JPH0729025B2 - Method for simultaneous removal of sulfur oxides and nitrogen oxides - Google Patents

Method for simultaneous removal of sulfur oxides and nitrogen oxides

Info

Publication number
JPH0729025B2
JPH0729025B2 JP1051585A JP5158589A JPH0729025B2 JP H0729025 B2 JPH0729025 B2 JP H0729025B2 JP 1051585 A JP1051585 A JP 1051585A JP 5158589 A JP5158589 A JP 5158589A JP H0729025 B2 JPH0729025 B2 JP H0729025B2
Authority
JP
Japan
Prior art keywords
absorption
oxides
exhaust gas
nox
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1051585A
Other languages
Japanese (ja)
Other versions
JPH02229527A (en
Inventor
重則 鬼塚
利雄 濱
晃生 広常
利治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP1051585A priority Critical patent/JPH0729025B2/en
Publication of JPH02229527A publication Critical patent/JPH02229527A/en
Publication of JPH0729025B2 publication Critical patent/JPH0729025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、各種ボイラ、各種加熱炉さらにはごみ焼き
炉などから排出される燃焼排ガス中の硫黄酸化物(SO
x)および窒素酸化物(NOx)を同時に湿式法にて効果的
に除去し、もって大気環境の改善に資する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to sulfur oxides (SO 2) in combustion exhaust gas discharged from various boilers, various heating furnaces, and a dust-burning furnace.
x) and nitrogen oxides (NOx) at the same time by a wet method, thereby contributing to the improvement of the atmospheric environment.

[従来技術および問題点] 従来、この種の排ガス中のSOxおよびNOxの同時除去技術
としては、湿式法のNH3吸収法、錯塩吸収法、硫酸・硝
酸法などが知られている。また、乾式法としては活性炭
法、電子線照射法などが提案されている。ところが周知
の通り、このSOxおよびNOxの同時除去は、湿式法、乾式
法ともに非常に困難であり、同技術の確立、実用化は未
だなされていない。
[Conventional Technology and Problems] Conventionally, as a simultaneous removal technology for SOx and NOx in exhaust gas of this type, a wet method such as an NH 3 absorption method, a complex salt absorption method, and a sulfuric acid / nitric acid method has been known. Further, as a dry method, an activated carbon method, an electron beam irradiation method, etc. have been proposed. However, as is well known, simultaneous removal of SOx and NOx is extremely difficult in both wet and dry methods, and the establishment and practical application of the same technology have not yet been made.

湿式法として知られているNH3吸収法は、SOxに対しては
NH3水による吸収であるが、NOxに関しては予めオゾンも
添加し、NOをNO2に酸化した後、これをNH3水にて吸収さ
せる方法である。この方法の問題点は、オゾン酸化した
後でもNOxの吸収効率が余り高くなく、NOx除去率が低い
ことである。錯塩吸収法はEDTAを使用し、また硫酸・硝
酸法はニトロシル硫酸を中間体として生成されるもので
あるが、これらの方法の場合もまたNOxの除去率が低
い。
The NH 3 absorption method, known as the wet method, is
This is absorption by NH 3 water, but regarding NOx, ozone is added in advance to oxidize NO into NO 2 , and then this is absorbed by NH 3 water. The problem with this method is that the NOx absorption efficiency is not very high even after ozone oxidation and the NOx removal rate is low. The complex salt absorption method uses EDTA, and the sulfuric acid / nitric acid method produces nitrosyl sulfuric acid as an intermediate, but these methods also have low NOx removal rates.

乾式法については、上に挙げた方法はいずれも未だ開発
段階のものであり、実用化はなされていない。
Regarding the dry method, all of the above-mentioned methods are still in the development stage and have not been put to practical use.

[問題点の解決手段] この発明による排ガス中のSOxおよびNOxの同時除去方法
の一つは、湿式処理に関するもので、処理すべき排ガス
中に予め塩素ガス(Cl2)を添加しておき、その後アン
モニウムイオン(NH4 +)および臭素イオン(Br-)を含
む苛性ソーダ水溶液よりなる吸収液と上記排ガスを接触
させることを特徴とする。
[Means for Solving Problems] One of the methods for simultaneously removing SOx and NOx in exhaust gas according to the present invention relates to a wet treatment, in which chlorine gas (Cl 2 ) is previously added to the exhaust gas to be treated, then ammonium ions (NH 4 +) and bromine ions (Br -) and wherein the contacting absorption liquid and the exhaust gas consisting of sodium hydroxide aqueous solution containing.

この発明の方法によれば、SOxの除去とNOxの除去がほぼ
完全に達成されるばかりでなく、特に、SOx中のSO2はSO
3に酸化吸収され、硫酸塩を形成する。そのため、通常
のアルカリ水溶液による吸収の場合のように、SOx吸収
後の液中の亜硫酸塩の硫酸塩への酸化処理は必要でな
い。
According to the method of the present invention, not only SOx removal and NOx removal are almost completely achieved, but especially SO 2 in SOx is
Oxidized by 3 to form sulfate. Therefore, it is not necessary to oxidize sulfite in the liquid after SOx absorption into sulfate as in the case of absorption with a normal alkaline aqueous solution.

NOxの除去に関しては、後に述べるようにその機構は必
ずしも明確でないが、最終的には窒素と水まで還元され
ている可能性が強く、低温度域での還元という特異な反
応状況を呈する。
Regarding the removal of NOx, the mechanism is not always clear as will be described later, but it is highly possible that it is finally reduced to nitrogen and water, and a unique reaction situation of reduction in the low temperature region is exhibited.

また、本発明によるもう一つの方法は、処理すべき排ガ
ス中に予め臭素ガス(Br2)を添加しておき、その後NH4
+を含む苛性ソーダ水溶液よりなる吸収液と上記排ガス
を接触させることを特徴とする。
Another method according to the present invention is to add bromine gas (Br 2 ) to the exhaust gas to be treated in advance and then add NH 4
It is characterized in that the exhaust gas is brought into contact with an absorbing solution composed of a caustic soda solution containing + .

この第2の方法と前述の第1の方法との相違は、排ガス
中への注入添加ガスがCl2からBr2に変ったことと、吸収
液がBr-を含むNH4 +含有苛性ソーダ水溶液からBr-を含ま
ないものになったことである。これら2つの方法におけ
る構成要素は比較的類似するもので、その反応機構も類
似したものになる。
The difference between this second method and the above-mentioned first method is that the additive gas injected into the exhaust gas was changed from Cl 2 to Br 2 and that the absorption liquid was changed from NH 4 + -containing caustic soda aqueous solution containing Br −. Br - is not included. The components in these two methods are relatively similar, and their reaction mechanisms are also similar.

第1の方法におけるSOxの吸収、すなわちSO2およびSO3
の吸収は次のようになる。
Absorption of SOx in the first method, ie SO 2 and SO 3
The absorption of is as follows.

Cl2+2NaOH→NaClO+NaCl+H2O ………(1) SO2+NaClO+2NaOH→Na2SO4+NaCl+H2O ……(2) SO3+2NaOH→Na2SO4+H2O ………………(3) (1)式はCl2の苛性ソーダへの吸収であり、(2)式
はSO2のNaClOによる酸化吸収であり、(3)式はSO3
苛性ソーダへの吸収である。さらに、この発明によれ
ば、吸収液中にBr-およびNH4 +が含まれることから、上
記反応の他に次のような反応が生起し、SO2の酸化吸収
を早め、より高効率のSOxの除去が達成される。
Cl 2 + 2NaOH → NaClO + NaCl + H 2 O ………… (1) SO 2 + NaClO + 2NaOH → Na 2 SO 4 + NaCl + H 2 O …… (2) SO 3 + 2NaOH → Na 2 SO 4 + H 2 O ……………… (3) ( The equation (1) is absorption of Cl 2 into caustic soda, the equation (2) is oxidation absorption of SO 2 by NaClO, and the equation (3) is absorption of SO 3 into caustic soda. Further, according to the present invention, since the absorption liquid contains Br and NH 4 + , the following reaction occurs in addition to the above reaction, which accelerates the oxidation absorption of SO 2 and has a higher efficiency. SOx removal is achieved.

Cl2+2Br-→Br2+2Cl- ………(4) SO2+Br2+4NaOH→Na2SO4+2NaBr+2H2O ……(5) SOx吸収法におけるNH4 +の作用効果は明確ではないが、N
Oxの吸収においては重要な要素となっている。
Cl 2 + 2Br - → Br 2 + 2Cl - ......... (4) SO 2 + Br 2 + 4NaOH → Na 2 SO 4 + 2NaBr + 2H 2 O ...... (5) is NH 4 + advantages of the is not clear in the SOx absorption process, N
It is an important factor in the absorption of Ox.

次にNOxの吸収について見ると、(1)式で生成するNaC
lOおよび苛性ソーダ吸収液だけによる酸化吸収はほとん
ど起らず、NOxの除去は達成されない。すなわち、吸収
液中にBr-、NH4 +が存在しない場合にはNOxの除去は達成
されない。
Next, looking at the absorption of NOx, the NaC generated by equation (1)
Almost no oxidative absorption occurs with lO and caustic soda absorbent, and NOx removal is not achieved. That is, NOx removal is not achieved when Br and NH 4 + are not present in the absorbing solution.

この反応においては、Br-とNH4 +の両者の存在が必要で
あり、いずれか一方が欠けるとNOxはほとんど除去され
ない。
In this reaction, the presence of both Br and NH 4 + is necessary, and NOx is hardly removed if either one is lacking.

Cl2+2Br-→Br2+2Cl- ………(4) NO+1/2Br2→NOBr (6) NOBr+NH3+H2O→ NH4NO2+HBr ……(7) これらの反応式に示すように、(4)式で生成されたBr
2は反応性に富む臭化ニトロシル(NOBr)を生成し、こ
のNOBrがNH4 +と反応してNH4NO2を生成する。ここで、NH
4 +を含む苛性ソーダ水溶液を使用した場合、NH4 +を含ま
ない場合に比べ、格段にNOx除去率が高い。同じ塩基性
物質であってもNH4OHとNaOHとではその作用効果におい
て明確な差異がある。この原因は明確でないが、NH4OH
の場合には気−液境界層においてNH3分圧を有すること
がNOBrとの反応性を高め、吸収速度を上げる要因となっ
ていると思われる。この意味において、上記(7)式で
は反応物質をNH4 +でなくNH3で示した。NH4NO2は下記
(8)式に示す如く非常に分解しやすい物質である。
Cl 2 + 2Br → Br 2 + 2Cl ……… (4) NO + 1 / 2Br 2 → NOBr (6) NOBr + NH 3 + H 2 O → NH 4 NO 2 + HBr …… (7) As shown in these reaction formulas, ( Br generated by equation 4)
2 produces a highly reactive nitrosyl bromide (NOBr), which reacts with NH 4 + to produce NH 4 NO 2 . Where NH
When the caustic soda aqueous solution containing 4 + is used, the NOx removal rate is remarkably high as compared with the case where NH 4 + is not contained. Even with the same basic substance, there is a clear difference in the action and effect between NH 4 OH and NaOH. The cause of this is unclear, but NH 4 OH
In the case of, it is considered that having the NH 3 partial pressure in the gas-liquid boundary layer enhances the reactivity with NOBr and increases the absorption rate. In this sense, in the above formula (7), the reactant is represented by NH 3 instead of NH 4 + . NH 4 NO 2 is a substance that is very easily decomposed as shown in the following formula (8).

NH4NO2→N2+2H2O ……(8) 後に述べる実施例の結果でも、吸収液の排水側でのNO2 -
およびNO3 -の量は、定性的には非常に少なかった。
NH 4 NO 2 → N 2 + 2H 2 O ...... (8) of the embodiments described later result even, NO in drainage side of the absorbent 2 -
Quantitatively the amounts of NO 3 and NO 3 were very low.

第2の方法は、Br2の発生をBr-とCl2によって行なうの
ではなく、Br2を排ガスに直接添加するもので、SOxおよ
びNOxの吸収をCl2を介さずに実施する方法である。SOx
の除去は(5)式、またNOxの除去は(6)(7)
(8)式によると考えられる。
The second method is not to generate Br 2 with Br and Cl 2 but to add Br 2 directly to the exhaust gas, and to carry out SOx and NOx absorption without Cl 2 . SOx
(5) and NOx (6) and (7)
It is considered that this is due to the equation (8).

ここにおいて、第1および第2の方法を実施する場合の
重要な反応条件としては、排ガス中へ予め注入添加する
Cl2もしくはBr2の量、吸収液中のBr-量およびNH4 +量、
さらには苛性ソーダによって調整されるpHの値である。
これらの条件を以下に示す。
Here, an important reaction condition for carrying out the first and second methods is to pre-inject and add into the exhaust gas.
Amount of Cl 2 or Br 2 , amount of Br and NH 4 + in the absorbing solution,
Furthermore, it is a pH value adjusted by caustic soda.
These conditions are shown below.

1) Cl2量;Cl2/(SO2+1/2NO)モル比1以上 2) Br2量;Br2/(SO2+1/2NO)モル比1以上 3) NH4 +量;NH4 +/NOモル比1以上 4) 吸収液入口pH;3〜9(苛性ソーダによる調整) この発明の実施プロセスでは、Cl2およびBr2は消費され
るのでなく系内で形態を変え吸収液中に捕捉される。そ
こで、このCl2およびBr2は隔膜電解によって再生使用で
きる。NH4 +はNOxの還元剤として使用されるため、その
消費分の補給が必要である。NH4 +源としてはNH3、NH4OH
が勿論使用できるが、工業的には硫安、塩安などの塩が
経済的かつ反応面においても問題なく使用できる。
1) Cl 2 amount; Cl 2 / (SO 2 + 1 / 2NO) molar ratio 1 or more 2) Br 2 amount; Br 2 / (SO 2 + 1 / 2NO) molar ratio 1 or more 3) NH 4 + amount; NH 4 + / NO molar ratio of 1 or more 4) Absorbing liquid inlet pH: 3 to 9 (adjustment with caustic soda) In the process of carrying out the present invention, Cl 2 and Br 2 are not consumed but change their form in the system and are captured in the absorbing liquid. To be done. Therefore, this Cl 2 and Br 2 can be recycled by diaphragm electrolysis. Since NH 4 + is used as a reducing agent for NOx, it is necessary to replenish the consumption. NH 4 + as the source NH 3, NH 4 OH
However, of course, salts such as ammonium sulfate and ammonium salt can be industrially used without any problems in terms of economy and reaction.

この発明における吸収塔の形式としては、通常知られて
いるラシヒリングなどの充填塔、スプレー塔、棚段塔な
ど各種の吸収塔が使用される。これらの吸収塔の操作条
件、すなわち液ガス比、ガス空塔速度などとの関係にお
いて、これらの塔のうちどの形式のものを使用するか決
定される。
As the type of absorption tower in the present invention, various absorption towers such as a commonly known packed tower such as Raschig ring, a spray tower, and a tray tower are used. Depending on the operating conditions of these absorption towers, that is, the liquid gas ratio, the gas superficial velocity, etc., it is decided which type of these towers should be used.

[発明の効果] この発明の方法によれば、従来の湿式法では困難であっ
たSOxおよびNOxの同時除去が、特に高NOx除去率を維持
して経済的に達成される。
[Effects of the Invention] According to the method of the present invention, simultaneous removal of SOx and NOx, which was difficult by the conventional wet method, is economically achieved while maintaining a particularly high NOx removal rate.

[実 施 例] 実施例1 第1図に示す試験装置を用いてSOxおよびNOxの除去試験
を実施した。ここで、SOxおよびNOxとしては、排ガス中
のSOxおよびNOx中のうち大部分を占めるSO2およびNOを
使用し、SO3およびNO2の混入は行なわなかった。
[Examples] Example 1 A SOx and NOx removal test was performed using the test apparatus shown in FIG. As SOx and NOx, SO 2 and NO, which account for most of SOx and NOx in the exhaust gas, were used, and SO 3 and NO 2 were not mixed.

反応塔(1)は径30mmφ×高さ510mmのパイレックスガ
ラス管よりなり、径2mmの球形ガラスビーズを高さ331mm
まで充填したものである。吸収塔(2)は反応塔(1)
と全く同じ形式およびサイズのものである。反応塔
(1)および吸収塔(2)ともに温水ジャケット(3)
(4)を有し、所定温度(70℃)に維持されている。反
応塔(1)は反応ガス中にCl2あるいはBr2を予め添加す
るための装置であり、反応塔(1)の反応液で直接SO2
およびNOを吸収するものではない。他方、吸収塔(2)
はSO2およびNOを吸収する装置である。SO2の除去率およ
びNOの除去率は、この吸収塔(2)の前後における各々
の濃度を測定することによって求めた。
The reaction tower (1) consists of a Pyrex glass tube with a diameter of 30 mm and a height of 510 mm, and spherical glass beads with a diameter of 2 mm have a height of 331 mm.
It is filled up to. Absorption tower (2) is reaction tower (1)
It has exactly the same format and size as. Hot water jacket (3) for both reaction tower (1) and absorption tower (2)
It has (4) and is maintained at a predetermined temperature (70 ° C). Reaction column (1) is a device for adding Cl 2 or Br 2 in advance in the reaction gas, directly in the reaction liquid in the reaction column (1) SO 2
And does not absorb NO. On the other hand, absorption tower (2)
Is a device that absorbs SO 2 and NO. The SO 2 removal rate and the NO removal rate were determined by measuring the respective concentrations before and after the absorption tower (2).

第1表に本試験装置における共通の標準的な反応条件を
示す。同表において、ケースAは試験用排ガス中にCl2
を添加する場合(第1の方法)の条件であり、ケースB
はBr2を添加する場合(第2の方法)の条件である。吸
収塔の操作条件で見ると、ケースAとケースBではとも
にBr-濃度は50mg/であるが、ケースBではBr-の添加
は行なわなかった。Br-およびNH4 +源としてはそれぞれK
Brおよび(NH42SO4を使用した。
Table 1 shows common standard reaction conditions in this test apparatus. In the table, Case A contains Cl 2 in the test exhaust gas.
Is the condition for adding (first method), Case B
Is the condition when Br 2 is added (second method). When viewed under the operating conditions of the absorption tower, the Br concentration was 50 mg / both in both case A and case B, but Br was not added in case B. Br - and NH 4 + are examples of sources K
Br and (NH 4 ) 2 SO 4 were used.

ケースAにおける結果を第2表に示す。同表から明らか
なように、高いSO2除去率および高いNO除去率が得られ
る。ただし、SO2濃度500ppmの場合には、SO2によりCl2
分が消費されてCl2不足となり、NOの除去率が低下して
いる。ケースBの結果を第3表に示す。この場合、SO2
濃度500ppmでも高いNO除去率が得られる。
The results in Case A are shown in Table 2. As is clear from the table, a high SO 2 removal rate and a high NO removal rate are obtained. However, when the SO 2 concentration is 500 ppm, the SO 2 causes Cl 2
As a result, minutes are consumed and Cl 2 becomes deficient, resulting in a reduction in NO removal rate. The results of Case B are shown in Table 3. In this case SO 2
A high NO removal rate can be obtained even at a concentration of 500 ppm.

比較例1 実施例1の装置を使用し、第1表の条件下、試験用排ガ
スは反応塔(1)をバイパスさせ、すなわち、Cl2およ
びBr2を添加せず、直接吸収塔(2)へ導入した。吸収
塔(2)の吸収液は苛性ソーダによってpH9に調整し、N
H4 +(10mg/)およびBr-(50mg/)の有無の各ケース
で試験を行なった。その結果を第4表に示す。Cl2およ
びBr2を添加しない系では、有効なSO2およびNOの除去は
達成されない。
Comparative Example 1 Using the apparatus of Example 1 and under the conditions of Table 1, the test exhaust gas bypasses the reaction tower (1), ie without adding Cl 2 and Br 2 , the direct absorption tower (2). Introduced to. The absorption liquid in the absorption tower (2) was adjusted to pH 9 with caustic soda and N
The test was conducted in each case with and without H 4 + (10 mg /) and Br (50 mg /). The results are shown in Table 4. Effective removal of SO 2 and NO is not achieved in the system without the addition of Cl 2 and Br 2 .

比較例2 実施例1の装置を使用し、第2表のNo.2のガス組成か
ら、吸収液中へのNH4 +およびBr-の添加を行なわず、SO2
およびNOの除去試験を実施した。その結果、SO2除去率9
9.5%およびNO除去率4.3%を得た。すなわち、吸収液に
NH4 +およびBr-が含まれない場合には、有効なNO除去が
達成されないことがわかる。
Comparative Example 2 Using the apparatus of Example 1, from the gas composition of No. 2 in Table 2, NH 4 + and Br were not added to the absorbing solution, and SO 2 was added.
And a NO removal test was performed. As a result, the SO 2 removal rate was 9
9.5% and NO removal rate of 4.3% were obtained. That is,
It can be seen that no effective NO removal is achieved if NH 4 + and Br are not included.

比較例3 実施例1の装置を使用し、第3表のNo.2のガス組成か
ら、吸収液中へのNH4 +の添加を行なわず、SO2およびNO
の除去試験を実施した。その結果、SO2除去率99.5%お
よびNO除去率3.2%を得た。すなわち、NH4 +が吸収液に
含まれない系では、有効なNO除去が達成されないことが
わかる。
Comparative Example 3 Using the apparatus of Example 1, from the gas composition No. 2 in Table 3, NH 4 + was not added to the absorption liquid, and SO 2 and NO were added.
The removal test was carried out. As a result, a SO 2 removal rate of 99.5% and a NO removal rate of 3.2% were obtained. That is, it can be seen that effective NO removal is not achieved in a system in which NH 4 + is not contained in the absorbent.

【図面の簡単な説明】[Brief description of drawings]

図面はこの発明の実施例を示すフローシートである。 The drawings are flow sheets showing an embodiment of the present invention.

フロントページの続き (72)発明者 小林 利治 大阪府大阪市此花区桜島1丁目3番40号 ニチゾウ陸機設計株式会社内 (56)参考文献 特開 平2−203921(JP,A) 特開 平2−203922(JP,A)Front page continued (72) Inventor Toshiharu Kobayashi 1-3-40 Sakurajima, Konohana-ku, Osaka-shi, Osaka Nichizo Landing Machine Design Co., Ltd. (56) Reference JP-A-2-203921 (JP, A) JP-A 2-203922 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】硫黄酸化物および窒素酸化物を含む燃焼排
ガス中に予め塩素ガスをCl2/(SO2+1/2NO)=モル比1
以上で添加しておき、その後アンモニウムイオンおよび
臭素イオンを含む苛性ソーダ水溶液と上記排ガスを接触
させることにより硫黄酸化物と窒素酸化物を同時に除去
する、硫黄酸化物および窒素酸化物の同時除去方法。
1. A chlorine gas is previously mixed with Cl 2 / (SO 2 + 1 / 2NO) = molar ratio of 1 in a combustion exhaust gas containing sulfur oxides and nitrogen oxides.
A method for simultaneous removal of sulfur oxides and nitrogen oxides, in which the sulfur oxides and nitrogen oxides are simultaneously removed by contacting the caustic soda aqueous solution containing ammonium ions and bromine ions with the exhaust gas described above.
【請求項2】硫黄酸化物および窒素酸化物を含む燃焼排
ガス中に予め臭素ガスをBr2/(SO2+1/2NO)=モル比1
以上で添加しておき、その後アンモニウムイオンを含む
苛性ソーダ水溶液と上記排ガスを接触させることにより
硫黄酸化物と窒素酸化物を同時に除去する、硫黄酸化物
および窒素酸化物の同時除去方法。
2. Bro 2 gas is previously added to a combustion exhaust gas containing sulfur oxides and nitrogen oxides in a molar ratio of Br 2 / (SO 2 + 1 / 2NO) = 1.
A method for simultaneous removal of sulfur oxides and nitrogen oxides, in which sulfur oxides and nitrogen oxides are simultaneously removed by contacting the caustic soda aqueous solution containing ammonium ions with the exhaust gas described above.
JP1051585A 1989-03-02 1989-03-02 Method for simultaneous removal of sulfur oxides and nitrogen oxides Expired - Lifetime JPH0729025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1051585A JPH0729025B2 (en) 1989-03-02 1989-03-02 Method for simultaneous removal of sulfur oxides and nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1051585A JPH0729025B2 (en) 1989-03-02 1989-03-02 Method for simultaneous removal of sulfur oxides and nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH02229527A JPH02229527A (en) 1990-09-12
JPH0729025B2 true JPH0729025B2 (en) 1995-04-05

Family

ID=12891012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1051585A Expired - Lifetime JPH0729025B2 (en) 1989-03-02 1989-03-02 Method for simultaneous removal of sulfur oxides and nitrogen oxides

Country Status (1)

Country Link
JP (1) JPH0729025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169573A (en) * 2020-11-26 2021-01-05 苏州仕净环保科技股份有限公司 Flue gas desulfurization and denitrification process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325126B1 (en) * 1999-05-06 2002-03-02 민경조 Method of denitrificating exhaust gas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691942B2 (en) * 1989-02-01 1994-11-16 日立造船株式会社 Wet flue gas denitration method
JPH0691941B2 (en) * 1989-02-01 1994-11-16 日立造船株式会社 Wet removal method of nitrogen oxides in various combustion exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169573A (en) * 2020-11-26 2021-01-05 苏州仕净环保科技股份有限公司 Flue gas desulfurization and denitrification process

Also Published As

Publication number Publication date
JPH02229527A (en) 1990-09-12

Similar Documents

Publication Publication Date Title
KR100325571B1 (en) REMOVAL OF NOx AND SOx EMISSIONS FROM PICKLING LINES FOR METAL TREATMENT
US4035470A (en) Process for removing sulfur oxides and/or nitrogen oxides from waste gas
ES2337997T3 (en) NOX LEVEL REDUCTION PROCESS IN RESIDUAL GAS CURRENTS BY SODIUM CHLORITE USE.
US4085194A (en) Waste flue gas desulfurizing method
US6872371B2 (en) Method and apparatus for NOx and SO2 removal
US3932585A (en) Method of removing nitrogen oxides from plant exhaust
JP3114775B2 (en) Manufacturing method of aqueous sodium carbonate solution
JPH0729025B2 (en) Method for simultaneous removal of sulfur oxides and nitrogen oxides
US4055624A (en) Process for removing nitrogen oxides from gaseous mixtures
US4178348A (en) Process for removing sulfur oxides in exhaust gases
JPH02203921A (en) Wet removal of nitrogen oxide in various combustion exhaust gases
JPH0356123A (en) Removal of mercury and nox in gas
JPS60132695A (en) Treatment of waste water containing sulfur compound
JPS5855803B2 (en) Denitration method
JPH0691942B2 (en) Wet flue gas denitration method
JPH0117434B2 (en)
JP3649426B2 (en) How to clean harmful gases
JPS5912333B2 (en) Exhaust gas desulfurization and denitrification method
JPS5834174B2 (en) Chitsusosankabutsunojiyokiyohouhou
JPS6388024A (en) Removal of mercury in exhaust gas
KR20020050991A (en) Method for wet scrubbing of nitrogen oxides from flue gas
Han et al. An investigation on NO removal by wet scrubbing using NaClO
JPH0649133B2 (en) Method for removing nitrogen oxides in exhaust gas
JPS599208B2 (en) Wet desulfurization method
JPS6388023A (en) Removal of mercury in exhaust gas