JPS5912333B2 - Exhaust gas desulfurization and denitrification method - Google Patents

Exhaust gas desulfurization and denitrification method

Info

Publication number
JPS5912333B2
JPS5912333B2 JP51024985A JP2498576A JPS5912333B2 JP S5912333 B2 JPS5912333 B2 JP S5912333B2 JP 51024985 A JP51024985 A JP 51024985A JP 2498576 A JP2498576 A JP 2498576A JP S5912333 B2 JPS5912333 B2 JP S5912333B2
Authority
JP
Japan
Prior art keywords
exhaust gas
rate
gas
absorption
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51024985A
Other languages
Japanese (ja)
Other versions
JPS52108366A (en
Inventor
貞三 先生
真喜夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Fuji Kasei Kogyo Co Ltd
Original Assignee
Fuji Kasei Kogyo Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Kasei Kogyo Co Ltd, Sumitomo Metal Industries Ltd filed Critical Fuji Kasei Kogyo Co Ltd
Priority to JP51024985A priority Critical patent/JPS5912333B2/en
Publication of JPS52108366A publication Critical patent/JPS52108366A/en
Publication of JPS5912333B2 publication Critical patent/JPS5912333B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【発明の詳細な説明】 本発明は硫黄酸化物(SOx)及び窒素酸化物NOxを
含む一般燃焼排ガス、例えばボイラー、加熱炉、焼結炉
、焙焼炉、転炉、溶解炉、焼却炉などから排出される燃
焼ガスなどからSOx及びNOxを同時に除去する湿式
排煙脱硫脱硝方法に関する。
Detailed Description of the Invention The present invention is applicable to general combustion exhaust gases containing sulfur oxides (SOx) and nitrogen oxides (NOx), such as boilers, heating furnaces, sintering furnaces, roasting furnaces, converters, melting furnaces, incinerators, etc. The present invention relates to a wet flue gas desulfurization and denitration method for simultaneously removing SOx and NOx from combustion gas etc. discharged from a combustion engine.

近年、環境保全上の見地から、各種工場などの排ガス中
のSOx及びNOxを除去するための技術開発が進めら
れている。
In recent years, from the standpoint of environmental conservation, technological development has been progressing to remove SOx and NOx from exhaust gas from various factories.

このような技術としては、排ガス中に含まれるSOx及
びNOxを個別に除去する種々の脱硫プロセス及び脱硝
プロセスが知られており、また排ガス中に含まれるSO
x及びNOxを同時に除去する排ガス脱硫脱硝プロセス
もいくつか提唱されている。
As such technologies, various desulfurization processes and denitrification processes are known that individually remove SOx and NOx contained in exhaust gas, and
Several exhaust gas desulfurization and denitrification processes have been proposed that simultaneously remove x and NOx.

本発明者等も、SOx及びNOxによる大気汚染公害を
排除するため、SOx及びNOxを含む排ガスからSO
x及びNOxを同時に除去するプロセスについて鋭意研
究開発を進め、ここに全く新規な湿式排ガス脱硫脱硝方
法を提供するものである。
In order to eliminate air pollution caused by SOx and NOx, the present inventors also discovered that
We have conducted extensive research and development into a process that simultaneously removes x and NOx, and hereby provide a completely new wet exhaust gas desulfurization and denitrification method.

本発明の要旨は、硫黄酸化物及び窒素酸化物を含む排ガ
スをアルカリ金属、アルカリ土類金属又はアンモニウム
の水酸化物又は炭酸塩と、チオ尿素又はアルカリ金属、
アルカリ土類金属若しくはアンモニウムのチオ硫酸塩と
、銅イオン及び鉄イオンのうちの少なくとも一つの金属
イオンとを含み、且つ、前記水酸化物又は炭酸塩と排ガ
ス中の亜硫酸ガスとの反応で生成する亜硫酸塩濃度が0
.1モル/を未満である、水性洗浄液で洗浄することに
ある。
The gist of the present invention is to convert exhaust gas containing sulfur oxides and nitrogen oxides into hydroxides or carbonates of alkali metals, alkaline earth metals or ammonium, thiourea or alkali metals,
It contains a thiosulfate of an alkaline earth metal or ammonium and at least one metal ion selected from copper ions and iron ions, and is produced by the reaction of the hydroxide or carbonate with sulfur dioxide gas in exhaust gas. Sulfite concentration is 0
.. The purpose is to wash with an aqueous washing liquid having an amount of less than 1 mol/ml.

本発明の脱硫脱硝方法において、SOx及びNOxを含
む排ガスは、適当な洗浄装置、例えば段塔、スクラバー
、充填塔などでアルカリ金属、アルカリ土類金属又はア
ンモニウムの水酸化物又は炭酸塩と、チオ尿素又はアル
カリ金属、アルカリ土類金属若しくはアンモニウムのチ
オ硫酸塩と、銅イオン及び鉄イオンのうちの少なくとも
一種の金属イオンとを含む水性洗浄液と気液接触させて
排ガス中のSOxを亜硫酸塩として吸収し、NOxを窒
素ガス(N2)に還元して脱硫脱硝する。
In the desulfurization and denitration method of the present invention, exhaust gas containing SOx and NOx is treated with hydroxides or carbonates of alkali metals, alkaline earth metals, or ammonium in a suitable cleaning device, such as a plate column, a scrubber, or a packed column. SOx in exhaust gas is absorbed as sulfite by bringing it into gas-liquid contact with an aqueous cleaning solution containing urea or thiosulfate of alkali metal, alkaline earth metal, or ammonium and at least one metal ion selected from copper ions and iron ions. Then, NOx is reduced to nitrogen gas (N2) for desulfurization and denitration.

排ガスのSOx及びNOx濃度、NOx組成、他のガス
成分の組成並びに濃度による制限は特にないが、排ガス
中のNOは予じめNO□、 N2O3又はN20゜など
に酸化した後前記洗浄液で洗浄するのが好ましい。
There are no particular restrictions on the concentration of SOx and NOx in the exhaust gas, the composition of NOx, and the composition and concentration of other gas components, but NO in the exhaust gas is oxidized in advance to NO□, N2O3, or N20°, and then cleaned with the cleaning solution described above. is preferable.

このような酸化剤としては従来公知の化合物、例えば二
酸化塩素、オゾン、過酸化水素、硝酸などを用いること
ができる。
As such an oxidizing agent, conventionally known compounds such as chlorine dioxide, ozone, hydrogen peroxide, and nitric acid can be used.

洗浄液中の前記水酸化物又は炭酸塩は、下記式(1)〜
(4)で示される反応に従って排ガスの脱硫を行う。
The hydroxide or carbonate in the cleaning liquid has the following formula (1) ~
The exhaust gas is desulfurized according to the reaction shown in (4).

2MOH+S02=M2SO3+H20・・・・・・(
1)M′(OH)2+502−M′S03+H20・・
・・・・(2)M2CO3+502−M2CO3+50
2 ・・・・・・(3)M′CO3+SO2=M′
SO3+CO2・・・・・・(4)上式において、Mは
ナトリウム、カリウムなどのアルカリ金属又はアンモニ
ウムを表し、M′はカルシウム、マグネシウムなどのア
ルカリ土類金属を表す。
2MOH+S02=M2SO3+H20・・・・・・(
1) M'(OH)2+502-M'S03+H20...
...(2) M2CO3+502-M2CO3+50
2 ・・・・・・(3) M'CO3+SO2=M'
SO3+CO2 (4) In the above formula, M represents an alkali metal such as sodium or potassium or ammonium, and M' represents an alkaline earth metal such as calcium or magnesium.

即ち、亜硫酸ガス(802)は亜硫酸塩として洗浄液に
吸収される。
That is, sulfur dioxide gas (802) is absorbed into the cleaning liquid as sulfite.

もつとも実際には燃焼排ガス中に多量に含まれる炭酸ガ
ス(CO2)が循環洗浄液中に溶解しているので洗浄液
中に補給された前記水酸化物又は炭酸塩は洗浄液中で溶
存CO2と反応して重炭酸塩(MI−(C03又はM′
〔HCO3〕2)となって排ガス中の802と反応して
亜硫酸塩となる。
However, in reality, carbon dioxide gas (CO2), which is contained in large amounts in combustion exhaust gas, is dissolved in the circulating cleaning liquid, so the hydroxide or carbonate replenished into the cleaning liquid reacts with the dissolved CO2 in the cleaning liquid. Bicarbonate (MI-(C03 or M'
It becomes [HCO3]2) and reacts with 802 in the exhaust gas to become sulfite.

洗浄液中の前記水酸化物又は炭酸塩の濃度には特に限定
がない。
There is no particular limitation on the concentration of the hydroxide or carbonate in the cleaning solution.

本発明プロセスの脱硝機構は必ずしも明確ではないが、
洗浄液中に含まれるチオ尿素又はチオ硫酸並びに銅及び
鉄イオンのうちの少なくとも一種の金属イオンが排ガス
中の窒素酸化物と成る種のコンプレックス化合物を形成
し、これに更にチオ尿素又はチオ硫酸塩が反応してNO
xをN2に還元するものと想定される。
Although the denitrification mechanism of the present invention process is not necessarily clear,
Thiourea or thiosulfate and at least one metal ion among copper and iron ions contained in the cleaning solution form a complex compound that becomes nitrogen oxides in the exhaust gas, and thiourea or thiosulfate further forms a complex compound that becomes nitrogen oxides in the exhaust gas. React and say NO
It is assumed that x is reduced to N2.

例えば、二酸化窒素(NO2)を含む排ガスをチオ尿素
又はチオ硫酸塩のみを含む洗浄液で洗浄した場合に脱硝
率は約40%程度であるが、この洗浄液に更に銅イオン
を添加した場合の脱硝率は約90係に達する。
For example, when exhaust gas containing nitrogen dioxide (NO2) is washed with a cleaning solution containing only thiourea or thiosulfate, the denitration rate is approximately 40%, but when copper ions are further added to this cleaning solution, the denitration rate is approximately 40%. reaches about 90 units.

銅イオンの代りに鉄イオンを添加した場合にもほぼ同様
な結果が得られるが、ニッケルイオン、マンガンイオン
などを添加した場合の脱硝率は約40係と金属イオンの
添加効果が認められない。
Almost similar results are obtained when iron ions are added instead of copper ions, but when nickel ions, manganese ions, etc. are added, the denitrification rate is about 40 times, and no effect of metal ion addition is observed.

従って、本発明プロセスの脱硝方法は銅又は鉄イオンの
存在下に排ガスをチオ尿素又はチオ硫酸塩で洗浄するこ
とによってはじめて約90%という高い除去率で排ガス
中のNOxを除去することができ、しかも前記金属イオ
ンは触媒的に作用するので実質的に消耗が無いという特
長をもつ。
Therefore, the denitrification method of the present invention can remove NOx in the exhaust gas with a high removal rate of about 90% only by cleaning the exhaust gas with thiourea or thiosulfate in the presence of copper or iron ions. Moreover, since the metal ions act catalytically, they have the advantage that they are virtually never consumed.

洗浄液中のチオ尿素又はチオ硫酸塩及び前記金属イオン
の濃度、洗浄液pH並びに温度には特に限定はないが、
非常に高い脱硝率を得るためには、約lQQppm以上
のチオ尿素又は約150pIn以上のチオ硫酸塩及び約
30p−以上の前記金属イオンを含むのが好ましく、ま
た洗浄液のpHを約4〜9にするのが好ましい。
There are no particular limitations on the concentration of thiourea or thiosulfate and the metal ions in the cleaning solution, the pH and temperature of the cleaning solution,
In order to obtain a very high denitrification rate, it is preferable to contain about 1QQppm or more of thiourea or about 150 pIn or more of thiosulfate and about 30 p- or more of the aforementioned metal ions, and the pH of the cleaning solution should be about 4 to 9. It is preferable to do so.

前記金属イオンは硫酸塩、塩化物その他の塩の形態で又
はキレート化合物若しくは錯化合物の形態、その他任意
の形で洗浄液中に溶解又は懸濁させることができる。
The metal ions can be dissolved or suspended in the cleaning liquid in the form of sulfates, chlorides or other salts, in the form of chelates or complexes, or in any other arbitrary form.

なお、本発明の脱硫脱硝方法では、排ガス中の亜硫酸ガ
スとアルカリ金属、アルカリ土類金属又はアンモニウム
の水酸化物又は炭酸塩との反応で循環洗浄液中に生成す
る亜硫酸塩がチオ尿素又はチオ硫酸塩と共にNOxをN
2に還元する反応を行う。
In addition, in the desulfurization and denitration method of the present invention, the sulfite generated in the circulating cleaning solution by the reaction between sulfur dioxide gas in the exhaust gas and the hydroxide or carbonate of alkali metal, alkaline earth metal, or ammonium is thiourea or thiosulfate. NOx with salt
Perform the reaction to reduce to 2.

この場合の反応機構は、前記したように、チオ尿素又は
チオ硫酸塩と銅、鉄及びビスマスイオンのうちの少なく
とも一種の金属イオンが排ガス中の窒素酸化物と成る種
のコンプレックス化合物を形成し、これに更にチオ尿素
又はチオ硫酸塩と共に前記亜硫酸塩が反応して窒素酸化
物を窒素に還元するものと想定される。
The reaction mechanism in this case is, as described above, that thiourea or thiosulfate and at least one metal ion among copper, iron, and bismuth ions form a complex compound that becomes nitrogen oxide in the exhaust gas, It is assumed that the sulfite further reacts with thiourea or thiosulfate to reduce nitrogen oxides to nitrogen.

なお、本発明者らは先に前記吸収液において亜硫酸塩濃
度が0.1モル/を未満では充分な脱硝効果が得られな
いと判断して、吸収液中における亜硫酸塩濃度は0.1
モル/を以上でなければならないとして特許出願(特願
昭50−53151号、特開昭51−129866号公
報参照)したが、その後の研究により寧ろ亜硫酸塩濃度
は0.1モル/を未満で充分であり、それ以上存在して
いても脱硝率などに及ぼす効果は飽和してしまい、実質
的に意味のないことを見出し、本発明をするに至ったの
である。
The present inventors previously determined that a sufficient denitrification effect could not be obtained if the sulfite concentration in the absorption liquid was less than 0.1 mol/h, so the sulfite concentration in the absorption liquid was set to 0.1 mol/min.
Although a patent application was filed (see Japanese Patent Application No. 50-53151 and Japanese Unexamined Patent Publication No. 51-129866) stating that the sulfite concentration should be less than 0.1 mol/ They discovered that this is sufficient, and that even if more than that amount exists, the effect on the denitrification rate is saturated and is essentially meaningless, leading to the present invention.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

実施例 l 液容量1tの吸収瓶を用いて、NO150ppm。Example l NO150ppm using an absorption bottle with a liquid capacity of 1t.

SO21,300p−及びCO210係を含む空気混合
ガスを、あら力・じめCtO2ガスを添加してガス中の
NOを酸化したのち1017m1nの割合で通気洗浄し
た。
An air mixture gas containing SO21,300 p- and CO210 was first added with CtO2 gas to oxidize NO in the gas, and then was vented and cleaned at a rate of 1017 m1n.

吸収瓶の入口及び出口ガス中のNOx及びSOx濃度を
、それぞれ、化学発光法及び溶液導電率法による機器で
測定したところ、脱硝率90%、脱硫率99.5%であ
った。
When the NOx and SOx concentrations in the inlet and outlet gases of the absorption bottle were measured using equipment based on the chemiluminescence method and the solution conductivity method, respectively, the denitrification rate was 90% and the desulfurization rate was 99.5%.

このときの吸収液組成は以下の通りであった。The composition of the absorption liquid at this time was as follows.

Na2S2O3300ppm CUCt 5 Qppm(Cuとして)Na2
CO33000pp[ll Na2SO3500Qppm また吸収液のpHはNaOH水溶液を添加して実験中p
H6,5に保った。
Na2S2O3300ppm CUCt 5 Qppm (as Cu) Na2
CO33000pp[ll Na2SO3500Qppm The pH of the absorption liquid was adjusted to pH during the experiment by adding NaOH aqueous solution.
It was kept at H6.5.

実施例 2 減容量1tの吸収瓶を用いて、NO20opl)I[l
Example 2 Using an absorption bottle with a reduced volume of 1 t, NO20 opl) I[l
.

802600111)I[l及びCO□10係を含む空
気混合ガスを、あらかじめ03ガスを添加してガス中の
NOを酸化したのち10t/minの割合で通気洗浄し
た。
802600111) 03 gas was added to the air mixed gas containing 10 parts of I[l and CO□10 to oxidize NO in the gas, and then the air was cleaned at a rate of 10 t/min.

吸収瓶の入口及び出口ガス中のNOx及びSOx濃度を
、それぞれ、化学発光法及び溶液導電率法による機器で
測定したところ、脱硝率89.5%、脱硫率98.5%
であった。
When the NOx and SOx concentrations in the inlet and outlet gases of the absorption bottle were measured using equipment using the chemiluminescence method and the solution conductivity method, respectively, the denitrification rate was 89.5% and the desulfurization rate was 98.5%.
Met.

このときの吸収液組成は以下の通りであった。The composition of the absorption liquid at this time was as follows.

Ca5203 1,00 Qppm CUCt 300ppm(Cuとして)CaCO3
1% CasO3500pIMn また吸収液のpHはCaCO3を添加して実験中pH5
に保った。
Ca5203 1,00 Qppm CUCt 300ppm (as Cu) CaCO3
1% CasO3500pIMn The pH of the absorption solution was adjusted to pH 5 during the experiment by adding CaCO3.
I kept it.

実施例 3 減容量1tの吸収瓶を用いて、NO10opI)m。Example 3 Using an absorption bottle with a reduced capacity of 1 t, NO10opI)m.

5O26001)P及びCO210係を含む空気混合ガ
スを、あらかじめ03ガスを添加してガス中のNOを酸
化したのち10 A/minの割合で通気洗浄した。
03 gas was added in advance to an air mixture gas containing 5O26001)P and CO210 to oxidize NO in the gas, and then the air was cleaned at a rate of 10 A/min.

吸収瓶の入口及び出口ガス中のNOx及びSOx濃度を
、それぞ札化学発光法及び溶液導電率法による機器で測
定したところ、脱硝率89%、脱硫率98.5%であっ
た。
The NOx and SOx concentrations in the inlet and outlet gases of the absorption bottle were measured using instruments using the Fold chemiluminescence method and the solution conductivity method, respectively, and the denitrification rate was 89% and the desulfurization rate was 98.5%.

このときの吸収液組成は以下の通りであった。The composition of the absorption liquid at this time was as follows.

(NH4)2S203s、o o oppmCuCt
50ppm(Cuとして)(NH4)2
CO35% (NH4)2S03 700ppInまた吸収液の
pHはN)−I40Hを添加して実験中pH8に保った
(NH4)2S203s, o o oppmCuCt
50ppm (as Cu) (NH4)2
CO35% (NH4)2S03 700ppIn The pH of the absorption liquid was maintained at pH 8 during the experiment by adding N)-I40H.

実施例 4 減容量1tの吸収瓶を用いて、NO23’00ppm。Example 4 NO23'00ppm using an absorption bottle with a reduced capacity of 1 ton.

S 021,30 Qppm及びCO210係を含む空
気混合ガスを、10 t/minの割合で通気洗浄した
An air mixed gas containing S 021,30 Qppm and CO210 was aerated and cleaned at a rate of 10 t/min.

吸収瓶の入口及び出口ガス中のNOx及びSOx濃度を
、それぞれ、化学発光法及び溶液導電率法による機器で
測定したところ、脱硝率85係、脱硫率99.2%であ
った。
When the NOx and SOx concentrations in the inlet and outlet gases of the absorption bottle were measured using equipment using a chemiluminescence method and a solution conductivity method, respectively, the denitrification rate was 85% and the desulfurization rate was 99.2%.

このときの吸収液組成は以下の通りであった。The composition of the absorption liquid at this time was as follows.

Ca5203 1,00 Qppm十+ Cu −EDTA 50pI1m(Cuとし
て)CacO3300pF’ CasO3400pI)Ill また吸収液のpHはCa(OH)2を添加して実験中p
H5に保った。
Ca5203 1,00 Qppm 10+ Cu -EDTA 50pI1m (as Cu)CacO3300pF' CasO3400pI)Ill The pH of the absorption solution was adjusted to p during the experiment by adding Ca(OH)2.
I kept it at H5.

実施例 5 減容量1tの吸収瓶を用いて、NNO450pp。Example 5 Using an absorption bottle with a reduced capacity of 1 ton, NNO450pp.

SO□3,000ppIn及びCO□10係を含む空気
混合ガスを、あらかじめCtO2ガスを添加してガス中
のNOを酸化したのち1017m1nの割合で通気洗浄
した。
An air mixed gas containing 3,000 ppIn of SO□ and 10 parts of CO□ was preliminarily added with CtO2 gas to oxidize NO in the gas, and then was vented and cleaned at a rate of 1017 m1n.

吸収瓶の入口及び出口ガス中のNOx及びSOx濃度を
、それぞれ、化学発光法及び溶液導電率法による機器で
測定したところ、脱硝率89係、脱硫率99.5%であ
った。
When the NOx and SOx concentrations in the inlet and outlet gases of the absorption bottle were measured using equipment using a chemiluminescence method and a solution conductivity method, respectively, the denitrification rate was 89% and the desulfurization rate was 99.5%.

このときの吸収液組成は以下の通りであった。The composition of the absorption liquid at this time was as follows.

Na252o3s、o 001)I” FeC460Qppm(Feとして) Na2 CO30,5% Na2SO33,000ppm また吸収液のpHはN a 2 CO3を添加して実験
中pH6,5に保った。
Na252o3s, o 001)I'' FeC460Qppm (as Fe) Na2CO30.5% Na2SO33,000ppm The pH of the absorption liquid was maintained at pH 6.5 during the experiment by adding Na2CO3.

実施例 6 減容量1tの吸収瓶を用いて、N0100Oppl。Example 6 Using an absorption bottle with a reduced capacity of 1 ton, N0100 Oppl.

so26ooppm及びCO210係を含む空気混合ガ
スを、あらかじめCto2ガスを添加してガス中のNO
を酸化したのち1017m1nの割合で通気洗浄した。
Cto2 gas is added in advance to the air mixture gas containing so26ooppm and CO210 to remove NO in the gas.
was oxidized and then washed through ventilation at a rate of 1017 m1n.

吸収瓶の入口及び出口ガス中のNOx及びSOx濃度を
、それぞれ、化学発光法及び溶液導電率法による機器で
測定したところ、脱硝率88係、脱硫率98.9%であ
った。
When the NOx and SOx concentrations in the inlet and outlet gases of the absorption bottle were measured using equipment using a chemiluminescence method and a solution conductivity method, respectively, the denitrification rate was 88% and the desulfurization rate was 98.9%.

このときの吸収液組成は以下の通りであった。The composition of the absorption liquid at this time was as follows.

チオ尿素 150p声 CuCt 50ppm(Cuとして)Ca C
O31% CaSO35,00Qppm また吸収液のpHはCa C03を添加して実験中pH
6,5に保った。
Thiourea 150pCuCt 50ppm (as Cu) Ca C
O31% CaSO35,00Qppm The pH of the absorption solution was adjusted during the experiment by adding CaC03.
I kept it at 6.5.

実施例 7 減容量1tの吸収瓶を用いて、N0200p^5O21
,300泗及びCO210係を含む空気混合ガスを、あ
らかじめCtO2ガスを添加してガス中のNOを酸化し
たのち1017m1nの割合で通気洗浄した。
Example 7 Using an absorption bottle with a reduced capacity of 1 t, N0200p^5O21
.

吸収瓶の入口及び出口ガス中のNOx及びSOx濃度を
、それぞれ、化学発光法及び溶液導電率法による機器で
測定したところ、脱硝率93係、脱硫率98.8%であ
った。
When the NOx and SOx concentrations in the inlet and outlet gases of the absorption bottle were measured using equipment using a chemiluminescence method and a solution conductivity method, respectively, the denitrification rate was 93% and the desulfurization rate was 98.8%.

このときの吸収液組成は以下の通りであった。The composition of the absorption liquid at this time was as follows.

チオ尿素 sooppm CuCt 600ppm(Cuとして)(N
H4)2003 0.5係 (NH4)2 SO34,000ppm また吸収液のpHは(NH4)2CO3を添加して実験
中pH5に保った。
Thiourea sooppm CuCt 600ppm (as Cu) (N
H4) 2003 0.5 (NH4)2 SO3 4,000 ppm The pH of the absorption liquid was maintained at pH 5 during the experiment by adding (NH4)2CO3.

実施例 8 液容量11の吸収瓶を用いて、NO100p^SO□2
,000ppI[l及びCO210係を含む空気混合ガ
スを、あらかじめ03ガスを添加してガス中のNOを酸
化したのち10 t/minの割合で通気洗浄した。
Example 8 Using an absorption bottle with a liquid capacity of 11, NO100p^SO□2
,000 ppI[l and CO210] was added in advance to 03 gas to oxidize the NO in the gas, and then the air was cleaned at a rate of 10 t/min.

吸収瓶の入口及び出口ガス中のNOx及びSOx濃度を
、それぞれ、化学発光法及び溶液導電率法による機器で
測定したところ、脱硝率89%、脱硫率98.9%であ
った。
When the NOx and SOx concentrations in the inlet and outlet gases of the absorption bottle were measured using equipment based on the chemiluminescence method and the solution conductivity method, respectively, the denitrification rate was 89% and the desulfurization rate was 98.9%.

このときの吸収液組成は以下の通りであった。The composition of the absorption liquid at this time was as follows.

チオ尿素 8,000ppm CuC15Qppm(Cuとして) CaCO34% CaSO32,00Qppm また吸収液のpHはCa(OH)2を添加して実験中p
H8に保った。
Thiourea 8,000ppm CuC15Qppm (as Cu) CaCO34% CaSO32,00Qppm The pH of the absorption solution was adjusted by adding Ca(OH)2 during the experiment.
I kept it at H8.

実施例 9 液容量1tの吸収瓶を用いて、N02250pl)Il
l。
Example 9 Using an absorption bottle with a liquid capacity of 1 t, N02250 pl) Il
l.

SO□i、3ooppm及びCO210係を含む空気混
合ガスを、101−/minの割合で通気洗浄した。
An air mixed gas containing SO□i, 3 ooppm and CO210 was aerated and cleaned at a rate of 101-/min.

吸収瓶の入口及び出口ガス中のNOx及びSOx濃度を
、それぞれ、化学発光法及び溶液導電率法による機器で
測定したところ、脱硝率88係、脱硫率98.6%であ
った。
When the NOx and SOx concentrations in the inlet and outlet gases of the absorption bottle were measured using equipment using a chemiluminescence method and a solution conductivity method, respectively, the denitrification rate was 88% and the desulfurization rate was 98.6%.

このときの吸収液組成は以下の通りであった。The composition of the absorption liquid at this time was as follows.

チオ尿素 4QQppm Cu”−EDTA 5 oppm(Cuとして
)Ca CO31% CasO35,OOOIII)In また吸収液のpHはCaCO3を添加して実験中pH5
に保った。
Thiourea 4QQppm Cu"-EDTA 5 oppm (as Cu) Ca CO3 1% CasO35, OOOIII) In Also, the pH of the absorption liquid was adjusted to pH 5 during the experiment by adding CaCO3.
I kept it.

実施例 10 液容量1tの吸収瓶を用いて、N024001]^S
021,300ppm及びCO210係を含む空気混合
ガスを、Lot/minの割合で通気洗浄した。
Example 10 Using an absorption bottle with a liquid capacity of 1 t, N024001]^S
An air mixed gas containing 0.21,300 ppm and CO210 was vented and cleaned at a rate of Lot/min.

吸収瓶の入口及び出口ガス中のNOx及びSOx濃度を
、それぞれ、化学発光法及び溶液導電率法による機器で
測定したところ、脱硝率86係、脱硫率99.3%であ
った。
The NOx and SOx concentrations in the inlet and outlet gases of the absorption bottle were measured using equipment using a chemiluminescence method and a solution conductivity method, respectively, and the denitrification rate was 86% and the desulfurization rate was 99.3%.

このときの吸収液組成は以下の通りであった。The composition of the absorption liquid at this time was as follows.

チオ尿素 8.00011迦 CuSO460oppm(Cuとして) Na2 CO30,5% Na25o310,00 oppm また吸収液のpHはNa2 CO3を添加して実験中p
H6,5に保った。
Thiourea 8.00011 CuSO460oppm (as Cu) Na2CO30.5% Na25O310.00oppm The pH of the absorption solution was adjusted to pH during the experiment by adding Na2CO3.
It was kept at H6.5.

実施例 11 液容量1tの吸収瓶を用いて、NNO450pp。Example 11 NNO450pp using an absorption bottle with a liquid capacity of 1 t.

so26ooppm及びCO210係を含む空気混合ガ
スを、あらかじめCtO2ガスを添加してガス中のNO
を酸化したのち1017m1nの割合で通気洗浄した。
CtO2 gas is added to the air mixture gas containing so26ooppm and CO210 to remove NO in the gas.
was oxidized and then washed through ventilation at a rate of 1017 m1n.

吸収瓶の入口及び出口ガス中のNOx及びSOx濃度を
、それぞれ、化学発光法及び溶液導電率法による機器で
測定したところ、脱硝率88%、脱硫率98.7%であ
った。
When the NOx and SOx concentrations in the inlet and outlet gases of the absorption bottle were measured using equipment based on the chemiluminescence method and the solution conductivity method, respectively, the denitrification rate was 88% and the desulfurization rate was 98.7%.

このときの吸収液組成は以下の通りであった。The composition of the absorption liquid at this time was as follows.

チオ尿素 150ppm FeSO4600ppm(Feとして) (NH4)2CO30,5係 (NH4)2S03 5,000pp[Ilまた吸収液
の田は(N)Ll )2 CO3を添加して実験中pH
6,5に保った。
Thiourea 150ppm FeSO4600ppm (as Fe) (NH4)2CO30,5 (NH4)2S03 5,000pp [IlAlso, the absorption liquid (N)Ll)2CO3 was added to adjust the pH during the experiment.
I kept it at 6.5.

実施例 12 液容量11の吸収瓶を用いて、NO4001]flll
l。
Example 12 Using an absorption bottle with a liquid capacity of 11, NO4001]flll
l.

5O26001)Il[+及びCO210係を含む空気
混合ガスをあらかじめCtO2ガスを添加してガス中の
NOを酸化したのち10t/minの割合で通気洗浄し
た。
CtO2 gas was added in advance to an air mixture gas containing 5O26001)Il[+ and CO210 to oxidize NO in the gas, and then the mixture was cleaned through ventilation at a rate of 10 t/min.

吸収瓶の入口及び出口ガス中のNOx及びSOx濃度を
、それぞ札化学発光法及び溶液導電率法による機器で測
定したところ、脱硝率84%、脱硫率99.81%であ
った。
The NOx and SOx concentrations in the inlet and outlet gases of the absorption bottle were measured using equipment using the Fold chemiluminescence method and the solution conductivity method, respectively, and the denitrification rate was 84% and the desulfurization rate was 99.81%.

このときの吸収液組成は以下の通りであった。The composition of the absorption liquid at this time was as follows.

チオ尿素 800pIIIIIFe++”−
EDTA 300IF(Feとして)Ca CO3
6% CaSO36,00opptn また吸収液のpHはCa(OH)2を添加して実験中p
H8に保った。
Thiourea 800pIIIFe++”-
EDTA 300IF (as Fe) Ca CO3
6% CaSO36,00opptn Also, the pH of the absorption liquid was adjusted to pH during the experiment by adding Ca(OH)2.
I kept it at H8.

実施例 13 液容量11の吸収瓶を用いて、NO20Qppm。Example 13 NO20Qppm using an absorption bottle with a liquid capacity of 11.

S 023,000ppm及びCO□10係を含む空気
混合ガスを、あらかじめCtO2ガスを添加してガス中
のNOを酸化したのちLot/minの割合で通気洗浄
した。
An air mixed gas containing 023,000 ppm of S and 10 parts of CO was mixed with CtO2 gas to oxidize NO in the gas, and then was vented and cleaned at a rate of Lot/min.

吸収瓶の人口及び出口ガス中のNOx及びSOx濃度を
、それぞれ、化学発光法及び溶液導電率法による機器で
測定したところ、脱硝率92係、脱硫率99.7%であ
った。
When the concentration of the absorption bottle and the NOx and SOx concentrations in the outlet gas were measured using equipment using a chemiluminescence method and a solution conductivity method, respectively, the denitrification rate was 92% and the desulfurization rate was 99.7%.

このときの吸収液組成は以下の通りであった。The composition of the absorption liquid at this time was as follows.

チオ尿素 sooppm CuC750ppm(Cuとして) Ca CO31% CaSO34,000pF’ また吸収液のpHはCaCO3を添加して実験中…5に
保った。
Thiourea sooppm CuC750ppm (as Cu) CaCO31% CaSO34,000pF' The pH of the absorption solution was maintained at 5 during the experiment by adding CaCO3.

Claims (1)

【特許請求の範囲】[Claims] 1 硫黄酸化物及び窒素酸化物を含む排ガスをアルカリ
金属、アルカリ土類金属又はアンモニウムの水酸化物又
は炭酸塩と、チオ尿素又はアルカリ金属、アルカリ土類
金属若しくはアンモニウムのチオ硫酸塩と、銅イオン及
び鉄イオンのうちの少なくとも一つの金属イオンとを含
み、且つ、前記水酸化物又は炭酸塩と排ガス中の亜硫酸
ガスとの反応で生成する亜硫酸塩濃度が0.1モル/を
未満である、水性洗浄液で洗浄することを特徴とする排
ガス脱硫脱硝方法。
1. Exhaust gas containing sulfur oxides and nitrogen oxides is treated with hydroxides or carbonates of alkali metals, alkaline earth metals or ammonium, thiourea or thiosulfates of alkali metals, alkaline earth metals or ammonium, and copper ions. and at least one metal ion of iron ions, and the concentration of sulfite produced by the reaction of the hydroxide or carbonate with sulfite gas in the exhaust gas is less than 0.1 mol/. An exhaust gas desulfurization and denitrification method characterized by cleaning with an aqueous cleaning solution.
JP51024985A 1976-03-10 1976-03-10 Exhaust gas desulfurization and denitrification method Expired JPS5912333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51024985A JPS5912333B2 (en) 1976-03-10 1976-03-10 Exhaust gas desulfurization and denitrification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51024985A JPS5912333B2 (en) 1976-03-10 1976-03-10 Exhaust gas desulfurization and denitrification method

Publications (2)

Publication Number Publication Date
JPS52108366A JPS52108366A (en) 1977-09-10
JPS5912333B2 true JPS5912333B2 (en) 1984-03-22

Family

ID=12153263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51024985A Expired JPS5912333B2 (en) 1976-03-10 1976-03-10 Exhaust gas desulfurization and denitrification method

Country Status (1)

Country Link
JP (1) JPS5912333B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8903470A (en) * 1988-07-15 1990-03-06 Mo Tabachnaya Fabrika Yava COMPOSITION AND PROCESS FOR ABSORPTION OF NITROGEN OXIDE FROM TOBACCO SMOKE, FILTER TO PURIFY TOBACCO SMOKE FROM NITROGEN OXIDE AND IMPREGNATION PROCESS FROM A BASE OF A FILTER

Also Published As

Publication number Publication date
JPS52108366A (en) 1977-09-10

Similar Documents

Publication Publication Date Title
US4035470A (en) Process for removing sulfur oxides and/or nitrogen oxides from waste gas
US3957949A (en) Process for removing nitrogen oxides from gas
US8242324B2 (en) Removal of Hg, NOx, and SOx with using oxidants and staged gas/liquid contact
JP4649206B2 (en) Method for reducing NOx in a waste gas stream using sodium chlorite
CA1086921A (en) Exhaust gas scrubbing process
US7514053B2 (en) Method for removing sulfur dioxide, mercury, and nitrogen oxides from a gas stream
Lee et al. Simultaneous removal of SO 2 and NO by sodium chlorite solution in wetted-wall column
US4009244A (en) Process for removing oxides of nitrogen and sulfur from exhaust gases
US6872371B2 (en) Method and apparatus for NOx and SO2 removal
US3932585A (en) Method of removing nitrogen oxides from plant exhaust
US5164167A (en) Process for the removal of acid forming gases from exhaust gases
CN103736373A (en) Flue gas treatment method and flue gas treatment device capable of simultaneous desulfurization, de-nitration and mercury removal through magnesium oxide
JPH01164422A (en) Removal of acidic component and nitrogen oxide from waste gas of industrial furnace apparatus
JPS5912333B2 (en) Exhaust gas desulfurization and denitrification method
US4038368A (en) Process for removing oxides of nitrogen and sulfur from exhaust gases
CS360188A3 (en) Process for recovering nitrogen oxide from waste gas generated whenproducing ammonium nitrite
JPS5823135B2 (en) Chitsusosankabutsujiyokiyohouhou
KR800000279B1 (en) Exhaust gas scrubbing process
JPH0729025B2 (en) Method for simultaneous removal of sulfur oxides and nitrogen oxides
SU596541A1 (en) Method of reclaiming used ammonia sulphite-bisulphite solutions
JPS59203626A (en) Apparatus for treating exhaust gas of incinerator
JPH02203921A (en) Wet removal of nitrogen oxide in various combustion exhaust gases
KR20030053331A (en) Wet Scrubbing method of dust, sulfur oxides and nitrogen oxides from flue gas
CN117965910A (en) Method for extracting vanadium from vanadium-containing waste residues in denitration catalyst regeneration process
JPS581966B2 (en) High Gas No Shiyori Hohou