JPS59130695A - Optical working device - Google Patents

Optical working device

Info

Publication number
JPS59130695A
JPS59130695A JP58003367A JP336783A JPS59130695A JP S59130695 A JPS59130695 A JP S59130695A JP 58003367 A JP58003367 A JP 58003367A JP 336783 A JP336783 A JP 336783A JP S59130695 A JPS59130695 A JP S59130695A
Authority
JP
Japan
Prior art keywords
processing
auxiliary energy
working
plasma
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58003367A
Other languages
Japanese (ja)
Other versions
JPH0258038B2 (en
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP58003367A priority Critical patent/JPS59130695A/en
Priority to US06/641,979 priority patent/US4689467A/en
Priority to EP19840900108 priority patent/EP0129603A4/en
Priority to PCT/JP1983/000441 priority patent/WO1984002296A1/en
Publication of JPS59130695A publication Critical patent/JPS59130695A/en
Publication of JPH0258038B2 publication Critical patent/JPH0258038B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • B23K26/128Laser beam path enclosures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding

Abstract

PURPOSE:To enable effective heating by auxiliary energy by using a laser oscillator for working and an auxiliary energy supply device in combination and irradiating the preceding position of the point irradiated with main laser light by means of the auxiliary energy at all times. CONSTITUTION:The object 18 to be worked on a cross table 19 is irradiated with the laser light from a laser oscillator 1 via a working gas ejecting port 8a of a casing 8. A rotary plate 13 is attached freely turnably to the mounting seat 14 of the casing 8 and a plasma gun 10 is attached to the plate 13 and is so provided that the plasma emitted by the same irradiates always the preceding position in the direction where working progresses with respect to the point where the irradiation with the laser light is executed. A numerical control circuit 25 controls motors 23, 24 to command the direction where the working of the object 18 progresses; at the same time, said circuit controls a motor 17 in accordance with the direction where the working progresses to rotate the plate 13 so that the plasma from the gun 10 is irradiated to the position always precedent from the irradiating point of the laser light and the working is thus accomplished.

Description

【発明の詳細な説明】 本発明は主加工レーザ発振器と補助エネルギ供給装置と
を併用して加工する光加工装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical processing apparatus that performs processing using both a main processing laser oscillator and an auxiliary energy supply device.

従来公知の上記の光加工装置は加工用レーザ光と補助エ
ネルギを被加工物の同一の照射点に集めて加工するもの
であり、被加工物を加工用レーザ光の照射点に対して相
対的に移動させながら加工する場合、例えば切断加工や
溶接加工を行う際には、補助エネルギによる加熱が加工
用レーザ光による加工に対して効果的に行われないとい
う問題点があった。
The above-mentioned conventionally known optical machining equipment focuses processing laser light and auxiliary energy on the same irradiation point of the workpiece, and processes the workpiece relative to the irradiation point of the processing laser light. When machining is performed while moving the workpiece, for example when performing cutting or welding, there is a problem in that heating by auxiliary energy is not effective against machining by a machining laser beam.

補助エネルギは、主として被加工物を一定の温度にまで
加熱して加工用レーザ光による加工を補助するために設
けるものであるが、補助エネルギの照射によって加熱さ
れる部分は一定の広がりを持つため、被加工物が加工用
レーザ光の照射点に対して相対的に移動している場合、
補助エネルギが照射される部分の加工進行方向に於ける
後方部位の方が前方部位に比べてiL1i温となる。
Auxiliary energy is mainly provided to heat the workpiece to a certain temperature to assist processing with the processing laser beam, but since the area heated by irradiation with the auxiliary energy has a certain extent. , when the workpiece is moving relative to the irradiation point of the processing laser beam,
The temperature of the rear part in the direction of processing progress of the part irradiated with the auxiliary energy is iL1i higher than that of the front part.

このことは、エネルギの空費となるばかりでなく、加工
歪を生じる原因ともなるので不都合である。
This is inconvenient because it not only wastes energy but also causes machining distortion.

本発明は斜上の観点に立ってなされたものであり、その
目的とするところは、補助エネルギによる加熱を効果的
に行い、装置のユネルギ効率及び加工精度を高めること
にある。
The present invention has been developed from the perspective of diagonal use, and its purpose is to effectively perform heating using auxiliary energy and to improve the energy efficiency and processing accuracy of the device.

而して、その要旨とするところは、補助エネルギを発生
する補助エネルギ供給装置を加工用レーザ光の光軸を中
心として回動自在に取り付け、その位置及び姿勢を制御
装置により制御して補助エネルギが常に加工用レーザ光
の照射点の加工進行方向における先行部位に照射される
よう構成することにある。
The gist of this is that an auxiliary energy supply device that generates auxiliary energy is rotatably mounted around the optical axis of a processing laser beam, and its position and orientation are controlled by a control device to generate auxiliary energy. The object of the present invention is to always irradiate a preceding part in the processing progress direction of the irradiation point of the processing laser light.

以下図面に基づいて本発明の構成の詳細を説明する。The details of the configuration of the present invention will be explained below based on the drawings.

第1図は本発明にががる光加工装置の一実施例を示す説
明図、第2図はプラズマの照射位置と主加工レーザ光の
照射点の位置関係を示す説明図である。
FIG. 1 is an explanatory diagram showing an embodiment of the optical processing apparatus according to the present invention, and FIG. 2 is an explanatory diagram showing the positional relationship between the plasma irradiation position and the irradiation point of the main processing laser beam.

第1図中、1はレーザ発振器、2は反射板、3は反射板
取付部材、4は冷却用配管系、5は冷却水等の冷媒供給
装置、6はレンズ、7はレンズ固定部材、 8はケーシ
ング、9は加工用ガス供給口、10はプラズマガン、1
1はプラズマガス供給管、12はプラズマガン取付部材
、13は回転盤、14は回転盤取付座、15はクラウン
ギア、16はビニオンギア、17.23.24はモータ
、18は被加工物、19はクロステーブル、20はX軸
方向移動テーブル、21はY軸方向移動テーブル、22
は基台、25は数値制御装置である。
In FIG. 1, 1 is a laser oscillator, 2 is a reflector, 3 is a reflector mounting member, 4 is a cooling piping system, 5 is a coolant supply device such as cooling water, 6 is a lens, 7 is a lens fixing member, 8 is a casing, 9 is a processing gas supply port, 10 is a plasma gun, 1
1 is a plasma gas supply pipe, 12 is a plasma gun mounting member, 13 is a rotating disk, 14 is a rotating disk mounting seat, 15 is a crown gear, 16 is a pinion gear, 17, 23, 24 is a motor, 18 is a workpiece, 19 is a cross table, 20 is an X-axis moving table, 21 is a Y-axis moving table, 22
25 is a base, and 25 is a numerical control device.

本実施例に於ては、補助エネルギ供給装置としてプラズ
マ発生装置を用いたが、これは、アーク放電や高周波パ
ルス放電等の放電装置、加工屑レーザ発振器とは別異の
レーザ発振器を用いることもできる。
In this example, a plasma generator was used as the auxiliary energy supply device, but a discharge device such as an arc discharge or high-frequency pulse discharge, or a laser oscillator different from the machining waste laser oscillator may also be used. can.

レーザ発振器lには気体レーザ、液体レーザ、固体レー
ザ、半導体レーザのいずれをも用いることができ、Qス
イッチ法によってパルス状発振として出力を高めること
ができる。また、レーザ光のエネルギ密度の大きざはレ
ーザ発振器Iに接続された図示しない制御装置によって
制御される。
Any of a gas laser, a liquid laser, a solid laser, and a semiconductor laser can be used as the laser oscillator l, and the output can be increased as pulsed oscillation by the Q-switch method. Further, the magnitude of the energy density of the laser beam is controlled by a control device (not shown) connected to the laser oscillator I.

反射板2はケーシング8に固定された反射板取付部材3
に取付けられ、レーザ発振器1から発せられたレーザ光
の光軸に対して45度の角度をなすよう構成し、レーザ
光の光路を90度変更せしめる。
The reflector 2 is a reflector mounting member 3 fixed to the casing 8.
It is attached to the laser oscillator 1 and is configured to form an angle of 45 degrees with respect to the optical axis of the laser beam emitted from the laser oscillator 1, thereby changing the optical path of the laser beam by 90 degrees.

冷却用配管系4は反射板取付部材3内に引き込まれ、冷
媒供給装置5によって冷却水が供給されて反射板2及び
反射板取付は部材3を冷却する。
The cooling piping system 4 is drawn into the reflector mounting member 3, and cooling water is supplied by the coolant supply device 5 to cool the reflector 2 and the reflector mounting member 3.

ケーシング8は中空の筐体であり、その中央部の円筒の
中心軸は反射板2に反射されたレーザ光の光軸と一致す
るよう構成され、その一端部はテーバ状に形成されてお
り、先端には加工ガス喰出口8aが設けられている。
The casing 8 is a hollow housing, and the central axis of the cylinder in the center thereof is configured to coincide with the optical axis of the laser beam reflected by the reflection plate 2, and one end thereof is formed in a tapered shape. A processing gas intake outlet 8a is provided at the tip.

レンズ6は反射板2に反射したレーザ光を集束して被加
工物】8の加工点に集める。
A lens 6 focuses the laser beam reflected by the reflection plate 2 and collects it at a processing point on the workpiece 8.

レンズ固定部材7はレンズ6の焦点が被加工物】8の加
工点と一致するよう位置ぎめされてケーシング8に取付
けられる。
The lens fixing member 7 is positioned and attached to the casing 8 so that the focal point of the lens 6 coincides with the processing point of the workpiece [8].

ここで、ケーシング8が、被加工物18との対向方向に
位置を固定して用いられる構成のものに於ては、レンズ
6を上記対向方向にプログラム指令等に応じて制御移動
可能に構成することがあるが、通常は上記ケーシング8
又はクロステーブル19を上記対向方向に制御移動させ
るように構成して切断加工中等のレーザ光の被加工物1
8厚さ方向の集中焦点を変更制御する。
Here, in the case where the casing 8 is used with its position fixed in the direction opposite to the workpiece 18, the lens 6 is configured to be able to be controlled and moved in the direction opposite to the workpiece 18 according to a program command, etc. However, usually the above casing 8
Alternatively, the cross table 19 is configured to move in a controlled manner in the above-mentioned opposing direction, and the workpiece 1 is subjected to laser beam cutting or the like.
8. Change and control the concentration focus in the thickness direction.

また、レンズ6及びレンズ固定部材7はケーシング8内
に供給される加工用ガスをシールする耐圧部材を兼ねる
Further, the lens 6 and the lens fixing member 7 also serve as pressure-resistant members that seal the processing gas supplied into the casing 8.

加工用ガス供給口9からは被加工物17の種類に応じて
ハロゲン元素ガス、各種のフロン系ガス、水蒸気、酸素
ガス、不活性ガス、炭酸ガス等、又はこれらの適宜の混
合ガスが加工用ガスとしてケーシング8内に供給され、
ケーシング8のガス喧出口8aから加工用レーザ光の照
射点に集中して吹き付けられる。
From the processing gas supply port 9, a halogen element gas, various fluorocarbon gases, water vapor, oxygen gas, inert gas, carbon dioxide gas, etc., or an appropriate mixed gas thereof is supplied for processing depending on the type of the workpiece 17. is supplied into the casing 8 as a gas,
The gas is sprayed from the gas outlet 8a of the casing 8 in a concentrated manner onto the irradiation point of the processing laser light.

加工用ガスを加工用レーザ光の照射点に吹き付けること
によって、主加工レーザによる加工を容易にすると同時
に、切断面のエツジの丸みを減少させ、更に、加工屑を
想速に排除することができる。
By spraying processing gas onto the irradiation point of the processing laser beam, processing by the main processing laser is facilitated, and at the same time, the roundness of the edges of the cut surface is reduced, and processing waste can be removed as quickly as possible. .

プラズマガン10は、プラズマガス供給管11からプラ
ズマガスを供給され、図示しないプラズマ電源装置によ
って電圧を印加されてプラズマを発生し、その発生ずる
プラズマの照射方向がレーザ光の光軸と20度乃至50
度の角度をなすようプラズマガン取付は部材12を介し
て回転盤13に取付けられる。
The plasma gun 10 is supplied with plasma gas from a plasma gas supply pipe 11, and generates plasma by applying a voltage from a plasma power supply device (not shown), and the irradiation direction of the generated plasma is at 20 degrees or more with respect to the optical axis of the laser beam. 50
The plasma gun mount is attached to the rotary plate 13 via the member 12 so as to form an angle of .degree.

また、このプラズマのエネルギ密度の大きざは図示しな
いプラズマ電源装置等を制御することによって変化さゼ
ることができる。
Further, the magnitude of the energy density of this plasma can be changed by controlling a plasma power supply device (not shown) or the like.

回転盤13はケーシング8の外周を囲むよう円環状に形
成され、ケーシング8に固定された回転盤取付座17に
回動自在に取付けられる。
The rotary disk 13 is formed in an annular shape so as to surround the outer periphery of the casing 8, and is rotatably attached to a rotary disk mounting seat 17 fixed to the casing 8.

クラウンギア15はモータ17の軸に固定されたビニオ
ンギア】6と噛み合い、回転盤13にその回転軸と同軸
に固定されて、これと一体に回転する。
The crown gear 15 meshes with a pinion gear 6 fixed to the shaft of the motor 17, is fixed to the rotary disk 13 coaxially with the rotary shaft, and rotates integrally therewith.

上記のように構成することによって、プラズマガン10
は加工用レーザ光の光軸を中心として回転盤13と一一
体に回転するから、プラズマの照射位置を主レーザ光の
照射点を中心とし°C同心円状に回転させることができ
、その回転角は0度〜360度の任意の値をとり得る。
By configuring as described above, the plasma gun 10
Since it rotates together with the rotary disk 13 around the optical axis of the processing laser beam, the plasma irradiation position can be rotated concentrically by °C around the irradiation point of the main laser beam, and its rotation The angle can take any value from 0 degrees to 360 degrees.

被加工物18はクロステーブル19のX軸方向移動テー
ブル20に取付けられ、X軸方向移動テーブル20及び
X軸方向移動テーブル21はモータ23及び24によっ
て任意に移動せしめられるから、被加工物18は同一平
面上で二次元的に移動する。
The workpiece 18 is attached to the X-axis moving table 20 of the cross table 19, and the X-axis moving table 20 and the X-axis moving table 21 are moved arbitrarily by motors 23 and 24, so the workpiece 18 is Move two-dimensionally on the same plane.

数値制御装置25は予め定められたプログラムに従い、
モータ23.24を制御してクロステーブル19に取付
けられた被加工物18を所望の位置及び方向に所定の速
度で移動せしめると共に、モータ23.24に送られる
信号によって決定される加工進行方向に応じて、モータ
17を作動さ仕て回転盤13を適宜回転させ、プラズマ
の照射位置を常に加工用レーザ光の照射点の加工進行方
向に於て先行するよう制御する。
The numerical control device 25 follows a predetermined program.
The motors 23, 24 are controlled to move the workpiece 18 attached to the cross table 19 to a desired position and direction at a predetermined speed, and in the machining progress direction determined by the signals sent to the motors 23, 24. Accordingly, the motor 17 is operated to rotate the rotary disk 13 appropriately, and the plasma irradiation position is controlled so as to always be ahead of the irradiation point of the processing laser beam in the processing progress direction.

レーザ発振器1から発振された加工用レーザ光は反射板
2に反射して光路変更された後、レンズ6によって集束
され被加工物18の加工点に集められる。
The processing laser beam oscillated from the laser oscillator 1 is reflected by the reflection plate 2 to change its optical path, and then is focused by the lens 6 and collected at the processing point of the workpiece 18.

一方、プラズマガン10は回転a113と一体に回転し
て任Zの位置をとり得るよう構成されており、数値制御
回路25はモータ23.24を制御して、被加工物18
の加工進行方向を指令すると同時に、この加工進行方向
に対応してモータ17を制御して回転盤13を回転させ
、この回転盤13に取付けちだプラズマガン10の位置
を常に加工用レーザ光の照射点に対して加工進行方向に
先行するよう回転・υ゛しめるから、プラズマガン10
から発生ずるプラズマは常に加工用レーザ光の照射点に
対して加工進行方向の先行部位に照射される。
On the other hand, the plasma gun 10 is configured to rotate together with the rotation a113 and take any Z position, and the numerical control circuit 25 controls the motors 23 and 24 to move the workpiece 18.
At the same time, the motor 17 is controlled to rotate the rotary disk 13 in accordance with the direction of machining. The plasma gun 10 is rotated and tightened so that it precedes the irradiation point in the direction of machining progress.
The plasma generated from the laser beam is always irradiated onto the preceding part in the processing progress direction with respect to the irradiation point of the processing laser beam.

第2図はプラズマの照射位置と加工用レーザ光の照射点
の位置関係を示ず説明図である。
FIG. 2 is an explanatory diagram that does not show the positional relationship between the plasma irradiation position and the processing laser beam irradiation point.

26はプラズマの照射される部位、27はその最高温度
点を示す。
26 indicates a region irradiated with plasma, and 27 indicates its highest temperature point.

望ましい実施例に於ては、図示する如く、プラズマの照
射される部位26は楕円状に広がり、楕円の長軸が常時
、図中矢印で示す加工進行方向に保持され、その照射面
の最高温度点27にレーザ光が照射される。
In a preferred embodiment, as shown in the figure, the region 26 to which the plasma is irradiated spreads out in an elliptical shape, and the long axis of the ellipse is always held in the processing progress direction indicated by the arrow in the figure, so that the maximum temperature of the irradiated surface is maintained. Point 27 is irradiated with laser light.

そのため、レーザ光による加工点は蛙も効率的に予熱さ
れ、最小のレーザエネルギで加工が行われ、熱歪等も最
小となるものである。
Therefore, the frog is efficiently preheated at the processing point by laser light, processing is performed with minimum laser energy, and thermal strain etc. are also minimized.

また、プラズマガン10の位置を制御するNCプログラ
ムは輪郭加工を行うための主プログラムから簡単な油質
によって得られるものである。
Further, the NC program for controlling the position of the plasma gun 10 can be obtained from the main program for contour machining by using simple oil.

本発明は叙十の如く構成されるから、本発明によるとき
は、補助エネルギが常に主レーザ光の照射点に対し°C
加工進行方向に於ける先行部位に照射されるので、補助
エネルギによる加熱が効果的に行われ、装置のエネルギ
効率及び加工精度を高めることができる。
Since the present invention is constructed as described above, according to the present invention, the auxiliary energy is always at °C with respect to the irradiation point of the main laser beam.
Since the preceding portion in the processing progress direction is irradiated, heating by auxiliary energy is effectively performed, and the energy efficiency and processing accuracy of the apparatus can be improved.

尚、本発明は斜上の実施例に限定されるものではな(、
上記実施例に於ては、補助エネルギ供給装置としてプラ
ズマ発生装置を用いたが、これは、アーク放電や高周波
パルス放電等の放電装置、加工用レーザ発振器とは別異
のレーザ発振器を用いることができ、本発明はそれらの
一切を包摂するものである。
It should be noted that the present invention is not limited to the diagonal embodiment (
In the above embodiment, a plasma generator was used as the auxiliary energy supply device, but it is also possible to use a discharge device such as an arc discharge or high-frequency pulse discharge, or a laser oscillator different from the laser oscillator for processing. However, the present invention encompasses all of them.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる光加工装置の一実施例を示す説
明図、第2図はプラズマの照射位置と加工用レーザ光の
照射点の位置関係を示す説明図である。 1−・−一一−−−−−−−−−−−−レーザ発振器1
0−−−−−−−−−− プラズマガン13−−−−−
−−−−−−−−一回転盤19−−−−−−−−−−−
−−−−−−クロステーブル25−− −−−−−−−
−− 数値制御装置特許出願人 株式会社 井上ジャン
パクス研究所代理人(7524)貝上正太部 第2図 26 7/ 7
FIG. 1 is an explanatory diagram showing an embodiment of the optical processing apparatus according to the present invention, and FIG. 2 is an explanatory diagram showing the positional relationship between the plasma irradiation position and the irradiation point of the processing laser beam. 1-・-11------------Laser oscillator 1
0--------- Plasma gun 13------
−−−−−−−−One turn disc 19−−−−−−−−−−−
−−−−−−Cross table 25−−−−−−−−
-- Numerical control device patent applicant Inoue Jumpax Research Institute Agent (7524) Shotabu Kaigami Figure 2 26 7/7

Claims (4)

【特許請求の範囲】[Claims] (1)加工用レーザ発振器と補助エネルギ供給装置とを
併用して加工する光加工装置に於て、上記補助エネルギ
供給装置を加工用レー′ザ光の光軸を中心として回動自
在に取り付けると共に、補助エネルギを常に加工用レー
ザ光の照射点より加工進行方向に先行した部位に照射(
しめるよう、補助エネルギ供給装置の位置及び姿勢を制
御する制御装置を設けたことを特徴とする上記の光加工
装置。
(1) In an optical processing device that processes using a processing laser oscillator and an auxiliary energy supply device, the auxiliary energy supply device is mounted rotatably around the optical axis of the processing laser beam, and , auxiliary energy is always irradiated to the part that precedes the irradiation point of the processing laser beam in the direction of processing progress (
The above-mentioned optical processing device is further provided with a control device that controls the position and orientation of the auxiliary energy supply device so that the auxiliary energy supply device is closed.
(2)補助エネルギ供給装置がプラズマ発生装置である
特許請求の範rfJI第1項記載の光加工装置。
(2) The optical processing apparatus according to claim 1, wherein the auxiliary energy supply device is a plasma generator.
(3)?J助エネルギ供給装置がアーク放電装置である
特許請求の綻囲第1項記載の光加工装置。
(3)? The optical processing device according to claim 1, wherein the auxiliary energy supply device is an arc discharge device.
(4)M助エネルギ供給装置が加工用レーザ発振器とは
別異のレーザ発振器である特許請求の範囲第1項記載の
光加工装置。
(4) The optical processing apparatus according to claim 1, wherein the M auxiliary energy supply device is a laser oscillator different from the processing laser oscillator.
JP58003367A 1982-12-17 1983-01-14 Optical working device Granted JPS59130695A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58003367A JPS59130695A (en) 1983-01-14 1983-01-14 Optical working device
US06/641,979 US4689467A (en) 1982-12-17 1983-12-17 Laser machining apparatus
EP19840900108 EP0129603A4 (en) 1982-12-17 1983-12-17 Laser machining apparatus.
PCT/JP1983/000441 WO1984002296A1 (en) 1982-12-17 1983-12-17 Laser machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58003367A JPS59130695A (en) 1983-01-14 1983-01-14 Optical working device

Publications (2)

Publication Number Publication Date
JPS59130695A true JPS59130695A (en) 1984-07-27
JPH0258038B2 JPH0258038B2 (en) 1990-12-06

Family

ID=11555369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58003367A Granted JPS59130695A (en) 1982-12-17 1983-01-14 Optical working device

Country Status (1)

Country Link
JP (1) JPS59130695A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001564A (en) * 2000-06-23 2002-01-08 Amada Eng Center Co Ltd Laser beam machining device and machining method using the same
JP2007019091A (en) * 2005-07-05 2007-01-25 Toshiba Corp Manufacturing method for superconducting coil and superconducting coil
KR101239078B1 (en) * 2010-09-06 2013-03-05 삼성중공업 주식회사 Device for section shape steel cutting
CN104942436A (en) * 2014-03-31 2015-09-30 大族激光科技产业集团股份有限公司 Variable-focus laser welding equipment, blowing protecting device thereof and blowing protecting method
JP2016530098A (en) * 2013-10-04 2016-09-29 シェルベリ−シュティフトゥングKjellberg−Stiftung Single or multi-part insulating component for plasma torches, especially plasma cutting torches, and assemblies and plasma torches having the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604890A (en) * 1969-10-15 1971-09-14 Boeing Co Multibeam laser-jet cutting apparatus
JPS5454932A (en) * 1977-10-07 1979-05-01 Agency Of Ind Science & Technol Combination welding of tig and laser
JPS54171639U (en) * 1978-05-22 1979-12-04
JPS56114591A (en) * 1980-02-15 1981-09-09 Nippon Steel Corp Nozzle for laser welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604890A (en) * 1969-10-15 1971-09-14 Boeing Co Multibeam laser-jet cutting apparatus
JPS5454932A (en) * 1977-10-07 1979-05-01 Agency Of Ind Science & Technol Combination welding of tig and laser
JPS54171639U (en) * 1978-05-22 1979-12-04
JPS56114591A (en) * 1980-02-15 1981-09-09 Nippon Steel Corp Nozzle for laser welding

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001564A (en) * 2000-06-23 2002-01-08 Amada Eng Center Co Ltd Laser beam machining device and machining method using the same
JP2007019091A (en) * 2005-07-05 2007-01-25 Toshiba Corp Manufacturing method for superconducting coil and superconducting coil
KR101239078B1 (en) * 2010-09-06 2013-03-05 삼성중공업 주식회사 Device for section shape steel cutting
JP2016530098A (en) * 2013-10-04 2016-09-29 シェルベリ−シュティフトゥングKjellberg−Stiftung Single or multi-part insulating component for plasma torches, especially plasma cutting torches, and assemblies and plasma torches having the same
CN104942436A (en) * 2014-03-31 2015-09-30 大族激光科技产业集团股份有限公司 Variable-focus laser welding equipment, blowing protecting device thereof and blowing protecting method
CN104942436B (en) * 2014-03-31 2017-01-04 大族激光科技产业集团股份有限公司 Varifocal laser welding apparatus and air blowing protector, air blowing guard method

Also Published As

Publication number Publication date
JPH0258038B2 (en) 1990-12-06

Similar Documents

Publication Publication Date Title
US4689467A (en) Laser machining apparatus
US3619550A (en) Laser beam machine tool with beam manipulating apparatus
JPH03142092A (en) Laser optical system and laser beam processing method using this system
JPS59130695A (en) Optical working device
JPH06102276B2 (en) Laser welding method
JPS6163387A (en) Laser beam machine
JP2000317661A (en) Method and device for cutting by laser beam and method for cutting graphite block in the case of dismantling waste nuclear reactor
JPS5913588A (en) Laser working device
JPH10216978A (en) Laser beam machining head
JPS5913589A (en) Laser working device
JP2001239384A (en) Laser cutting method and it's apparatus
JPH0124598B2 (en)
US20080169273A1 (en) Laser cavity particularly for laser welding apparatus
JPH01104493A (en) Laser processing machine
JP2003251482A (en) Laser beam machining method and device
JPS5978793A (en) Laser working device
JPS59110487A (en) Laser working device
JPH07204877A (en) Method and device for laser beam machining
JP3526964B2 (en) Laser welding method for high reflectivity materials
JPH05212572A (en) Laser beam machine
JP2639055B2 (en) Laser processing machine
JPS61289992A (en) Laser beam processing method
JPH02147185A (en) Laser beam machining method and machine
JPH01271084A (en) Laser cutting method for glass
JPH0399790A (en) Laser beam machine