JPS5997422A - Gas combustion control device - Google Patents

Gas combustion control device

Info

Publication number
JPS5997422A
JPS5997422A JP57207906A JP20790682A JPS5997422A JP S5997422 A JPS5997422 A JP S5997422A JP 57207906 A JP57207906 A JP 57207906A JP 20790682 A JP20790682 A JP 20790682A JP S5997422 A JPS5997422 A JP S5997422A
Authority
JP
Japan
Prior art keywords
air
gas
differential pressure
output
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57207906A
Other languages
Japanese (ja)
Other versions
JPH0221483B2 (en
Inventor
Hideo Uematsu
英夫 植松
Yoshio Yamamoto
山本 芳雄
Takeshi Natsumeda
棗田 武志
Yoshiyuki Yokoajiro
義幸 横網代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57207906A priority Critical patent/JPS5997422A/en
Publication of JPS5997422A publication Critical patent/JPS5997422A/en
Publication of JPH0221483B2 publication Critical patent/JPH0221483B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/10Regulating fuel supply conjointly with another medium, e.g. boiler water and with air supply or draught
    • F23N1/102Regulating fuel supply conjointly with another medium, e.g. boiler water and with air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/02Measuring filling height in burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/18Groups of two or more valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To make a large adjusting ratio of combustion output and improve a stability in air fuel ratio without increasing the size of blower and valve device by a method wherein an air fuel ratio is controlled to be constant by a differential pressure between both passages of air and gas, respectively. CONSTITUTION:An air passage 11 and a gas passage 12 are provided with an air throat 2 and a gas throat 5 for producing a pressure loss in response to each of the flow rates, their downstream sides are merged to make a common pressure and at the same time a differential pressure sensor 4 for detecting a differential pressure is arranged at the upstream of said two throats and the volume of gas is controlled by a gas volume adjusting means 7G in such a way as the air fuel ratio is made constant in response to an output of the differential pressure sensor. In case that the output from the differential pressure sensor 4 is increased more than the compared reference value corresponding to the air volume, the air volume is controlled by the air adjusting means 16 in preference to the temperature adjusting circuit 15, thereby the value can be controlled and to be corrected even if the gas pressure is decreased and thus a stable combustion condition can always be assured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負荷に応じて燃焼出力を連続可変するととも
に、燃焼用空気量(以下単に空気量という)とガス量の
比(以下空燃比という)をほぼ一定に保ち、燃焼の安定
性と高効率を実現するための特に家庭用燃焼機器に用い
られるガス燃焼制御装置に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention continuously varies the combustion output according to the load, and the ratio of the combustion air amount (hereinafter simply referred to as the air amount) to the gas amount (hereinafter referred to as the air-fuel ratio). The present invention relates to a gas combustion control device used particularly in household combustion equipment to maintain combustion stability and high efficiency by keeping the temperature approximately constant.

従来例の構成とその問題点 従来のこの種のガス燃焼制御装置として、あ1図に示す
均圧弁方式(あるいはゼロガバナ方式)がよく知られて
いる。すなわち送風機1によシ送られた空気は空気絞9
2を経て混合部3へ、ガスは゛均圧弁4、ガス絞シロを
経て混合部3へ入り空気とガスとが混合され、バーナ6
へ導ひかれて燃焼する。    ・ 均圧弁4の背圧室7には空気絞り2の上流の圧力が導ひ
かれており、均圧弁4は均圧弁出口の圧力を背圧室7の
圧力と等しくなる様に自動調節する。
Conventional Structure and Problems The pressure equalizing valve system (or zero governor system) shown in Figure A1 is well known as a conventional gas combustion control device of this type. In other words, the air sent by the blower 1 is passed through the air constriction 9.
2, the gas enters the mixing section 3 through the pressure equalization valve 4 and the gas throttle, where the air and gas are mixed, and the gas is transferred to the burner 6.
It is drawn to and burns. - The pressure upstream of the air throttle 2 is introduced into the back pressure chamber 7 of the pressure equalization valve 4, and the pressure equalization valve 4 automatically adjusts the pressure at the outlet of the pressure equalization valve to be equal to the pressure in the back pressure chamber 7.

ここで空気絞りの上流の圧力をPA、空気量全QA、ガ
ス絞りの上流の圧カ全P。、ガス量をQG、混合部の圧
力ヲPMとすると、空燃比QA/QGはの関係がある。
Here, the pressure upstream of the air restriction is PA, the total air amount QA, and the total pressure upstream of the gas restriction P. , the gas amount is QG, and the pressure of the mixing section is PM, then the air-fuel ratio QA/QG has the following relationship.

均圧弁4が理想的にPG=PAに調節できればとなシ、
QAを変化させても空燃比は常に一定となるはずである
。しかし、均圧弁4はダイアフラム8でPAとPGとの
差圧を受けて弁9を機械的に動かすものであるから、ダ
イアフラムの剛性、変位に伴なうダイアフラムの有効面
積の変化、弁9が受ける均圧弁入口圧力の影響等にょシ
、必ず圧力調節誤差ΔPGを生じる。すなわちPG=P
A+ΔPGであるので、 となり、圧力調節誤差にょる空燃比の変動はPA−PM
の値が小さくなるほど大きくなる。
If the pressure equalizing valve 4 can ideally adjust PG=PA,
Even if QA is changed, the air-fuel ratio should always remain constant. However, since the pressure equalizing valve 4 mechanically moves the valve 9 in response to the differential pressure between PA and PG at the diaphragm 8, the change in the effective area of the diaphragm due to the rigidity of the diaphragm and displacement, Due to the influence of the received pressure equalizing valve inlet pressure, etc., a pressure adjustment error ΔPG will always occur. That is, PG=P
Since A + ΔPG, it becomes , and the fluctuation of air-fuel ratio due to pressure adjustment error is PA - PM
The smaller the value of , the larger it becomes.

したがって、空燃比誤差を一定の範囲内に保ちながら燃
焼出力の調節比を大きくとろうとすれば、PA−PMの
値を大きくするか、ΔPGを小さくしは暖房用の用途で
は燃焼出方の調節比が′/15ないし /10程度必要
である。そのためにPA−PMを大きくすると送風機が
きわめて大きくなるだけでなく、供給圧の低い都市ガス
等ではPAがガス供給圧よシ高くな9実現不可能である
。また、都市ガス以外のガスで実現したとしても、ガス
圧が低下した場合には空燃比制御精度が著しく悪化して
良好な燃焼状態が得られなくなるという問題があった。
Therefore, if you want to increase the control ratio of combustion output while keeping the air-fuel ratio error within a certain range, you must increase the value of PA-PM or decrease ΔPG and adjust the combustion output in heating applications. The ratio must be between '/15 and /10. For this reason, increasing PA-PM not only makes the blower extremely large, but also makes it impossible to realize that PA is higher than the gas supply pressure in the case of city gas, etc., where the supply pressure is low. Further, even if the method is realized using a gas other than city gas, there is a problem in that when the gas pressure decreases, the accuracy of air-fuel ratio control deteriorates significantly, making it impossible to obtain a good combustion state.

更にまたΔPG  を小さくするにも均圧弁の大きさか
ら限度があシ、経時変化の影響、調整の困難さがあるな
ど、家庭用燃焼機器への適用は難しかった。
Furthermore, there are limits to reducing ΔPG due to the size of the pressure equalizing valve, the effects of aging, and difficulty in adjustment, making it difficult to apply to household combustion equipment.

発明の目的 本発明は上記従来の問題を解消するもので、送風機や弁
装置を大型化することなく、燃焼出力の調節比が大きく
、かつ空燃比安定性に優れたガス燃焼制御装置を提供す
ることを目的とするものである。
Purpose of the Invention The present invention solves the above-mentioned conventional problems, and provides a gas combustion control device that has a large combustion output adjustment ratio and excellent air-fuel ratio stability without increasing the size of the blower or valve device. The purpose is to

発明の構成 この目的を達成するために本発明は、空気側通路とガス
側通路にそれぞれの流量に応じた圧力損失を生じさせる
空気絞りとガス絞りk設け、その下流側を合流して共通
圧力にするとともに、前記二つの絞シ上流側の圧力を、
圧力差に応じて電気信号を発生する差圧センサに導ひく
とともに被加熱体の温度を検出する温度検出器と、温度
設定器と、前記温度検出器の信号と前記温度設定器の信
号との差を増幅演算する温度調節回路と、前記差圧セン
サの出力の絶対値が一定値以上のとき出力を発生する差
圧比較器を有し、前記温度調節回路の出力で前記空気絞
り上流に設けられた空気量調節手段を制御し、かつ前記
差圧センサの出力に応じてガス絞り上流に設けられたガ
ス量調節手段を制御するとともに、前記差圧比較器の出
力が発生した時は、前記温度調節回路に優先して差圧セ
ンサの信号に応じた前記空気量調節手段を制御するよう
に構成したものである。
Structure of the Invention In order to achieve this object, the present invention provides an air constriction and a gas constriction k that produce pressure loss in accordance with the respective flow rates in the air side passage and the gas side passage, and merges the downstream sides thereof to create a common pressure. At the same time, the pressure on the upstream side of the two throttles is
a temperature detector that is guided to a differential pressure sensor that generates an electrical signal in response to a pressure difference and detects the temperature of the heated object; a temperature setting device; and a signal of the temperature sensor and a signal of the temperature setting device. A temperature control circuit that amplifies and calculates the difference, and a differential pressure comparator that generates an output when the absolute value of the output of the differential pressure sensor is equal to or higher than a certain value, and is provided upstream of the air throttle with the output of the temperature control circuit. and controls the gas amount adjusting means provided upstream of the gas throttle according to the output of the differential pressure sensor, and when the output of the differential pressure comparator is generated, The air amount adjusting means is configured to be controlled in accordance with the signal from the differential pressure sensor with priority over the temperature adjusting circuit.

この構成によって、空気側、ガス側二つの絞シ上流側の
差圧を検出する差圧センサを備え、この差圧センサ出力
に応じて空燃比が一定になるようにガス量をガス量調節
手段によって制御し、差圧センサの出力が空気量に対応
した比較基準値よシも大きくなった場合には、温度調節
回路に優先して、空気量を空気量調節手段で制御するこ
とでガス圧が低下した場合でも、空燃比を補正制御する
ので、常に安定した燃焼状態を可能にする。
With this configuration, it is equipped with a differential pressure sensor that detects the differential pressure upstream of the two restrictors on the air side and the gas side, and the gas amount adjusting means adjusts the gas amount so that the air-fuel ratio is constant according to the output of this differential pressure sensor. If the output of the differential pressure sensor becomes larger than the comparison reference value corresponding to the air amount, the air amount is controlled by the air amount adjusting means, giving priority to the temperature control circuit, and the gas pressure is increased. Even if the air-fuel ratio decreases, the air-fuel ratio is corrected and controlled, making it possible to maintain a stable combustion condition at all times.

実施例の説明 以下、本発明の一実施例を第2図〜第4図の図面を用い
て説明する。なお、第2図中、第1図と同一部品につい
ては同一番号を付している。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 2 to 4. In FIG. 2, parts that are the same as those in FIG. 1 are given the same numbers.

第2図において、4は差圧センサ、7Gはガス圧力比例
制御弁等のガス量調節手段(以下7Gヲガス圧力比例制
御弁と呼ぶ)、7Aはダンパ等の空気量調節手段、8は
熱交換器、9は出湯管、10は出湯管上に設置されてい
るサーミスタ等の温度検出器であシ、11及び12はそ
れぞれガス側通路及び空気側通路である。そして、電気
制御系として、温度検出器1oの信号に応じて1の送風
機を制御する為に、13の温度検出回路、14の温度設
定器、15の温度調節回路、16の空気量調節手段回路
から構成すると共に、4の差圧センサの出力に応じて7
Gのガス圧力比例制御弁を制御する為に17の差圧セン
サ検出回路、18の空燃比調節回路で構成し、更に1.
ガス圧が低下した場合に空燃比が許容範囲を越えないよ
うに制御する為の手段として、差圧比較器19で構成し
ている。
In Fig. 2, 4 is a differential pressure sensor, 7G is a gas amount adjusting means such as a gas pressure proportional control valve (hereinafter referred to as 7G gas pressure proportional control valve), 7A is an air amount adjusting means such as a damper, and 8 is a heat exchanger. 9 is a hot water outlet pipe, 10 is a temperature detector such as a thermistor installed on the hot water outlet pipe, and 11 and 12 are a gas side passage and an air side passage, respectively. As an electrical control system, 13 temperature detection circuits, 14 temperature setting devices, 15 temperature adjustment circuits, and 16 air volume adjustment means circuits are used to control the 1 blower according to the signal from the temperature detector 1o. 7 according to the output of the 4 differential pressure sensors.
In order to control the gas pressure proportional control valve G, it is composed of 17 differential pressure sensor detection circuits, 18 air-fuel ratio adjustment circuits, and 1.
A differential pressure comparator 19 is used as a means for controlling the air-fuel ratio so that it does not exceed a permissible range when the gas pressure decreases.

第3図のイに於いて、五B’BCの直線は異常なガス圧
低下のない場合の空気過剰率(mとする)一定(本−実
施例の場合にはm=1.2)の空燃比制御特性を示して
いる。
In Fig. 3 A, the straight line of 5B'BC shows the constant air excess ratio (m) (m=1.2 in this example) when there is no abnormal gas pressure drop. It shows the air-fuel ratio control characteristics.

BDICの直線、及びB’ D′に’の直線は異常なガ
ス圧低下が発生した場合に空気量がA1からム2へある
いはA′1からA′2へ増加しても、ガス量が、GLあ
るいはG′LJニジ増加しない状態を示している。
The straight line of BDIC and the straight line of B' and D' indicate that even if the air volume increases from A1 to M2 or from A'1 to A'2 when an abnormal gas pressure drop occurs, the gas volume will not change. This shows a state in which GL or G'LJ does not increase.

そして、OD’ Dを結ぶ直線は、空気過剰率mが1−
1:1.2よシ大きく(本−実施例ではm=1.(3)
かつ、バーナの燃焼特性等から決定される安定燃焼域限
界付近にある空燃比制御特性を示す。逆に。
Then, the straight line connecting OD' D has an excess air ratio m of 1-
1: larger than 1.2 (m=1.(3) in this example)
In addition, it shows air-fuel ratio control characteristics near the limit of the stable combustion range determined from the combustion characteristics of the burner. vice versa.

D点及びV点は、燃焼出力が変化した場合でも、空燃比
が等しい点を示している。
Point D and point V indicate points where the air-fuel ratio is the same even when the combustion output changes.

また、第3図の口及びハはこのような場合に、空気量に
対応して発生する差圧比較器の出力及び差圧センサの出
力の状況を示している。
Further, in such a case, the output of the differential pressure comparator and the output of the differential pressure sensor are shown in FIG.

第4図は、本発明の一実施例としてガス給湯機器に応用
した場合に於ける給湯能力特性図を示している。
FIG. 4 shows a hot water supply capacity characteristic diagram when the present invention is applied to a gas hot water supply device as an embodiment of the present invention.

上記構成に於いてすでに、ノ(−す6には点火され、そ
して出湯管9から流れでる出湯量が第4図におけるWM
INである時に丁度第3図に於けるイのA点で制御され
ているものとする。(すなわち、この状態は、燃焼可変
範囲の最小の状態であって空気量はAMIN ’ガス量
はGMINに制御されている)このような状態から温度
設定器14 ’k TMA!そのままにしておいて、出
湯量を増加させていくと出湯温度が一時降下するように
作用するので、13の温度検出回路と14の温度設定器
との間に温度偏差信号ΔTが発生する。そして、この温
度偏差信号ΔTは15の温度調節回路、16の空気量調
節手段回路で処理されて、1の送風機からの空気量を増
大させるように制御する。空気量力玉亥1j々変化する
このような状態では、4の差圧センサに、差圧が発生す
るので、この差圧を差圧センサ検出回路17及び、空燃
比調節回路18で電気的に処理して、差圧センサ4に作
用している差圧カニ零になるように70のガス圧力比例
制御弁力)らの流量を増加させるように制御する。
In the above configuration, the nozzle 6 is already ignited, and the amount of hot water flowing out from the hot water tap 9 is equal to WM in FIG.
Assume that the control is exactly at point A in FIG. 3 when it is IN. (In other words, this state is the minimum state of the combustion variable range, and the air amount is controlled to AMIN' and the gas amount is controlled to GMIN.) From this state, the temperature setting device 14'k TMA! If the amount of hot water left as it is is increased, the temperature of hot water temporarily drops, so a temperature deviation signal ΔT is generated between the temperature detection circuit 13 and the temperature setting device 14. This temperature deviation signal ΔT is processed by a 15 temperature control circuit and a 16 air volume control means circuit to control the air volume from the 1 blower to be increased. In such a state where the air quantity and force are constantly changing, a differential pressure is generated in the differential pressure sensor 4, so this differential pressure is electrically processed by the differential pressure sensor detection circuit 17 and the air-fuel ratio adjustment circuit 18. Then, the flow rate of the gas pressure proportional control valve 70 is increased so that the differential pressure acting on the differential pressure sensor 4 becomes zero.

この時、第3図イに於いて空燃比一定のI11御すなわ
ちAからC方向にむかうはソ直線に沿ったfftl制御
になる。
At this time, in FIG. 3A, I11 control with a constant air-fuel ratio, that is, fftl control along the straight line from A to C direction is performed.

また、第4図に於いては、eからe′にむ力λう線上で
、出湯温度がは’: TMAx一定に制御されている。
Further, in FIG. 4, the outlet temperature is controlled to be constant TMAXx on the force λ deflection line from e to e'.

さらにまた、湯量を机ム、になるように絞りさらに温度
設定器14をTMIN Kなるように設定すると、第4
図のfの状態を維持する。そして、この状態から出湯量
を徐々に”MAX迄増力口させると前記eからe′に制
御された場合と同じように、出湯温度がTMINをはy
維持しつ\、fd・らf′の状態まで制御される。
Furthermore, if the amount of hot water is reduced to TMIN K, and the temperature setting device 14 is set to TMIN K, the fourth
Maintain the state f in the figure. Then, when the hot water output amount is gradually increased from this state to MAX, the hot water temperature will rise below TMIN, just as in the case where the control was from e to e'.
is maintained and controlled to the state of fd.f'.

この状態を第3図イにもとづいて説明するとACiの線
上に沿って、最大定格値Cの状態、すなわち空気量がA
MAXガス量がGMAXの状態まで空燃比一定で制御さ
れることになる。
To explain this state based on Fig. 3A, the maximum rated value C is reached along the line ACi, that is, the air amount is A.
The air-fuel ratio is controlled to be constant until the MAX gas amount reaches the GMAX state.

逆にe′やf’−またはその中間の状態から出湯 景 
   −を減少させたシ、最低制御温度”MIN以上の
状態から14の温度設定器で設定温度を低くした場合に
は逆に、送風機1は空気量を減少するように制御され、
第2図におけるPAの圧力が低下する方向に作用するの
で差圧センサ4に差圧が発生する。
On the other hand, from e', f'- or an intermediate state,
Conversely, when the set temperature is lowered using the temperature setting device 14 from a state where the minimum control temperature "MIN" is lowered, the blower 1 is controlled to reduce the amount of air;
Since the pressure of PA in FIG. 2 acts in a decreasing direction, a differential pressure is generated in the differential pressure sensor 4.

したがって、この差圧が零になるように7のガス圧力比
例制御弁はガス量を減少するように自動制御される。
Therefore, the gas pressure proportional control valve 7 is automatically controlled to reduce the gas amount so that this differential pressure becomes zero.

以上がガス圧低下のない正常な制御状態に於ける作用の
説明である。周知の如く家庭用のガス燃焼機器に使われ
ているガス種は、都市ガス、天然ガス、プロパンガス等
で代表さ九る。これらのいづれのガスも供給ガス圧が規
定されており、例えばt都市ガスの場合には、標準ガス
圧100.HO2 最低ガス圧50fiH20最高ガス圧200 rrrm
 R20と規定されている。
The above is an explanation of the operation in a normal control state where there is no drop in gas pressure. As is well known, the types of gases used in household gas combustion appliances include city gas, natural gas, propane gas, etc. The supply gas pressure for each of these gases is specified; for example, in the case of t city gas, the standard gas pressure is 100. HO2 Minimum gas pressure 50fiH20 Maximum gas pressure 200rrrm
It is specified as R20.

燃焼機器の設計は最低ガス圧の時でも燃焼機器として規
定されている燃焼特性、給湯能力等が十分満足されるよ
うに配慮されていることは勿論である。
It goes without saying that the combustion equipment is designed so that the combustion characteristics, hot water supply capacity, etc. specified for the combustion equipment are fully satisfied even at the lowest gas pressure.

ところが、今第3図に於けるAB綾線上中間の出力を増
加させようとすると、空気量QAFi、A、。
However, if we try to increase the output in the middle of the AB twill line in FIG. 3, the air amount QAFi,A.

A2.A3と増加するがガス量はB点に於けるGLよシ
増加しないので空燃比制御特性は、ABC線上に沿わな
いでB点から折り曲がシ、ABDEのように制御される
ことになる。つまり、ガス量が不足して空燃比が増加す
るようになる。
A2. Although the gas amount increases to A3, the gas amount does not increase as much as GL at point B, so the air-fuel ratio control characteristic is controlled not along line ABC but from point B to ABDE. In other words, the amount of gas becomes insufficient and the air-fuel ratio increases.

−万、このような状態にあるとき、燃焼出力を可変させ
ると、AB、IJ上では所定の空燃比で制御されている
ので差圧センサ4の出力は零になるように制御されるの
で、a1〜a2の線に沿い、又差圧比較器19からの出
方はb1〜b2の線に沿って(すなわち見かけ上出力零
の状態〕制御される。
- In such a situation, if the combustion output is varied, the output of the differential pressure sensor 4 will be controlled to be zero since AB and IJ are controlled at a predetermined air-fuel ratio. The output from the differential pressure comparator 19 is controlled along the line a1 to a2, and along the line b1 to b2 (that is, an apparent state of zero output).

そして、ガス圧が低下している制御域B−Dに入いると
、差圧センサ4からa2〜a3線上に沿う出力が光生じ
、黄にD点から空気量が増加すると、a3〜84線上に
沿う出力が発生する。このときDEO線に沿って更に空
燃比が増加する方向に変ろうとするが、一方、D点を越
えて、すなわち空気量が、A2から増加しようとすると
、差圧センサ4の出力が空気量A2によって足首る比較
基準値a6の点を越えるので、差圧比較器19からb6
〜b4線上に沿った出力が発生する。このような場合に
は圧力センサ4の出力または差圧比較器19の出力によ
り温度調節回路15に優先して送風機10回転数を減少
させるように、すなわちE点からD点へひき戻すように
制御するものである。
When the gas pressure enters the control range B-D where it is decreasing, the differential pressure sensor 4 generates an output along the lines a2 to a3, and when the air amount increases from point D to yellow, it is on the lines a3 to 84. Output along the lines will be generated. At this time, the air-fuel ratio tries to further increase along the DEO line, but on the other hand, when it exceeds point D, that is, when the air amount tries to increase from A2, the output of the differential pressure sensor 4 changes to the air amount A2. Since the point of comparison reference value a6 is exceeded, the differential pressure comparator 19 to b6
An output along the line ~b4 is generated. In such a case, the output of the pressure sensor 4 or the output of the differential pressure comparator 19 is used to control the temperature control circuit 15 so as to reduce the number of revolutions of the blower 10, that is, to return it from point E to point D. It is something to do.

また、上記の場合よりも低燃焼域で、ガス圧が低下して
し甘い、第3図イのG′1.よシガス量が増大しない場
合には、同様にして、その空燃比制御特性は、B′点か
ら哲り曲がり、A B′D’ E’のように制御されよ
うとするが、この場合にもE′点が許容空燃比の限界値
m=16よりも増大する方向にあるので空気量A;に対
応した比較基準値a′6点を越えると同様にして圧力セ
ンサ4の出力または差圧比較器19の出力により、温度
調節回路16に優先して、E′点からD′点へすなわち
m=1.6になるように制御されるものである。
Furthermore, G'1 in Fig. 3A, where the gas pressure decreases more easily in the low combustion range than in the case described above. Similarly, if the amount of exhaust gas does not increase, the air-fuel ratio control characteristic curves from point B' and attempts to be controlled as A B'D'E', but in this case also. Since point E' is in the direction of increasing more than the limit value m = 16 of the allowable air-fuel ratio, when the comparison reference value a' corresponding to the air amount A exceeds the point 6, the output of the pressure sensor 4 or the differential pressure is compared in the same way. The temperature control circuit 19 gives priority to the output of the temperature control circuit 16 and controls the temperature from point E' to point D', that is, m=1.6.

ガス圧が異常に低下する場合として、供給圧そのものが
低下する以外に次のものがある。すなわち燃焼機器の排
気系路の圧力が強風等の為に上昇すると、ガス量が減少
するので、供給ガス圧が低下した場合と同じになる。
In addition to a drop in the supply pressure itself, cases where the gas pressure drops abnormally include the following: That is, if the pressure in the exhaust system of the combustion equipment increases due to strong winds or the like, the amount of gas decreases, which is the same as when the supply gas pressure decreases.

このように、ガス燃焼機器の力で供給圧が低下した場合
に、差圧センサ4の出力が空気量によって定まる比較基
準値を越えると、差圧比較器19の出力により空気量を
減少させるような出力を送風機1に与えることで燃焼可
変範囲全域にわたって許容空燃比の上限値すなわちm=
=1.6i越えることがないような制御が可能になる。
In this way, when the supply pressure is reduced by the force of the gas combustion equipment and the output of the differential pressure sensor 4 exceeds the comparison reference value determined by the air amount, the output of the differential pressure comparator 19 is used to reduce the air amount. The upper limit of the allowable air-fuel ratio, that is, m =
= 1.6i is not exceeded.

したがって−酸化炭素が許容限界値以上発生したり、異
常燃焼音が発生したりあるいは燃焼炎が吹消えしたシす
ることがなくなる。
Therefore, there is no possibility that carbon oxides will be generated in excess of the permissible limit, that abnormal combustion noises will be generated, or that the combustion flame will not blow out.

発明の効果 以上のように、本発明のガス燃焼制御装置によれば、次
の効果が得られるものである。
Effects of the Invention As described above, the gas combustion control device of the present invention provides the following effects.

空気側及びガス側の両通路に空気絞り及びガス絞りを設
け、その下流側を合流して共通圧力にするとともに、前
記二つの絞シ上流側の圧力を差圧センサで検出し、燃焼
出力に対応して発生する差圧センサの出力で、空燃比が
一定になるように制御するので、従来のような機械式の
均圧弁制御に比較して圧力調節誤差が小さくなシ燃焼制
御精度が向上するはかりでなく、差圧センサの差圧を小
さくして制御することが出来るので、送風機等が小型化
され、かつ都市ガス等の供給ガス圧が低い場合の家庭用
燃焼機器への適用を可能にするものである。
An air throttle and a gas throttle are installed on both the air side and gas side passages, and the downstream sides of these are merged to create a common pressure.The pressure upstream of the two throttles is detected by a differential pressure sensor, and the combustion output is adjusted. Since the air-fuel ratio is controlled to be constant using the output of the corresponding differential pressure sensor, the pressure adjustment error is smaller compared to conventional mechanical pressure equalization valve control, and combustion control accuracy is improved. Since it is possible to control by reducing the differential pressure of a differential pressure sensor instead of using a scale, it can be applied to household combustion equipment where blowers, etc. are downsized and the supply gas pressure, such as city gas, is low. It is something to do.

そしてまた、差圧センサの出力が空気量に対応した比較
基準値以上のとき出力を発生する差圧比較器を備えたこ
とによシ、供給ガス圧が低下したシ、燃焼機器に強風が
作用した場合でも、ガス量調節手段に優先して空気量調
節手段を制御するようにしたことによシ燃焼可変範囲全
域にわたって″ 許容空燃比の上限値を越えることがな
いように制御できる。したがって、常に燃焼状態を安定
させることが出来るので安全性の高い燃焼機器の実現を
可能にするものである。
Furthermore, by installing a differential pressure comparator that generates an output when the output of the differential pressure sensor is equal to or higher than the comparison reference value corresponding to the air amount, it is possible to prevent the supply gas pressure from decreasing and the combustion equipment to be affected by strong winds. Even in such a case, by controlling the air amount adjusting means with priority over the gas amount adjusting means, it is possible to control the air-fuel ratio so as not to exceed the upper limit of the allowable air-fuel ratio over the entire variable combustion range. Since the combustion state can always be stabilized, it is possible to realize highly safe combustion equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガス燃焼制御装置の構成説明図。 第2図は本発明のガス燃焼制御装置の一実施例を示す構
成及びブロック説明図、第3図は本発明の上記一実施例
に於ける制御動作説明図、第4図は本発明上記一実施例
に於けるガス給湯機器の給湯能力特性図であ暮。 1・・・・・・送風機、2・・・・・・空気数シ、3・
・・・・・混合部。 4・・・・・・差圧センサ、6・・・・・・ガス絞9.
6・・・・・・バーナ、7G・・・・・・ガス量調節手
段、7A−1,、、空気量調節手段、10・・・・・・
温度検出器、11・・・・・・ガス側通路、12・・・
・・・空気側通路、14・・・・・・温度設定器、15
・・・・・・温度調節回路、19・・・・・・差圧比較
器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 2 図 第3図 第4図
FIG. 1 is an explanatory diagram of the configuration of a conventional gas combustion control device. Fig. 2 is a configuration and block explanatory diagram showing one embodiment of the gas combustion control device of the present invention, Fig. 3 is an explanatory diagram of control operation in the above embodiment of the present invention, and Fig. 4 is an explanatory diagram of the control operation in the above embodiment of the present invention. This is a characteristic diagram of the hot water supply capacity of the gas hot water supply equipment in the example. 1...Blower, 2...Number of air, 3.
...Mixing section. 4... Differential pressure sensor, 6... Gas throttle 9.
6...Burner, 7G...Gas amount adjustment means, 7A-1, Air amount adjustment means, 10...
Temperature detector, 11...Gas side passage, 12...
... Air side passage, 14 ... Temperature setting device, 15
...Temperature control circuit, 19...Differential pressure comparator. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 空気側通路には燃焼用空気を供給する送風機と空気量調
節手段と空気絞りとを、ガス側通路にはガス量調節手段
とガス絞9を^己設し、この空気絞りとガス絞シとの下
流を合流して空気とガスを混合する混合部と、前記空気
絞シの上流とガス絞りの上流との圧力差に対応した電気
信号を発生する差圧センサを具備す仝と共綽、バーナに
より加熱される被加熱体の温度を検出する温度検出器と
、被加熱体の出口温度を設定する温度設定器と、前記温
度検出器の信号と前記温度設定器の信号との差を増巾演
算する温度調節回路と、前記差圧センサの出力の絶対値
が空気量に対応した比較基準値以上のとき出力を発生す
る差圧比較器を有し、前記温度調節回路からの出力で前
記空気量調節手段を制御し、かつ、前記差圧センサの出
力に応じて前記ガス量調節手段を制御するとともに、前
記差圧比較器の出力が発生した時は、前記温度調節回路
に優先して前記差圧センサの信号に応じて前記空気量調
節手段を制御するガス燃焼制御装置。
The air side passage is equipped with a blower for supplying combustion air, an air volume adjustment means, and an air throttle, and the gas side passage is equipped with a gas volume adjustment means and a gas throttle 9. a mixing unit that mixes air and gas by merging downstream of the air throttle, and a differential pressure sensor that generates an electric signal corresponding to the pressure difference between the upstream of the air throttle and the upstream of the gas throttle; A temperature detector that detects the temperature of the object to be heated heated by the burner, a temperature setting device that sets the outlet temperature of the object to be heated, and an increase in the difference between the signal of the temperature detector and the signal of the temperature setting device. It has a temperature adjustment circuit that calculates the width, and a differential pressure comparator that generates an output when the absolute value of the output of the differential pressure sensor is equal to or higher than a comparison reference value corresponding to the air amount, and the output from the temperature adjustment circuit controls the air amount adjusting means, and controls the gas amount adjusting means according to the output of the differential pressure sensor, and when the output of the differential pressure comparator is generated, it takes priority over the temperature adjusting circuit. A gas combustion control device that controls the air amount adjusting means according to a signal from the differential pressure sensor.
JP57207906A 1982-11-27 1982-11-27 Gas combustion control device Granted JPS5997422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57207906A JPS5997422A (en) 1982-11-27 1982-11-27 Gas combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207906A JPS5997422A (en) 1982-11-27 1982-11-27 Gas combustion control device

Publications (2)

Publication Number Publication Date
JPS5997422A true JPS5997422A (en) 1984-06-05
JPH0221483B2 JPH0221483B2 (en) 1990-05-15

Family

ID=16547524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207906A Granted JPS5997422A (en) 1982-11-27 1982-11-27 Gas combustion control device

Country Status (1)

Country Link
JP (1) JPS5997422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887590A1 (en) * 1997-06-27 1998-12-30 Compagnie Europeenne Pour L'equipement Menager "Cepem" Total premixing type gas burner for domestic cooking

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887590A1 (en) * 1997-06-27 1998-12-30 Compagnie Europeenne Pour L'equipement Menager "Cepem" Total premixing type gas burner for domestic cooking
FR2765313A1 (en) * 1997-06-27 1998-12-31 Europ Equip Menager TOTAL PREMIX GAS BURNER FOR DOMESTIC COOKING

Also Published As

Publication number Publication date
JPH0221483B2 (en) 1990-05-15

Similar Documents

Publication Publication Date Title
JP2008057841A (en) Boiler and combustion method for boiler
JPS5997422A (en) Gas combustion control device
JPS5843655B2 (en) combustion device
JPS5969612A (en) Gas combustion control device
JPS59125322A (en) Gas combustion controlling device
EP3150916B1 (en) Complex heat source apparatus
JPS63286614A (en) Combustion control of boller
JPH033848B2 (en)
JP7073025B1 (en) Combustion equipment
JPS6029516A (en) Gas combustion controller
JPH033847B2 (en)
EP1029199B1 (en) Space heating appliances
JPS6091132A (en) Controller of gas combustion
JPS59219622A (en) Gas combustion controller
JP7413145B2 (en) combustion device
JPS646363B2 (en)
JPS59142329A (en) Combustion control device
JPS6026219A (en) Gas combustion controller
JP2021025722A (en) Premixing device
JP7257898B2 (en) Oxygen ratio control system
US20230112151A1 (en) Premixing Apparatus
JP2946279B2 (en) Control method of gas combustion device and gas combustion device
JP2669662B2 (en) Water heater control device
JPS6014974B2 (en) Forced supply/exhaust type combustion device
JPH0223766B2 (en)