を提供することにある。
A further object of the present invention is to provide a multiple beam scanning optical system in which the setting of the light source section is easy.

本発明の更なる目的は、光源部として半導体レーザーを
用いた場合でも、有効に光束が取り込め、且つ受光面上
でのビームスポットの形状を等しくする事が可能で且つ
非対称な収差が発生しない様な複数ビーム走査光学系を
提供することにある。
A further object of the present invention is to effectively take in a luminous flux even when a semiconductor laser is used as a light source, to make the shape of the beam spot uniform on the light receiving surface, and to prevent asymmetric aberrations from occurring. An object of the present invention is to provide a multi-beam scanning optical system.

本発明に係る複数ビーム走査光学系においては、第1の
光源及び第2の光源からの光ビームを光合成器にて合成
し、これ等の合成された光ビームで受光面を走査する際
、受光面上で第1の光源及び第2の光源からの光ビーム
によるビームスポットを走査方向と直交する方向に僅か
に隔離する為の光学部材を一方の光源部と光合成器との
間に設けるものである。この光学部材としては一方の光
ビームの光路を他方の光ビームの光路に対して、光ビー
ムの走査方向と直重方向へ変位せしめる様な光学部材で
あれば良く、本願では光学くさびを例示している。又、
光合成器としては、ハーフミラ−2偏光ビームスプリッ
タ−等のものがあげられる。
In the multiple beam scanning optical system according to the present invention, the light beams from the first light source and the second light source are combined in the light combiner, and when scanning the light receiving surface with these combined light beams, the light receiving surface is An optical member is provided between one light source and the light combiner to slightly isolate the beam spots of the light beams from the first light source and the second light source on the surface in a direction perpendicular to the scanning direction. be. This optical member may be any optical member that displaces the optical path of one light beam with respect to the optical path of the other light beam in a direction perpendicular to the scanning direction of the light beam, and in this application, an optical wedge is used as an example. ing. or,
Examples of the light combiner include a half mirror, two-polarized beam splitter, and the like.

本願において、光源部の半導体レーザーを用いる場合に
は、第1の半導体レーザー及び第2の半導体レーザーは
、それぞれのレーザーからのビーム形状の長手方向及び
短手方向が合致する様に各レーザーを偏光ビームスプリ
ッタ−に対し配し。
In this application, when using semiconductor lasers in the light source section, the first semiconductor laser and the second semiconductor laser polarize each laser so that the longitudinal and lateral directions of the beam shapes from the respective lasers match. Placed against the beam splitter.

更に一方の半導体レーザーとビームスプリッタ−との間
には、その偏光面を90″回転させる光学手段を配する
ものである。以下1本願について詳述する。
Further, an optical means for rotating the plane of polarization by 90'' is arranged between one of the semiconductor lasers and the beam splitter.One application will be described in detail below.

〔実施例〕 第3図、第4図及び第5図は本発明に係る走査光学系の
一実施例を説明する為の図で、第3゜4.5図において
、第1.2図と同じ番号の部材は同じものを示している
ので、ここでは説明を省く。第3図においてla、lb
は発光源、8は光学くさび、7は局波長板、9は偏光ビ
ームスプリッタ−12は発散光を平行光とするコリメー
ターレンズである。
[Embodiment] Figures 3, 4, and 5 are diagrams for explaining an embodiment of the scanning optical system according to the present invention. Since members with the same number indicate the same thing, description thereof will be omitted here. In Figure 3, la, lb
8 is a light emitting source, 8 is an optical wedge, 7 is a local wavelength plate, 9 is a polarizing beam splitter, and 12 is a collimator lens that converts diverging light into parallel light.

一般に半導体レーザーは接合面に平行な方向に偏光して
いる。したがって第3図において半導体レーザー1aを
矢印16の向きに偏光するように配置し、半導体レーザ
ーibを矢印17の向きに偏光するように配置すると、
半導体レーザー1aを出た光は偏光ビームスプリッタ−
9(偏光ビームスプリッタ−9はPは透過、Sは反射)
でP成分になり、はぼ100%透過する。また半導体レ
ーザー1bを出た光は始め矢印17の方向に偏光してい
るが、繕波長板7により偏光方向が90″回転され、矢
印18の偏光方向になり偏光ビームスプリッタ−9に入
射する。これはS成分なので偏光ビームスプリッタ−9
によりほぼ100%反射される。したがってこのような
配置にすることにより、光源部からの光量をハーフミラ
−などを使用するより充分に取り込むことが可能である
。また半導体レーザーは一般に円形のビームではなく接
合面の方向に短い楕円形のビームを生成する。したがっ
て本実施例のように局波長板を使用しないと、半導体レ
ーザー1bからの光束の偏光方向を最初から矢印18の
方向にしておかねばならず、そのためビームスプリッタ
−9を出た半導体レーザー1aと1bからの光束は楕円
の長袖が各々90’をなすため、結果的にドラム面上の
副走査方向の光ビームスポット形状が変ってしまう0本
実施例で局波長板を使用しているのはこの現象を発生さ
せないためである。
Generally, semiconductor lasers are polarized in a direction parallel to the bonding surface. Therefore, in FIG. 3, if the semiconductor laser 1a is arranged so as to be polarized in the direction of arrow 16, and the semiconductor laser ib is arranged so as to be polarized in the direction of arrow 17, then
The light emitted from the semiconductor laser 1a is sent to a polarizing beam splitter.
9 (Polarizing beam splitter - 9: P is transmission, S is reflection)
It becomes a P component and transmits almost 100%. The light emitted from the semiconductor laser 1b is initially polarized in the direction of arrow 17, but the direction of polarization is rotated by 90'' by the wave plate 7 to become the polarization direction of arrow 18 and enters the polarizing beam splitter 9. Since this is the S component, polarizing beam splitter 9
It is almost 100% reflected. Therefore, by adopting such an arrangement, it is possible to take in a more sufficient amount of light from the light source than by using a half mirror or the like. Furthermore, semiconductor lasers generally do not produce a circular beam but a short elliptical beam in the direction of the junction surface. Therefore, if a local wavelength plate is not used as in this embodiment, the polarization direction of the light beam from the semiconductor laser 1b must be set in the direction of the arrow 18 from the beginning, so that the semiconductor laser 1a exiting the beam splitter 9 and Since the light beam from 1b has a length of 90' on each elliptical long sleeve, the shape of the light beam spot on the drum surface in the sub-scanning direction changes. This is to prevent this phenomenon from occurring.

第4図に示すように8は光学くさびをなしているため半
導体レーザー1a、lbから出た光束の主光線はコリメ
ーターレンズ2を出たあと主光線が15.14で示すよ
うにわずかな角度をなす平行光となっている。したがっ
てシリンドリカルレンズlOでポリゴン3の面上で走査
方向と直交する光束成分が結像されたビームは、第5図
で示すように線状光束1a”、lb”となり1幅方向は
As shown in FIG. 4, 8 forms an optical wedge, so the chief ray of the light flux emitted from the semiconductor lasers 1a and lb is at a slight angle after exiting the collimator lens 2, as shown at 15.14. It is parallel light that forms . Therefore, the beam in which the light beam components orthogonal to the scanning direction are imaged by the cylindrical lens 1O on the surface of the polygon 3 becomes linear light beams 1a'' and lb'' as shown in FIG. 5 in one width direction.

同しだが高さ即ち、走査方向と直交する方向にわずかに
ズして結像される。
However, the image is formed with a slightly shifted height, that is, in a direction perpendicular to the scanning direction.

11は球面レンズ、12はトーリックレンズであり、全
体のレンズ13として走査方向はfθ特性を持ち、副走
査方向(走査方向と直交する方向)はポリゴン面上とド
ラム面上が共役になっている。ポリゴン面上で第5図の
ように結像されているため、走査方向の断面ではおのお
のの光束の反射位置は同じとなり、したがって共役形倒
れ補正光学系を使用しても非対称な収差は発生せず、ド
ラム面上6に良好な結像をなす。
11 is a spherical lens, 12 is a toric lens, and the entire lens 13 has an fθ characteristic in the scanning direction, and in the sub-scanning direction (direction perpendicular to the scanning direction), the polygon surface and the drum surface are conjugate. . Since the image is formed on the polygonal surface as shown in Figure 5, the reflection position of each light beam is the same in the cross section in the scanning direction, so even if a conjugate tilt correction optical system is used, asymmetric aberrations will not occur. Therefore, a good image is formed on the drum surface 6.

以上述べた如く、本発明に係る走査光学系においては、
簡易な製造手段で被走査面上における複数のビームスポ
ットを走査方向と直交する方向に僅ぶに隔離して形成す
ることが可能で、更には、半導体レーザーを光源に用い
ても有効に光束を利用し、且つビームスポットの形状を
同一にすることが可能になった。そして、これ等の為の
手段を実施例で示す如く、光源と偏光ビームスポット、
グーの間に効率良く配置することにより、コンパクトな
構成とすることも可能にしたものである。
As described above, in the scanning optical system according to the present invention,
It is possible to form multiple beam spots on the surface to be scanned with a slight separation in the direction perpendicular to the scanning direction using simple manufacturing means, and furthermore, even if a semiconductor laser is used as the light source, the luminous flux can be effectively divided. This makes it possible to use the same beam spot and make the shape of the beam spot the same. As shown in the examples, the means for these purposes include a light source, a polarized beam spot,
By efficiently arranging it between the goo, it is possible to create a compact structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の複数ビーム走査光学系を示す
図、第3図、第4図及び第5図は本発明に係る複数ビー
ム走査光学系を示す図。 la、1b−−一半導体レーザー、 2−m−コリメーターレンズ、 3−m−ポリゴン、 7−−−繕波長板。 8−m−光学くさび。 9−m−偏光ビームスプリッター。
1 and 2 are diagrams showing a conventional multiple beam scanning optical system, and FIGS. 3, 4, and 5 are diagrams showing a multiple beam scanning optical system according to the present invention. la, 1b--1 semiconductor laser, 2--m-collimator lens, 3--m-polygon, 7--tempered wave plate. 8-m-optical wedge. 9-m-polarizing beam splitter.

Claims (2)

【特許請求の範囲】[Claims] (1)第1の光源及び第2の光源からの光ビームを光合
成器にて合成し、これ等の光ビームで受光面を走査する
光学系において、一方の光源と光合成器との間には、受
光面上で第1の光源及び第2の光源からの光ビームによ
るビームスポットを僅かに隔離させる為の光学部材が配
されている事を特徴とする複数ビーム走査光学系。
(1) In an optical system that combines light beams from a first light source and a second light source in a light combiner and scans a light receiving surface with these light beams, there is a gap between one light source and the light combiner. A multi-beam scanning optical system, characterized in that an optical member is disposed on a light receiving surface to slightly separate beam spots of light beams from a first light source and a second light source.
(2)前記光学部材は光学くさびである特許請求の範囲
第1項記載の複数ビーム走査光学系。
(2) The multiple beam scanning optical system according to claim 1, wherein the optical member is an optical wedge.
JP10633785A 1985-05-17 1985-05-17 Optical system for scanning plural beams Pending JPS61262714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10633785A JPS61262714A (en) 1985-05-17 1985-05-17 Optical system for scanning plural beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10633785A JPS61262714A (en) 1985-05-17 1985-05-17 Optical system for scanning plural beams

Publications (1)

Publication Number Publication Date
JPS61262714A true JPS61262714A (en) 1986-11-20

Family

ID=14431041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10633785A Pending JPS61262714A (en) 1985-05-17 1985-05-17 Optical system for scanning plural beams

Country Status (1)

Country Link
JP (1) JPS61262714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220226A (en) * 1987-03-10 1988-09-13 Citizen Watch Co Ltd Liquid crystal stereoscopical image display system
JPH01110959A (en) * 1987-07-17 1989-04-27 Dainippon Screen Mfg Co Ltd Method of exposure of laser beam of image scanning recording apparatus
JP2009080319A (en) * 2007-09-26 2009-04-16 Konica Minolta Business Technologies Inc Laser scanning optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220226A (en) * 1987-03-10 1988-09-13 Citizen Watch Co Ltd Liquid crystal stereoscopical image display system
JPH01110959A (en) * 1987-07-17 1989-04-27 Dainippon Screen Mfg Co Ltd Method of exposure of laser beam of image scanning recording apparatus
JP2009080319A (en) * 2007-09-26 2009-04-16 Konica Minolta Business Technologies Inc Laser scanning optical device

Similar Documents

Publication Publication Date Title
US6292285B1 (en) Single rotating polygon mirror with v-shaped facets for a multiple beam ROS
US5181137A (en) Light scanning apparatus
US6219168B1 (en) Single rotating polygon mirror with adjacent facets having different tilt angles
US4796961A (en) Multi-beam scanning optical system
US5009472A (en) Light scanning device with polarizing device to make light transmission more uniform
US6356380B1 (en) Apparatus for imaging light from multifaceted laser diodes onto a multichannel spatial light modulator
JPS588B2 (en) Hikari Bee Mususasouchi
US5463418A (en) Plural-beam scanning optical apparatus
JPH09274152A (en) Multibeam writing optical system
EP0213539B1 (en) Picture reading apparatus
JPH0153767B2 (en)
JPS63311320A (en) Optical scanner
JPS61262714A (en) Optical system for scanning plural beams
US5008686A (en) Optical scanning device for scanning a predetermined surface with a plurality of light beams
US5278691A (en) Symmetrical overfilled polygon laser scanner
JPH0152728B2 (en)
JPH0618802A (en) Optical scanning device
JP4651830B2 (en) Beam synthesis method, light source device for multi-beam scanning, multi-beam scanning device
JP2743858B2 (en) Optical printer
JP2727580B2 (en) Optical scanning device
JP2004109204A (en) Scanning optical system
JPS61126528A (en) Photoscanning device
JPH07174996A (en) Raster-output-scanner image system
JP3568087B2 (en) Multi-beam scanning optics and coupling optics for multi-beam scanning optics
KR100501719B1 (en) Laser scanning unit