JPS59157310A - Synthetic yarn having thickness and thinness and its preparation - Google Patents

Synthetic yarn having thickness and thinness and its preparation

Info

Publication number
JPS59157310A
JPS59157310A JP3322783A JP3322783A JPS59157310A JP S59157310 A JPS59157310 A JP S59157310A JP 3322783 A JP3322783 A JP 3322783A JP 3322783 A JP3322783 A JP 3322783A JP S59157310 A JPS59157310 A JP S59157310A
Authority
JP
Japan
Prior art keywords
change
birefringence
fiber
thick
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3322783A
Other languages
Japanese (ja)
Inventor
Hideo Isoda
英夫 磯田
Hiroshi Yasuda
浩 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP3322783A priority Critical patent/JPS59157310A/en
Publication of JPS59157310A publication Critical patent/JPS59157310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain synthetic yarn having change in birefringence of constant or random period in fiber axis direction and simultaneously thickness and thinness, by irradiating the thermoplastic synthetic yarn with laser beam. CONSTITUTION:Orientated thermoplastic synthetic yarn consisting of thermoplastic high polymer such as polyester, polyamide, etc. is irradiated with laser beam of carbon monoxide laser, etc. under tension, to give the desired synthetic yarn having >=0.005 change in birefringence in the fiber axis direction intermittently, thickness and thinness of >=10% ratio of change in crosssectional area in the fiber axis direction, and birefringence higher in the thick part than in the thin part.

Description

【発明の詳細な説明】 本発明は繊維軸方向に、一定周期又はランダム周期の複
屈折率変化を有すると同時に太細を有する合成繊維及び
その製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a synthetic fiber that has a birefringence change with a fixed period or a random period in the fiber axis direction, and also has a thick and thin structure, and a method for producing the same.

従来、太細を有する合成繊維を製造する方法が数多く提
案されている。例えばポリエステル繊維で繊維軸方向に
染め差を付与する方法として周期′I″ff。
Conventionally, many methods for producing synthetic fibers having thick and thin structures have been proposed. For example, as a method of imparting a dye difference in the axial direction of polyester fibers, the period 'I''ff is used.

的な延伸併が生ずるような延伸条件を設定するこ182
844号公報、特公昭41−6615号公報、特開昭5
0−1871@公報、特開昭50−1.8717号公報
、特開昭50−18718号公報、特開昭50−854
22号公報)とか、熱嶽 処理を利用して周期排を作る方法として、ピン。
182 Setting the stretching conditions such that stretching complication occurs
Publication No. 844, Japanese Patent Publication No. 41-6615, Japanese Patent Application Publication No. 1977
0-1871@publication, JP-A-50-1.8717, JP-A-50-18718, JP-A-50-854
(No. 22), as a method of making periodic ejectors using heat treatment.

ローラ、熱板を使う方法(例えば特開昭50−1281
6号公報)などが提案されているが、いずれの方法も糸
条への斑付与、特に細かい周期の斑付与のコントロール
が困難で安定した操業ができないという欠点があった。
A method using a roller or hot plate (for example, JP-A-50-1281)
6), but all of these methods have the disadvantage that it is difficult to control the imparting of unevenness to the yarn, particularly the unevenness of fine cycles, and stable operation cannot be performed.

本発明者らは、これらの問題点を解決するために、鋭意
検討を重ねた結果、配向しだ熱可塑性合成繊維に緊張下
で赤外線域のレーザ光を照射すると複屈折率Δnが低下
せしめられると同時に太細班 耕を生起させることを知見し、該知見に基づいて糸条に
太細斑を生じさせると同時に染色斑を任意の周期で付与
する方法を確立し、本発明に到達した。
In order to solve these problems, the present inventors have conducted intensive studies and found that when oriented thermoplastic synthetic fibers are irradiated with laser light in the infrared region under tension, the birefringence Δn is reduced. At the same time, it was discovered that thick and thin spots can be produced, and based on this knowledge, a method was established for producing thick and thin spots on the yarn and at the same time imparting dyeing spots at an arbitrary period, thereby achieving the present invention.

即ち、本発明は次の2発明よりなるものである。That is, the present invention consists of the following two inventions.

(1)熱可塑性高分子よシ成り、繊維軸方向に断続的に
0.005以上の複屈折率(Δn)変化を有し、かつ、
繊維軸方向の横断面積の変化率が10%以上の太細を有
する合成繊維であって、太い部分の複屈折率が細い部分
の複屈折率よシ大きいことを特徴とする太細を有する合
成繊維。
(1) It is made of a thermoplastic polymer and has an intermittent change in birefringence (Δn) of 0.005 or more in the fiber axis direction, and
A synthetic fiber having thick and thin parts with a rate of change in cross-sectional area in the fiber axis direction of 10% or more, the synthetic fiber having thick and thin parts characterized in that the birefringence of the thick part is greater than the birefringence of the thin part. fiber.

(2)配向した熱可塑性合成繊維に緊張下でレーザ光を
間欠的に照射することを特徴とする繊維軸方向に複屈折
率変化を有すると同時に太細を有する合成繊維の製造方
法。
(2) A method for producing a synthetic fiber that has a birefringence change in the fiber axis direction and is thick and thin, the method comprising intermittently irradiating an oriented thermoplastic synthetic fiber with a laser beam under tension.

本発明にいう熱可塑性高分子とは、繊維形成性の熱可塑
性高分子であり、例えばポリエステル、ポリアミド、ポ
リプロピレン、ポリ塩化ビニール、ポリアクリロニトリ
ル等がその代表的なものであり、特にポリエステル及び
ポリアミドの場合、本発明の効果が顕著である。
The thermoplastic polymer referred to in the present invention is a fiber-forming thermoplastic polymer, and typical examples thereof include polyester, polyamide, polypropylene, polyvinyl chloride, polyacrylonitrile, etc., and in particular polyester and polyamide. In this case, the effect of the present invention is remarkable.

本発明の繊維は、繊維軸方向に任意の周期で複屈折率(
Δnと略記する)の高い部分と低い部分を有し、かかる
Δn変化、すなわち高い部分と低い部分との差(測定法
は後記)か0.0051J、上存在するものである。Δ
nq化が0.005未満の場合は、Δnの高い部分と低
い部分の染色性に差を生じなくなり、濃淡差効果を有効
に生かすことか出来ない。
The fiber of the present invention has a birefringence index (
It has a high part and a low part of Δn (abbreviated as Δn), and the difference in Δn, that is, the difference between the high part and the low part (the measurement method will be described later), is greater than 0.0051 J. Δ
If the nq value is less than 0.005, there will be no difference in dyeability between areas with high and low Δn, and the effect of the difference in density cannot be effectively utilized.

Δn変化を帆005以上とすることにより、染色性の差
が顕著となるので、染色濃淡差効果を有効に生かすこと
ができる。史に、濃淡差を強稠するにはΔn変化を0.
02以、上とするのが好ましい。
By setting the Δn change to 005 or more, the difference in dyeing properties becomes significant, so the effect of the difference in dyeing density can be effectively utilized. Historically, to intensify the difference in shading, the Δn change should be 0.
02 or higher is preferable.

本発明の繊維は繊維軸方向の横断面積の変化率が10%
以上の一定周期又はランダム周期の任意の太細斑を有す
る。ここで本発明の繊維について特筆すべきは、レーザ
光を照射せしめた部分のΔnは、未照射部分のΔnに比
して常に小さい値をとることである。さらlここの場合
、Δnの大きい部分が太い部分に該当し、Δnの小さい
部分が細い部分で構成されている。
The fiber of the present invention has a cross-sectional area change rate of 10% in the fiber axis direction.
It has arbitrary thick and thin spots with a constant period or a random period. What should be noted here about the fiber of the present invention is that Δn in the portion irradiated with laser light always takes a smaller value than Δn in the non-irradiated portion. In this case, the portion where Δn is large corresponds to the thick portion, and the portion where Δn is small corresponds to the thin portion.

なお、繊維軸方向の横111i而稍の変化率が10%未
満になると、糸条の太細斑が実13r的になくなり、本
発明の繊維が得られない。
If the rate of change in the lateral direction 111i in the fiber axis direction is less than 10%, the unevenness of the threads will actually disappear and the fiber of the present invention cannot be obtained.

本発明のm 維は、一定Δn域の長さをバラツキなくし
て任意に設定することができる。例えば高Δnの部分の
長さか5咽、低Δnの部分の長さが5咽の周期にするこ
とかできるし、高Δnの部分の長さが10(1)で低Δ
nの部分の長さを5wnの周期とすることもできる。
The m fiber of the present invention can be arbitrarily set without variation in the length of the constant Δn region. For example, the length of the high Δn part can be set to 5 cycles, and the length of the low Δn part can be set to 5 cycles, or the length of the high Δn part can be 10(1) and the length of the low Δn part is 5 cycles.
The length of the n portion can also be set to a period of 5wn.

従来長さのバラツキなく長さ5嘱のような短い周期でΔ
n及び繊維の横断面積を変化させることは困帷であった
が、緊張下の配向した熱可解性合成繊維に、レーザ光を
間欠的に照射する本発明方法により、このような短い周
期成は適宜の長い周期で長さのバラツキなく任意に太細
及びΔn変化を付与することができる。
Conventionally, ∆ with short cycles such as 5 lengths without any variation in length.
Although it was difficult to change the cross-sectional area of the fiber and the cross-sectional area of the fiber, the method of the present invention, in which laser light is intermittently irradiated on the oriented thermoplastic synthetic fiber under tension, has made it possible to produce such a short cycle. It is possible to arbitrarily apply thick/thin and Δn changes at an appropriately long period without any variation in length.

ここで言う、配向した熱可塑性合成繊維とは、レーザ光
照射により高Δn部分と低Δn部分との差を0.005
以−トとなし得るようなものであれば如何tCるもので
もよい。従ってレーザ光照射によりΔnをO(正確には
帆000)まで低下させ得る熱可塑性合成繊維の場合に
は、Δnが0 、005以上であるような合成繊維も本
発明にいう配向した熱可塑性合成繊維ということができ
る。しかしながら配向度があまり低すぎて未延伸糸に近
いものは、経時的脆化が起こり、繊維としての実用性に
欠けるので、かかる経時的脆化が実質的に実用上問題と
ならない程度のΔnを保有しているものが好ましい。
The oriented thermoplastic synthetic fiber referred to here means that the difference between the high Δn part and the low Δn part is 0.005 by laser light irradiation.
Any type of material that can be used as described above may be used. Therefore, in the case of thermoplastic synthetic fibers whose Δn can be reduced to O (to be precise, 000) by laser beam irradiation, synthetic fibers whose Δn is 0.005 or more are also oriented thermoplastic synthetic fibers according to the present invention. It can be called fiber. However, if the degree of orientation is too low and it is close to undrawn yarn, it becomes brittle over time and is not practical as a fiber. Preferably what you have.

配向した熱可塑性合成繊維にレーザ光を照射すると、そ
の照射強度に応じてΔnが低下し、がっ、その部分の密
度も低下する。このことは、繊維構成成分がレーザ光を
吸収して、一種の融解に近い状態になるものと推測され
る。
When oriented thermoplastic synthetic fibers are irradiated with laser light, Δn decreases depending on the irradiation intensity, and the density of that portion also decreases. This is presumed to be due to the fact that the fiber components absorb the laser light and enter a state close to melting.

上記現象を生起させるには、赤外域波長のレーザ光が有
効で例えば−酸化炭素レーザ(波長5〜7μm)、炭酸
ガスレーザ(波長10.6μm)などか使用できる。
In order to cause the above phenomenon, a laser beam having a wavelength in the infrared region is effective, and for example, a carbon oxide laser (wavelength: 5 to 7 μm) or a carbon dioxide laser (wavelength: 10.6 μm) can be used.

レーザには発振形式がパルスのものと連続波のものがあ
り、本発明にはいずれの形式も適用できるが、特にパル
ス発振形式が適する。太細及びΔn差の周期は、レーザ
光をパルス化して照射時間を変更すること及び照射され
る糸条の張力を変更することによって任意に選ぶことが
できる。
There are two types of laser oscillation: pulse oscillation type and continuous wave oscillation type. Although either type can be applied to the present invention, the pulse oscillation type is particularly suitable. The period of the thick/thin and Δn difference can be arbitrarily selected by pulsing the laser light and changing the irradiation time and by changing the tension of the irradiated yarn.

この場合、レーザ光照射位置を固定する方法はもちろん
レーザ光照射位置を移動することもできる。
In this case, it is possible not only to fix the laser beam irradiation position but also to move the laser beam irradiation position.

市販の加工用炭酸ガスレーザではパルス周期0、I X
 10−’ 〜100 X 10−8秒でスポット径0
.5 m程度のものが使用できる。レーザ光のビームモ
ードはシングルモードでよいか、特別に斑をランダマイ
ズするには各種モードを使用することができる。
Commercially available carbon dioxide lasers for processing have a pulse period of 0, I
10-' ~100 x 10-8 seconds, spot diameter 0
.. Approximately 5 m long can be used. The beam mode of the laser light may be a single mode, or various modes may be used to specifically randomize spots.

+18射するレーザ光のパワー密質を変えることによっ
てΔnの高い部分と低い部分の差を変えることかできる
。すなわち、パワー密度を而くすると、照射を受けた部
分のΔnの低下は大きくなり、従ってΔn差を大きくす
ることができる。レーザ光の出力を弯史するか又は、レ
ーザ光の焦点からの照射位置法めによって、パワー密度
を変えることが可能である。この時パワー密度を画<シ
過ぎると繊維か溶断する場合かあるので注意を要する。
+18 By changing the power density of the emitted laser beam, the difference between the high and low parts of Δn can be changed. That is, when the power density is decreased, the decrease in Δn of the irradiated portion increases, and therefore the Δn difference can be increased. It is possible to change the power density by adjusting the output of the laser beam or by adjusting the irradiation position from the focal point of the laser beam. At this time, care must be taken because if the power density is set too high, the fibers may melt and break.

所望のΔΩ差に応じて、適切なパワー密度を設定するこ
とが必要である。
It is necessary to set an appropriate power density depending on the desired ΔΩ difference.

本発明の方法において太細斑を生起させるためには、レ
ーザ光の照射された部分で繊維の延伸が起こる程度の強
度でレーザ光を照射することが必映である。この場合糸
条の張力は重要で、レーザ光の照射部分を延伸して糸条
に太細斑を生起させるには、糸張力は通常約0.5 f
/d以上、好ましくは0.8 r/d以上に保つのが良
い。
In order to produce thick and thin spots in the method of the present invention, it is necessary to irradiate the laser beam with such intensity that stretching of the fiber occurs in the area irradiated with the laser beam. In this case, the tension of the yarn is important, and in order to stretch the irradiated part of the laser beam and create thick and thin spots on the yarn, the yarn tension is usually about 0.5 f.
/d or more, preferably 0.8 r/d or more.

レーザ光照射による太細及びΔn差の付与は、通常の熱
可塑性合成繊維の製糸工程において、延伸後引き続いて
巻取りまでの間で配向した熱可塑性合成繊維に緊張下で
レーザ光を断続的に照射することで、所望の太細及びΔ
n差を付与することが可能であって、設備的に大がかり
なものとなったり、工程的に煩雑化することがないと言
った利点を有する。
The provision of thick/thin and Δn differences by laser beam irradiation is achieved by intermittently applying a laser beam under tension to oriented thermoplastic synthetic fibers after drawing and subsequently until winding in the normal spinning process of thermoplastic synthetic fibers. By irradiating, the desired thickness and Δ
This method has the advantage that it is possible to provide a difference in n and does not require large-scale equipment or complicated processes.

太細及びΔΩ差の付与は、上記方法に・限る・も・の・
ではなく例えば、高速紡糸によって得られる前配向未延
伸糸(所謂POY )製造工程において、紡糸後捲取り
までの間で、又は−畦捲取った後、あるいは、トウ状に
収納後、糸条の張力条件及びレーザ光照射条件を選択す
・ることで所望の太細及びΔn差を付与することができ
る。
Addition of thick/thin and ΔΩ differences is limited to the above methods.
Rather, for example, in the production process of pre-oriented undrawn yarn (so-called POY) obtained by high-speed spinning, the yarn is By selecting tension conditions and laser beam irradiation conditions, desired thickness and Δn difference can be imparted.

このように本発明によれば、自然な外観で糸条に太細差
を有する糸が容易に製造され、得られた糸の染色物は深
みのある自然な色調差を有し、加えてその製編織物は、
優れた抗ビル性、抗スナツグ性を有するといった効果を
も奏する。
As described above, according to the present invention, a yarn with a natural appearance and a difference in thread thickness can be easily produced, and the dyed product of the obtained yarn has a deep and natural color tone difference, and in addition, The knitted fabric is
It also has excellent anti-build and anti-snag properties.

次に本発明におけるΔnの測定方法、Δn変化率の測定
方法、Δn同一部の長さの測定方法及び染色物の濃淡差
の判定方法について述べる。
Next, a method of measuring Δn, a method of measuring the rate of change of Δn, a method of measuring the length of the same part of Δn, and a method of determining the difference in shade of a dyed product will be described.

Δnの測定方法: 高分子実験学構座(4);共立出版株式会社、昭和34
年11月15日発行、高分子の物性■第77〜110頁
に記載される方法により測定する。
Measuring method of Δn: Polymer Experimental Science Structure (4); Kyoritsu Publishing Co., Ltd., 1952
It is measured by the method described in Physical Properties of Polymers, pages 77 to 110, published on November 15, 2015.

Δn同一部の長さの測定方法; Δnの測定方法と同様に、偏光顕微鏡を用いて、縞パタ
ーンが変化しない長さを、試料台を操作させて測定する
Method for measuring the length of the same portion of Δn: In the same way as the method for measuring Δn, the length at which the stripe pattern does not change is measured using a polarizing microscope by operating the sample stage.

Δn変化率の測定方法; まず単糸試料の連続するΔn同一部長さを一ト記Δn測
定方法に従って次゛の要領で測定する。即ち、Δn同一
部の連続長さが10crn以下(高Δn部分及び低Δn
部分のいずれもが10cnI以下)の場合においては、
単糸試料約121:T++(121Mより短いステープ
ルの場合はステーブルの任意単糸とする)を3本(旧〜
旧)ランダムにサンプリングして各々について5餌毎に
Δn値を上記Δn測定方法により20点求める。
Method for measuring the rate of change in Δn: First, the length of a single continuous Δn portion of a single yarn sample is measured in the following manner according to the Δn measuring method described above. That is, the continuous length of the same part of Δn is 10 crn or less (high Δn part and low Δn part)
(all of the parts are less than 10cnI),
Single yarn sample approximately 121: 3 pieces of T++ (for staples shorter than 121M, select any single yarn from the stable) (old ~
Old) Randomly sample and obtain 20 Δn values for each 5 baits using the Δn measuring method described above.

Δn同一部の連続長さが10Crnを超える場合(高Δ
n部分又は低Δn部分のいずれかが10cInを超える
場合)は、Δnの変化部分を含む様に単糸試料約12c
rnを3本(n+、−ns)う7ダムニサンフリングし
て各々について5醜毎にΔn値を上記方法により20点
求める。次に各試料の20点のΔn値の最大値(Δ旧m
ax、Δntmax、Δn smax ) 、及び最小
値(ΔH+min、Δntmin、Δr+++min 
) ヲ求め下記の式よりΔn変化率を求める。
When the continuous length of the same part of Δn exceeds 10 Crn (high Δ
If either the n portion or the low Δn portion exceeds 10 cIn), the single yarn sample should be approximately 12 cIn to include the portion where the Δn changes.
Three rn lines (n+, -ns) are subjected to 7 dummiesanflings, and 20 Δn values are obtained for each 5 ugliness using the above method. Next, the maximum value of Δn values of 20 points of each sample (Δold m
ax, Δntmax, Δn smax ), and the minimum value (ΔH+min, Δntmin, Δr+++min
) Find the rate of change of Δn using the formula below.

Δn変化率= Δnma x−Δnm1n尚、高Δn部
分及び低Δn部分の長さが共に5園の場合、Δn変化率
が0.005未満においては再度単糸試料を3本ランダ
ムにサンプリングをして上記測定を繰り返す。
Δn change rate = Δnmax - Δnm1nIf the lengths of both the high Δn part and the low Δn part are 5, if the Δn change rate is less than 0.005, sample three single yarn samples at random again. Repeat the above measurements.

ここで上記を5回くり返し測定してもΔn変化率が0.
005未満の場合においてはその測定値の平均値とする
Here, even if the above procedure is repeated five times, the rate of change in Δn is 0.
If the value is less than 0.005, the average value of the measured values is used.

染色物の濃淡差の判定方法: デイスバーゾルファーストスヵーレッ)B(IC1社製
分散染料)4.0%owf 、ディスパーTL (明星
化学工業社製分散剤) 1 f/L、浴比1 : 10
0 。
Method for determining the difference in shade of a dyed product: Dispersor Fast Scarlet B (disperse dye manufactured by IC1) 4.0% owf, Disper TL (dispersant manufactured by Myojo Chemical Industry Co., Ltd.) 1 f/L, bath ratio 1 : 10
0.

常圧沸騰温度(98℃)で試料を90分間染色した簡鴫
地を10人の官能評価により濃淡差穴(3点)。
The sample was dyed at normal pressure and boiling temperature (98℃) for 90 minutes and was evaluated by 10 people for the difference in density (3 points).

中(2点)、小(1点)、なしく0点)の4ランク法で
評価し、25点以上(◎)、15〜24点(○)、10
〜14点(△)、1o点未満(×)でで示す。
Evaluated using a 4-rank method: medium (2 points), small (1 point), and none (0 points): 25 points or more (◎), 15-24 points (○), 10
Indicated by ~14 points (△) and less than 10 points (x).

以下に本発明を実施例をあげて説明する。The present invention will be explained below by giving examples.

実施例 極限粘度0.6 (フェノール/テトラクロルエタン6
/4の混合溶媒中30℃で測定)の50デニール、24
フイラメントのポリエチレンテレフタレート延伸糸(Δ
n 0.175の円形断面糸)を走行速度150yn/
分にて走行させ、その走行糸条にレーザ光を照射せしめ
た。得られた繊維を常法によりニット(インターロック
)にして、精練、染色後ICI法による抗スナツグ性及
び染色物の濃淡差を評価した。得られた糸条の特性、レ
ーザ光照射条件及び染色物の濃淡差の評価結果を、レー
ザ光未照射の場合(実験No、C)及び従来一般のシッ
ク・アンド・シンヤーン(実験NO,D)と共に第1表
に示した。
Example Intrinsic viscosity 0.6 (phenol/tetrachloroethane 6
/4 mixed solvent at 30°C), 50 denier, 24
Filament polyethylene terephthalate drawn yarn (Δ
circular cross-section yarn of n 0.175) at a running speed of 150 yn/
The yarn was run for 20 minutes, and the running yarn was irradiated with laser light. The obtained fibers were made into a knit (interlock) by a conventional method, and after scouring and dyeing, the anti-snag property and the difference in shade of the dyed product were evaluated by ICI method. The obtained yarn characteristics, laser light irradiation conditions, and evaluation results of the difference in shade of the dyed product were evaluated for the case without laser light irradiation (experiment No., C) and the conventional general thick and thin yarn (experiment No. D). They are also shown in Table 1.

第1表中実験N[l Bは本発明の例であり、糸条は太
細差を有し、かつ高Δn部及び低Δn部の長さのバラツ
キがなく、染色物は深みのある自然な色調差を示した。
Experiment N [l B in Table 1 is an example of the present invention, the yarn has a difference in thickness, there is no variation in length of the high Δn part and the low Δn part, and the dyed product has a deep natural texture. It showed a significant difference in color tone.

実験FJfl AはΔn変化率が本発明の範囲をはずれ
るもので、しがも実質的に太細差を有せず、染色物の7
111淡差は殆んど認められない。実験NQ、 Cはレ
ーザ光未照射の延伸糸で、染色物の濃淡差及び抗スナツ
グ性は全く認められない。実験N11Dは、極限粘度o
、6(フェノール/テトラクロルエタン6/4の混合溶
媒中30 ℃で測定)のポリエチレンテレフタレートを
285℃で溶融し、口金孔数36の紡糸口金より369
/分の吐出量で吐出した糸条を捲取速度2000 m/
分で捲取って、得た未延伸糸を100℃のホットプレー
トを用いて1.8倍に延伸して得た従来一般のシック・
アンド・シン・ヤーンを示し、その染色物の濃淡差効果
は良好であるが、太い部分のΔnか細い部分のΔnより
小さく、高Δn部及び低Δn部の長さのバラツキが極め
て大きく、さらに抗スナツグ性が著しく劣る。
In experiment FJfl A, the Δn change rate was outside the range of the present invention, but there was virtually no difference in thickness, and 7
111. Almost no difference in lightness is observed. Experiments NQ and C were drawn yarns that were not irradiated with laser light, and no difference in shade or snag resistance was observed in the dyed product. Experiment N11D has an intrinsic viscosity o
, 6 (measured at 30 °C in a mixed solvent of phenol/tetrachloroethane 6/4) was melted at 285 °C, and 369
A winding speed of 2000 m/min is used to wind up the yarn discharged at a discharge rate of 2000 m/min.
The undrawn yarn obtained by winding the yarn in 10 minutes was stretched to 1.8 times using a hot plate at 100°C.
The shading effect of the dyed product is good, but the Δn of the thick part is smaller than the Δn of the thin part, and the length variation of the high Δn part and the low Δn part is extremely large. Snagging properties are significantly poor.

(以下余白) 第      1      夷 肴長さのバラツキ著しく0.1〜20問 の範囲にバラ
ついている。
(Left below) No. 1 There is a significant variation in the length of the dish, which varies from 0.1 to 20 questions.

特許出願人 東洋紡績株式会社Patent applicant: Toyobo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)熱可塑性高分子より成り、繊維軸方向に断続的に
0.005以上の複屈折率(Δn)変化を有し、かつ、
繊維軸方向の横断面積の変化率が10%以上の太細を有
する合成繊維であって、太い部分の複屈折率が細い部分
の複屈折率より大きいことを特徴とする太細を有する合
成繊維。
(1) It is made of a thermoplastic polymer and has an intermittent change in birefringence (Δn) of 0.005 or more in the fiber axis direction, and
A synthetic fiber having thick and thin parts with a change rate of cross-sectional area in the fiber axis direction of 10% or more, the synthetic fiber having thick and thin parts characterized in that the birefringence of the thick part is larger than the birefringence of the thin part. .
(2)配向した熱可塑性合成繊維に緊張下でレーザ光を
間欠的に照射することを特徴とする繊維軸方向に複屈折
率変化を有すると同時に太細を有する合成繊維の製造方
法。
(2) A method for producing a synthetic fiber that has a birefringence change in the fiber axis direction and is thick and thin, the method comprising intermittently irradiating an oriented thermoplastic synthetic fiber with a laser beam under tension.
JP3322783A 1983-02-28 1983-02-28 Synthetic yarn having thickness and thinness and its preparation Pending JPS59157310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3322783A JPS59157310A (en) 1983-02-28 1983-02-28 Synthetic yarn having thickness and thinness and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3322783A JPS59157310A (en) 1983-02-28 1983-02-28 Synthetic yarn having thickness and thinness and its preparation

Publications (1)

Publication Number Publication Date
JPS59157310A true JPS59157310A (en) 1984-09-06

Family

ID=12380566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3322783A Pending JPS59157310A (en) 1983-02-28 1983-02-28 Synthetic yarn having thickness and thinness and its preparation

Country Status (1)

Country Link
JP (1) JPS59157310A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197435A (en) * 1984-10-15 1986-05-15 東レ株式会社 Latent bulky yarn and its production
JPS62191510A (en) * 1986-02-12 1987-08-21 Unitika Ltd Multifilament yarn
WO2006112336A3 (en) * 2005-04-13 2007-02-08 Hideo Kuwahara Partial shape memory fiber, partial shape memory fiber-made knitted/woven fabric product, and production method for partial shape memory fiber
JP2013224505A (en) * 2012-04-23 2013-10-31 Shinshu Univ Method and apparatus for producing fiber having diameter gradient
RU2687648C1 (en) * 2018-07-02 2019-05-15 Акционерное общество "Холдинговая компания "Композит" (АО "ХК "Композит") Method of carbon fiber separation and installation for its implementation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4863018A (en) * 1971-12-06 1973-09-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4863018A (en) * 1971-12-06 1973-09-03

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197435A (en) * 1984-10-15 1986-05-15 東レ株式会社 Latent bulky yarn and its production
JPS62191510A (en) * 1986-02-12 1987-08-21 Unitika Ltd Multifilament yarn
WO2006112336A3 (en) * 2005-04-13 2007-02-08 Hideo Kuwahara Partial shape memory fiber, partial shape memory fiber-made knitted/woven fabric product, and production method for partial shape memory fiber
JP2013224505A (en) * 2012-04-23 2013-10-31 Shinshu Univ Method and apparatus for producing fiber having diameter gradient
RU2687648C1 (en) * 2018-07-02 2019-05-15 Акционерное общество "Холдинговая компания "Композит" (АО "ХК "Композит") Method of carbon fiber separation and installation for its implementation

Similar Documents

Publication Publication Date Title
US3958406A (en) Yarn having a basis of polyester with irregular titer
DE2458960A1 (en) METHOD FOR MANUFACTURING A TEXTURED YARN AND THE RAW YARN USED FOR IT
US3275732A (en) Process for preparing thick and thin novelty yarns
JPS59157310A (en) Synthetic yarn having thickness and thinness and its preparation
US3472017A (en) Specific filament yarns
JPS59223314A (en) Conjugate polyester fiber having different dyeing property
US3634580A (en) Process for preparing fibers of the polyester series having different dyeability
KR100236267B1 (en) Process for mixed yarn having different shrinkage
JPS59157313A (en) Synthetic yarn having change in birefringence and its preparation
JPH0362804B2 (en)
KR100429364B1 (en) Method for manufacturing metachromatic polyester conjugated yarn having improved size stability
JP2000034641A (en) Polyamide-based yarn fabric and its production
JP2002363820A (en) Method for producing flat yarn composed of thermoplastic synthetic resin
JPS62238818A (en) Production of polyester staple fiber
KR100569680B1 (en) A false twisted and melted partially polyester yarn, and a process of preparing for the same
US3538566A (en) Process for making crimped filaments of polyester
KR100339998B1 (en) Manufacturing method of polyester superfine yarn
JP2698725B2 (en) Method for producing self-extensible thick and thin yarns
JPH038814A (en) Production of high-strength and high-modulus polyester-based fiber dyed in deep color
KR100471536B1 (en) Manufacturing method of polyester shrink shrink blended yarn
KR930000559B1 (en) Process for preparing polyester feed yarns
JPS63288211A (en) Combined polyethylene terephthalate filament yarn of heterogeneous shrinkage
KR810001779B1 (en) Mutilobed feed yarn for texturing
KR810001680B1 (en) Deep-dyeing polyester spinning process
JP2002242040A (en) Method for producing polyester fiber