JPS59142329A - Combustion control device - Google Patents

Combustion control device

Info

Publication number
JPS59142329A
JPS59142329A JP58015607A JP1560783A JPS59142329A JP S59142329 A JPS59142329 A JP S59142329A JP 58015607 A JP58015607 A JP 58015607A JP 1560783 A JP1560783 A JP 1560783A JP S59142329 A JPS59142329 A JP S59142329A
Authority
JP
Japan
Prior art keywords
gas
air
pressure
combustion
adjusting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58015607A
Other languages
Japanese (ja)
Other versions
JPH0236857B2 (en
Inventor
Hideo Uematsu
英夫 植松
Yoshiyuki Yokoajiro
義幸 横網代
Takeshi Natsumeda
棗田 武志
Yoshio Yamamoto
山本 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58015607A priority Critical patent/JPS59142329A/en
Publication of JPS59142329A publication Critical patent/JPS59142329A/en
Publication of JPH0236857B2 publication Critical patent/JPH0236857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/02Measuring filling height in burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To enable to keep the air fuel ratio nearly constant so as to maintain the stability and high efficiency of combustion by a method wherein the quantity of gas or air is controlled by the output signal of a differential pressure sensor arranged between on the upstream sides of the second gas throttling part in a fuel gas route and of the air throttling part in a combustion air route. CONSTITUTION:Fuel gas with a pressure of P1 flows upstream a fuel gas route 1 in a gas flow rate control means 2 to be controlled into the fuel gas with a pressure of P2 and then flows further in a first gas throttling part 3 in order to leave the part 3 in a form of the fuel gas with a pressure of PG and, after that, passes through a second gas throttling part 4 to be led to a mixing part 5. On the other hand, combustion air is past through an air flow rate control means 6 and a combustion air route 7 and reduced its pressure to a predetermined pressure PA at an air throttling part 8 and led to the mixing part 5. The change of the temperature of delivered hot water is resulted, when load is changed by changing the quantity of hot water passing through a hot water delivery pipe 13 of the like. A fan controller 14 controls the rotational frequency of a fan 6 based upon said changed temperature detected by a temperature detector 12 so as to bring the temperature of delivery hot water equal to the set temperature. Consequently, the differential pressure due to PA and PG is generated at a differential pressure sensor 9 with a timing almost same as that corresponding to the pressure PA on the upstream side of the air throttling part 8. Said differential pressure is processed at a gas flow rate controlling 15 so as to control the gas pressure proportional control valve 2 in order to realize the relationship PA=PG.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は負荷の大小に応じて燃焼量を可変できる能力可
変式燃焼機器において、燃焼用空気量(以下単に空気量
という)とガス量の比をほぼ一定に保ち、燃焼の安定性
と高効率を実現するとともに、燃焼量が最小の場合にお
いて、ガス種75;変っても安定燃焼をさせるだめの特
に家庭用燃焼機器に用いられる燃焼制御装置に関する1
、従来例の構成とその問題点 従来のこの種のガス燃焼制御装置として、第1図に示す
均圧弁方式(あるいは、ゼロガノく六方式)がよく知ら
れている。すなわち送風機1により送られた空気は空気
絞り2を経て混合部3へ、ガスは均圧弁4、ガス絞り6
を経て混合部3へ入り空気とガスとが混合され、バー六
〇へ導びかれて燃焼する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a variable capacity combustion device that can vary the combustion amount depending on the magnitude of the load, by adjusting the ratio between the amount of combustion air (hereinafter simply referred to as the amount of air) and the amount of gas. This invention relates to a combustion control device that is used in particular for household combustion appliances, which maintains combustion stability and high efficiency by keeping it almost constant, and also ensures stable combustion even when the gas type changes, even when the amount of combustion is minimal. 1
2. Construction of the conventional example and its problems As a conventional gas combustion control device of this type, the pressure equalizing valve system (or zero-gauge system) shown in FIG. 1 is well known. In other words, the air sent by the blower 1 passes through the air throttle 2 to the mixing section 3, and the gas flows through the pressure equalization valve 4 and the gas throttle 6.
The air enters the mixing section 3 through the air and gas, where the air and gas are mixed, and then led to the bar 60 where it is combusted.

均圧弁4の背圧室7には空気絞り2の上流の圧力が導び
かれており、均圧弁4は均圧弁出口の圧力を背圧室7の
圧力と等しくなる様に自動調節する。
The pressure upstream of the air throttle 2 is introduced into the back pressure chamber 7 of the pressure equalizing valve 4, and the pressure equalizing valve 4 automatically adjusts the pressure at the outlet of the pressure equalizing valve to be equal to the pressure in the back pressure chamber 7.

ここで空気絞りの上流の圧力をPA 、空気量をQA、
ガス絞りの上流の圧力をPG 、ガス量をQc、混合部
の圧力をPMとすると、空燃比QA/QGは Q c    K 2 xrn「Ti K+ 、 K2は、それぞれ空気絞り、ガス絞り及びガ
ス種によって決まる定数 の関係がある。
Here, the pressure upstream of the air throttle is PA, the air amount is QA,
If the pressure upstream of the gas throttle is PG, the gas amount is Qc, and the pressure in the mixing section is PM, then the air-fuel ratio QA/QG is Q c K 2 xrn "Ti K+, K2 are the air throttle, gas throttle, and gas type, respectively. There is a constant relationship determined by

均圧弁4が理想的にPG=PAK調節できればとなり、
QAを変化させても空燃比は常に・一定となるはずであ
る。しかし、均圧弁41d′ダイアフラム8でFAとP
Gとの差圧を受けて弁9を機械的に動かすものであるか
ら、ダイアフラムの剛性。
If the pressure equalizing valve 4 can ideally adjust PG=PAK, then
Even if QA is changed, the air-fuel ratio should always remain constant. However, in the pressure equalizing valve 41d' diaphragm 8, FA and P
Since the valve 9 is mechanically moved in response to the differential pressure between G and G, the rigidity of the diaphragm is important.

変位に伴なうダイアフラムの有効面積の変化、弁9が受
ける均圧弁入口圧力の影響等により、必ず圧力調節誤差
△Pcを生じる。すなわちPG=PA+△PGあるので
、 となり、圧力調節誤差による空燃比の変動はPA−PM
  の値が小さくなるはど大きくなる。
A pressure adjustment error ΔPc always occurs due to changes in the effective area of the diaphragm due to displacement, the influence of the equalization valve inlet pressure applied to the valve 9, and the like. In other words, since PG = PA + △PG, the air-fuel ratio fluctuation due to pressure adjustment error is PA - PM
As the value of becomes smaller, it becomes larger.

したがって、空燃比誤差を一定の範囲内に保ちながら燃
焼量の調節比を大きくとろうとすれば、PA−PMの値
を大きくするか、7♂Gを小さくしなければならない。
Therefore, in order to increase the combustion amount adjustment ratio while keeping the air-fuel ratio error within a certain range, the value of PA-PM must be increased or 7♂G must be decreased.

一方、家庭用のガス燃焼機器として給湯用あるいは暖房
用の用途では燃焼量の調節比か4ないし1/1o程度必
要である。そのだめにPA−PMを大きくすると送風機
がきわめて大Nぐなるだけでなく、供給圧の低い都市ガ
ス等ではPAがガス供給圧より高くなり実現不可能であ
る。また、都市ガス以外のガスで実現したとしても、ガ
ス圧が低下した場合には空燃比制御精度が著しく悪化し
て良好な燃焼状態が得られなくなるという問題があった
。更にまた△Pcを小さくするにも均圧弁の大きさから
限度があり、経時変化の影響、調整の困難さがあるなど
、家庭用燃焼機器への適用は難しかった。
On the other hand, for domestic gas combustion equipment used for hot water supply or space heating, a combustion amount adjustment ratio of about 4 to 1/1o is required. However, if PA-PM is increased, not only will the blower become extremely large in N, but also PA will be higher than the gas supply pressure, which is not possible when using city gas, etc., where the supply pressure is low. Further, even if the method is realized using a gas other than city gas, there is a problem in that when the gas pressure decreases, the accuracy of air-fuel ratio control deteriorates significantly, making it impossible to obtain a good combustion state. Furthermore, there is a limit to reducing ΔPc due to the size of the pressure equalizing valve, and it is difficult to apply to household combustion equipment due to the effects of aging and difficulty in adjustment.

発明の目的 本発明は上記従来の問題を解消するもので送風機セ均圧
制御部を大型化することなく燃焼量調節比が大きく、か
つ空燃比安定性と高効率を実現させ、更に、燃焼量が最
小の場合においてガス種がかわっても安定燃焼をさせる
だめの燃焼制御装置を提供することを目的とするもので
ある。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional problems, and achieves a large combustion amount adjustment ratio without increasing the size of the blower equalization control section, and achieves air-fuel ratio stability and high efficiency. It is an object of the present invention to provide a combustion control device that allows stable combustion even if the gas type changes when the amount of gas is minimal.

発明の構成 この目的を達成するために本発明は、燃料ガス系路に上
流側からガス量調節手段、ガス第1絞り部、ガス第2絞
り部をこの順に配設し、また、燃焼用空気系路には上流
側から空気量調節手段、空気絞り部を設け、前記ガス第
2絞り部と前記空気絞り部の下流側を合流して混合部を
構成し、前記ガス第2絞り部と前記空気絞り部の上流側
の圧力差を検出して電気信号を出力する差圧センサを備
え、この差圧センサの出力信号で前記ガス量調節千手段
、空気量調節手段の少なくとも・一方を制御するととも
に、燃料ガス種に対応して、前記ガス第2絞り部、及び
前記ガス第1絞り部を可変できるように構成したもので
ある。
Structure of the Invention In order to achieve this object, the present invention arranges a gas amount adjusting means, a first gas throttle part, and a second gas throttle part in this order from the upstream side in the fuel gas line, and furthermore, the combustion air The system path is provided with an air amount adjusting means and an air throttle section from the upstream side, and the second gas throttle section and the downstream side of the air throttle section are merged to form a mixing section, and the second gas throttle section and the air throttle section are connected to each other. A differential pressure sensor is provided that detects a pressure difference on the upstream side of the air restrictor and outputs an electrical signal, and the output signal of the differential pressure sensor controls at least one of the gas amount adjusting means and the air amount adjusting means. In addition, the second gas throttle section and the first gas throttle section are configured to be variable in accordance with the type of fuel gas.

この構成によって、燃料ガス系路のガス第2絞り部と、
燃焼用空気系路の空気絞り部の上流側に配設した差圧セ
ンサの出力信号で前記ガス量調節手段、空気量調節手段
の少なくとも一方を制御して燃焼の安定性と高効率を保
つように空燃比をはソ一定にすることができる。
With this configuration, the second gas throttle part of the fuel gas line,
At least one of the gas amount adjusting means and the air amount adjusting means is controlled by the output signal of a differential pressure sensor disposed upstream of the air throttle part of the combustion air system path to maintain combustion stability and high efficiency. The air-fuel ratio can be kept constant.

そして、ガス種に対応してガス第2絞り部、及び前記ガ
ス第1絞り部も可変させることで燃焼量が最小の時でも
ガス量調節手段が安定して制御するので燃焼状態を安定
化ならしめることが可能になる。
By varying the second gas throttle section and the first gas throttle section in accordance with the type of gas, the gas amount adjusting means can stably control even when the combustion amount is at its minimum, thereby stabilizing the combustion state. It becomes possible to tighten.

実施例の説明 以下本発明の一実施例を第2図および第3図の図面に基
づき説明する。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 2 and 3.

第2図において燃料ガスは燃料ガス糸路1上流からPl
という圧力でガス量調節手段2(本発明一実施例ではガ
ス圧力比例制御弁で説明する。以下ガス量調節手段2の
ことをガス圧力比例制御弁と呼ぶ。)に流入し、P2’
と論う圧力に制御され、更に、ガス第1絞り部3に流入
し、PGという圧力で流出し、そして、ガス第2絞り部
4を通って、混合部6に導びかれている〇 一方燃焼用空気は、空気量調節手段6(例えば、ファン
、以下空気量調節手段のことをファンと呼ぶ)から燃焼
用空気系路7を通って、空気絞り部8で所定の圧力まで
低下した後混合部6に流入する0 寸だ、ガス第2絞り部4の上流側の圧力をPG。
In FIG. 2, the fuel gas flows from the upstream of the fuel gas line 1 to Pl
At this pressure, the gas flows into the gas amount adjusting means 2 (in one embodiment of the present invention, a gas pressure proportional control valve will be used. Hereinafter, the gas amount adjusting means 2 will be referred to as a gas pressure proportional control valve), and P2'
Further, the gas flows into the first gas constriction section 3, flows out at a pressure of PG, passes through the second gas constriction section 4, and is led to the mixing section 6. The combustion air passes through the combustion air system path 7 from the air amount adjusting means 6 (for example, a fan, hereinafter referred to as a fan), and is reduced to a predetermined pressure at the air restricting section 8. The pressure on the upstream side of the second gas throttle section 4, which flows into the post-mixing section 6, is PG.

空気絞り部8の上流側の圧力をPAとすると−PGとP
Aの差圧を検出する差圧センサ9を備えている。そして
混合部6で燃料ガスと燃焼用空気が混合され、バーナ1
oで燃焼する。11は熱交換器、12は出湯管13に挿
着されている温度検知器であり、14は、ファン6を制
御するファン制御器、16はガス量調節手段制御器であ
る。
If the pressure on the upstream side of the air restrictor 8 is PA, -PG and P
A differential pressure sensor 9 is provided to detect the differential pressure of A. Then, the fuel gas and combustion air are mixed in the mixing section 6, and the burner 1
Burns at o. Reference numeral 11 is a heat exchanger, 12 is a temperature sensor inserted in the hot water outlet pipe 13, 14 is a fan controller for controlling the fan 6, and 16 is a gas amount adjusting means controller.

第3図は第2図におけるガス圧力比例制御弁2のガス種
違いによるストロークStと、制御圧力P2の関係を示
す図である。
FIG. 3 is a diagram showing the relationship between the stroke St of the gas pressure proportional control valve 2 in FIG. 2 for different gas types and the control pressure P2.

まづガス第1絞り部3がないとした場合(P2−PG 
の場合)を説明する。
First, if there is no first gas throttle part 3 (P2-PG
).

0−tel−G2の線分は、都市ガス等のプロノ(ンガ
スに比較して低発熱量のガスの場合の特性線図である。
The line segment 0-tel-G2 is a characteristic diagram for a gas with a lower calorific value compared to proton gas such as city gas.

以下都市ガス(Pj=IQ○gH20)を基準ガスとし
て説明する。都市ガスの01におけるストロークStは
Slであり、G2のそれはSsである3、そして、都市
ガスのガス圧力比例制御弁2の入口圧力P + =10
0tmn H20のときの制御圧力P2が8+、Ssに
対応してqlからq3まで安定して変化することを示し
ている。
The following description will be made using city gas (Pj=IQ○gH20) as the reference gas. Stroke St of city gas in 01 is Sl, that of G2 is Ss3, and inlet pressure of gas pressure proportional control valve 2 of city gas P + =10
It is shown that the control pressure P2 at 0 tmn H20 changes stably from ql to q3 corresponding to 8+ and Ss.

まだSlは、ガス圧力比例制御弁2の弁座(図示せず)
、可動弁部(図示せず)の加工精度、組立精度等によっ
て決まる制御限界のストローク長さである。・つまり、
0〜S1の間は制御不安定ないしは制御不可能域である
Still SL is the valve seat of the gas pressure proportional control valve 2 (not shown)
, is the control limit stroke length determined by the processing accuracy, assembly accuracy, etc. of the movable valve portion (not shown). ·In other words,
The range between 0 and S1 is an unstable or uncontrollable range.

都市ガスの特性線図0−Gl−02の低勾配の線分に対
し、都市ガスと同一の定格燃焼量の場合でかつ、制御2
次圧P2がqlからq3″!で都市ガスの場合と同じよ
うに制御される場合のプロパンガスの場合には0−Ll
−L2−Lsというきわめて急勾配の線分に沿って制御
されるがLlとL2の間は制御限界のストロークS1よ
り小さなストロークになるので実質の制御範囲はL2か
らLsであって、都市ガスと最大制御圧q5は同一であ
るが、最低の圧力は、都市ガスのqlにはならず、これ
よりも高いq2になる。
For the line segment with a low slope in the city gas characteristic diagram 0-Gl-02, when the rated combustion amount is the same as that of city gas and control 2
0-Ll in the case of propane gas when the next pressure P2 is controlled in the same way as city gas from ql to q3''!
-L2-Ls, which is a very steep line segment, is controlled, but between Ll and L2, the stroke is smaller than the control limit stroke S1, so the actual control range is from L2 to Ls, and city gas Although the maximum control pressure q5 is the same, the lowest pressure is not ql of city gas, but q2, which is higher than this.

ところで第2図から明らかのように、定格燃焼ca1 時に必要な空気量は、発熱量1ooO/H当り約1Nr
rt’/Hであるから空気絞り部8の上流の圧力PAは
ガス種が変ってもはソ一定である。
By the way, as is clear from Figure 2, the amount of air required for rated combustion ca1 is approximately 1Nr per 1ooO/H of calorific value.
Since rt'/H, the pressure PA upstream of the air restrictor 8 remains constant even if the gas type changes.

まだ本発明一実施例の制御装置は後述するが、空気絞り
部8及び、ガス第2絞り部4のそれぞれの上流側の圧力
PA及びPGがPA=PGになるように制御するので、
ガス種が変っても、燃焼量の調節比(以下TDRと呼ぶ
)を同一にしようと思えば、都市ガスとプロパンガスの
ガス圧力比例制御弁2による制御圧力PGははソ等しく
制御する必要がある。ところが、既に述べたようにガス
圧力比例制御弁2だけの制御で、第2図のガス第1絞り
部3がない場合には、プロパンガスの場合には制御最小
圧力はq2の圧力までしか制御出来ない。つまり、プロ
パンガスの場合には、TDRが小さくなってしまう。
Although the control device according to the embodiment of the present invention will be described later, since the pressures PA and PG on the upstream sides of the air throttle section 8 and the second gas throttle section 4 are controlled so that PA=PG,
Even if the gas type changes, if you want to make the combustion amount adjustment ratio (hereinafter referred to as TDR) the same, the control pressure PG by the gas pressure proportional control valve 2 for city gas and propane gas must be controlled equally. be. However, as mentioned above, if only the gas pressure proportional control valve 2 is used and the first gas throttle part 3 shown in FIG. Can not. In other words, in the case of propane gas, the TDR becomes small.

L2−L3’の線分は、プロパンガスの場合において、
第2図のガス圧力比例制御弁2とガス第2絞り部・4の
中間に、ガス第1絞り部3を入れた場合を示している。
The line segment L2-L3' is, in the case of propane gas,
This shows the case where the first gas throttle part 3 is inserted between the gas pressure proportional control valve 2 and the second gas throttle part 4 in FIG.

すなわち、L12の最大定格点ではガス圧力比例制御弁
2による制御圧力P2がq4に、PGの圧力がq3にな
ることを示している1、まだ燃焼量が最小になると、P
2はq2にPGはqlになることを示している。
That is, at the maximum rating point of L12, the control pressure P2 by the gas pressure proportional control valve 2 becomes q4, and the pressure of PG becomes q3.
2 indicates that PG becomes ql in q2.

すなわち、ガス圧力比例制御弁2でq4から制御限界の
q2までP2の圧力を制御すれば、ガス第1絞り部3が
挿設することでPGの圧力は、都市ガスの場合と同じ<
 (13がらqlまで安定して制御出来るようになる。
That is, if the gas pressure proportional control valve 2 controls the pressure of P2 from q4 to the control limit q2, the pressure of PG will be the same as that of city gas due to the insertion of the first gas throttle part 3.
(You will be able to stably control from 13 to ql.

上記構成において、例えば出湯管13を通過する湯量を
変えるなどして負荷を変えると、出湯温度が変化する。
In the above configuration, if the load is changed by, for example, changing the amount of hot water passing through the hot water tap pipe 13, the hot water temperature changes.

この変化する温度を温度検出器12で検出し、ファン制
御器14で設定温度になるように、ファン6の回転数を
制御する。その結果、空気絞り部8の上流側の圧力PA
が対応して変化するとはソ同一のタイミングで差圧セン
サ9にPAとPGにもとづく差圧が発生する。この差圧
をガス量調節手段制御器16で処理して、PAにPGに
なるように、ガス圧力比例制御弁2を制御するものであ
る。
This changing temperature is detected by a temperature detector 12, and a fan controller 14 controls the rotation speed of the fan 6 so that the set temperature is achieved. As a result, the pressure PA on the upstream side of the air restrictor 8
A differential pressure based on PA and PG is generated in the differential pressure sensor 9 at the same timing that PA and PG change correspondingly. This differential pressure is processed by the gas amount adjusting means controller 16 to control the gas pressure proportional control valve 2 so that PA becomes PG.

まだ、ガス種が変った場合には、既に述べたように定格
燃焼量が同一であれば空気量ははソ同一であるから空気
絞り部8は一定で、ガス第2絞り部4の大きさを定格流
量でPA−pM==pG−pMになるように定めればよ
い。そしてプロパンガスのように発熱量が大きくガス供
給圧力が高いガスの場合には、既に説明したようにガス
圧力比例制御弁2だけでは所定の最小燃焼量(第2図に
於いて、PGの圧力がqlになるとと。)に安定して制
御できないので、ガス圧力比例制御弁2と、ガス第2絞
り部4との間に、ガス第1絞り部3を挿設することによ
って、P2はL3’−L2の線分、PGはL3−G+の
線分に沿って制御され、都市ガスのTDRと同じ制御を
可能にするものである。
However, if the type of gas changes, as already mentioned, if the rated combustion amount is the same, the air amount will be the same, so the air throttle part 8 will be constant, and the size of the second gas throttle part 4 will be the same. may be determined so that PA-pM==pG-pM at the rated flow rate. In the case of a gas such as propane gas, which has a large calorific value and a high gas supply pressure, as already explained, the gas pressure proportional control valve 2 alone is not sufficient to maintain the predetermined minimum combustion amount (in Fig. 2, the PG pressure Since it is not possible to stably control P2 to ql, by inserting the first gas throttle section 3 between the gas pressure proportional control valve 2 and the second gas throttle section 4, P2 becomes L3. The line segment '-L2 and PG are controlled along the line segment L3-G+, enabling the same control as the TDR of city gas.

発明の効果 以上のように、本発明の燃焼制御装置によれば燃料ガス
系路に、ガス量調節手段、ガス第1絞り部、ガス第2絞
り部を配設し、また、燃焼用空気系路には、空気量調節
手段、空気絞り部を設け、ガス第2絞り部と、空気絞り
部の下流側を合流して混合部を構成し、かつ、ガス第2
絞り部の上流側の圧力PGと、空気絞り部の上流側の圧
力PAの圧力差PA−Pcを検出して電気信号を出力す
る差圧センサから構成し、負荷の大きさが変化しても、
常にPp、 =Paになるように差圧センサの出力信号
でガス量調節手段、空気量調節手段の少なくとも一方を
制御することにより、従来のような機械式の均圧弁に比
較してきわめて制御精度が良くなるので、送風機を小型
化できか°り、燃焼量の調節比が大きく、同時に高効率
の燃焼機器を実現させるものである。
Effects of the Invention As described above, according to the combustion control device of the present invention, the gas amount adjusting means, the first gas throttle part, and the second gas throttle part are arranged in the fuel gas line, and the combustion air system The passage is provided with an air amount adjusting means and an air constriction section, and the gas second constriction section and the downstream side of the air constriction section are merged to form a mixing section, and the gas second
Consists of a differential pressure sensor that detects the pressure difference PA-Pc between the pressure PG on the upstream side of the throttle section and the pressure PA on the upstream side of the air throttle section and outputs an electrical signal, so that it can be used even if the load size changes. ,
By controlling at least one of the gas amount adjusting means and the air amount adjusting means using the output signal of the differential pressure sensor so that Pp, = Pa is always maintained, control accuracy is extremely high compared to conventional mechanical pressure equalizing valves. Since the combustion efficiency is improved, the blower can be made smaller, the combustion amount can be adjusted at a higher ratio, and at the same time, a highly efficient combustion device can be realized.

そして、ガス種に対応してガス第2絞り部、及びガス第
1絞り部を可変できるように構成したことにより、都市
ガスから供給圧力の高く、発熱量の大きいプロパンガス
まで燃焼量の調節比(TDR)をガス種によって制限す
ることなく一定で、安定した燃焼機器の実現を可能にす
るものである。
By configuring the second gas throttle part and the first gas throttle part to be variable according to the type of gas, the combustion amount adjustment ratio can be adjusted from city gas to propane gas with high supply pressure and large calorific value. This makes it possible to realize a stable combustion device with a constant (TDR) without being limited by the type of gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の燃焼制御装置の構成図、第2図は本発明
の燃焼制御装置の一実施例を示す構成図、第3図は同装
置のガス量調節手段すなわちガス圧力比例制御弁のスト
ロークと2次側制御圧力との関係及ばガス第1絞り部を
調節した場合のガス第1絞り部前後に於ける圧力変化を
示す特性図である0 1・・・・・・燃料ガス系路、2・・・・・・ガス量調
節手段(ガス圧力比例制御弁)、3・・・・・・ガス第
1絞り部、4・・・・・・ガス第2絞り部、6・・・・
・・混合部、6・・・・・・空気量調節手段(ファン)
、了・・・・・・燃焼用空気系路、8・・・・・・空気
絞り部、9・・・・・・差圧センサ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
FIG. 1 is a configuration diagram of a conventional combustion control device, FIG. 2 is a configuration diagram showing an embodiment of the combustion control device of the present invention, and FIG. It is a characteristic diagram showing the relationship between the stroke and the secondary side control pressure and the pressure change before and after the first gas throttle part when the first gas throttle part is adjusted. , 2... Gas amount adjusting means (gas pressure proportional control valve), 3... Gas first throttle section, 4... Gas second throttle section, 6...・
...Mixing section, 6...Air volume adjustment means (fan)
, Completion... Combustion air system path, 8... Air throttle section, 9... Differential pressure sensor. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)燃料ガス系路にガス量調節手段とガス第1絞り部
とガス第2絞り部とを設け、燃焼用空気系路に臭気量調
節手段と空気絞り部とを設け、前記ガス第2絞り部と前
記空気絞り部の下流側を合流して混合部を構成するとと
もに、前記ガス第2絞り部と前記空気絞り部の上流側の
圧力差に応じて電気信号を出力する差圧センサを備え、
この差圧センサの出力信号で前記ガス量調節手段、空気
量調節手段の少なくとも一方を制御するとともに、燃料
ガス種に応じて前記ガス第2絞り部、及び前記ガス第1
絞り部を可変できるように構成した燃焼制御装置。
(1) A fuel gas system path is provided with a gas amount adjusting means, a first gas restricting section, and a second gas restricting section, a combustion air system path is provided with an odor amount adjusting means and an air restricting section, and the combustion air system path is provided with an odor amount adjusting means and an air restricting section; The throttle part and the downstream side of the air throttle part are combined to form a mixing part, and a differential pressure sensor is provided that outputs an electric signal according to the pressure difference between the second gas throttle part and the upstream side of the air throttle part. Prepare,
The output signal of this differential pressure sensor controls at least one of the gas amount adjusting means and the air amount adjusting means, and also controls the second gas constriction section and the first gas constriction section depending on the fuel gas type.
A combustion control device configured so that the throttle part can be varied.
(2)ガス第1絞り部をガス量調節手段に内蔵し、着脱
可能にした特許請求の範囲第1項記載の燃焼制御装置。
(2) The combustion control device according to claim 1, wherein the first gas throttle section is built into the gas amount adjusting means and is detachable.
(3)  ガス第1絞り部をガス量調節手段と、ガス第
2絞り部を連結する管内に挿設し、着脱可會ヒにした特
許請求の範囲第1項記載の燃焼制御装置。
(3) The combustion control device according to claim 1, wherein the first gas throttle part is inserted into a pipe connecting the gas amount adjusting means and the second gas throttle part, and is detachable.
(4)  ガス第1絞り部とガス第2絞り部を、ガス種
毎にセットしておき、ガス種転換時には前君己セットを
着脱可能にした特許請求の範囲第1項記載の燃焼制御装
置。
(4) The combustion control device according to claim 1, wherein the first gas throttle part and the second gas throttle part are set for each gas type, and the previous set is detachable when changing the gas type. .
JP58015607A 1983-02-01 1983-02-01 Combustion control device Granted JPS59142329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58015607A JPS59142329A (en) 1983-02-01 1983-02-01 Combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58015607A JPS59142329A (en) 1983-02-01 1983-02-01 Combustion control device

Publications (2)

Publication Number Publication Date
JPS59142329A true JPS59142329A (en) 1984-08-15
JPH0236857B2 JPH0236857B2 (en) 1990-08-21

Family

ID=11893397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58015607A Granted JPS59142329A (en) 1983-02-01 1983-02-01 Combustion control device

Country Status (1)

Country Link
JP (1) JPS59142329A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234218A (en) * 2013-04-23 2013-08-07 台州英达机械科技有限公司 Fuel delivering device of blast burner
US20140124587A1 (en) * 2012-11-05 2014-05-08 Pat Caruso Modulating burner system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140124587A1 (en) * 2012-11-05 2014-05-08 Pat Caruso Modulating burner system
US9528712B2 (en) * 2012-11-05 2016-12-27 Pat Caruso Modulating burner system
CN103234218A (en) * 2013-04-23 2013-08-07 台州英达机械科技有限公司 Fuel delivering device of blast burner

Also Published As

Publication number Publication date
JPH0236857B2 (en) 1990-08-21

Similar Documents

Publication Publication Date Title
JPS59142329A (en) Combustion control device
JPS58224226A (en) Combustion control device
JPS5885016A (en) Combustion control device
JPS60122818A (en) Device for controlling combustion of gas
JPH033848B2 (en)
JPS5969612A (en) Gas combustion control device
JPH033847B2 (en)
JPH0633903B2 (en) Bypass mixing type water heater
JPS58224227A (en) Combustion control device
JPS59125322A (en) Gas combustion controlling device
JPS649525B2 (en)
JPS59212621A (en) Gas combustion controller
JPS59219622A (en) Gas combustion controller
JPS59212622A (en) Gas combustion controller
JPH0456221B2 (en)
JPS61250447A (en) Control of hot-water supplier
JPS6080018A (en) Gas burning control device
JPS5969613A (en) Combustion control device
JPS5997422A (en) Gas combustion control device
JPS6029516A (en) Gas combustion controller
JP3061516B2 (en) Gas water heater
JP4315615B2 (en) Water heater
JPS60211A (en) Gas burning control device
JPH0718588B2 (en) Water heater controller
JPS5997421A (en) Combustion controlling device