JPS5823135B2 - Chitsusosankabutsujiyokiyohouhou - Google Patents

Chitsusosankabutsujiyokiyohouhou

Info

Publication number
JPS5823135B2
JPS5823135B2 JP50130270A JP13027075A JPS5823135B2 JP S5823135 B2 JPS5823135 B2 JP S5823135B2 JP 50130270 A JP50130270 A JP 50130270A JP 13027075 A JP13027075 A JP 13027075A JP S5823135 B2 JPS5823135 B2 JP S5823135B2
Authority
JP
Japan
Prior art keywords
cleaning
gas
liquid
treated
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50130270A
Other languages
Japanese (ja)
Other versions
JPS5253765A (en
Inventor
吾妻健国
後藤令幸
春田健雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP50130270A priority Critical patent/JPS5823135B2/en
Publication of JPS5253765A publication Critical patent/JPS5253765A/en
Publication of JPS5823135B2 publication Critical patent/JPS5823135B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】 この発明は窒素酸化物除去方法に関し、更に詳しくは排
ガス中に含まれた酸化窒素(以下NOと記す)と二酸化
窒素(以下NO2と記す)を最終的に窒素ガス(以下N
2と記す)に還元する窒素酸化物除去方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing nitrogen oxides, and more specifically, the present invention relates to a method for removing nitrogen oxides, and more specifically, to remove nitrogen oxides (hereinafter referred to as NO) and nitrogen dioxide (hereinafter referred to as NO2) contained in exhaust gas into nitrogen gas ( Below N
2).

従来の湿式脱硝方法としては苛性ソーダ(以下NaOH
と記す)やアンモニア水等によるアルカリ吸収法、過マ
ンガン酸カリウムや亜塩素酸ソーダ等の酸化剤を含む水
溶液による酸化吸収法、または亜硫酸ソーダ(以下Na
2SO3と記す)、硫化ソーダ等の還元剤を含む水溶液
による還元吸収法が用いられている。
The conventional wet denitration method uses caustic soda (hereinafter referred to as NaOH).
) or ammonia water, oxidative absorption method using an aqueous solution containing an oxidizing agent such as potassium permanganate or sodium chlorite, or sodium sulfite (hereinafter referred to as Na
2SO3), a reduction absorption method using an aqueous solution containing a reducing agent such as sodium sulfide is used.

これらの方法においては被処理ガス中の窒素酸化物(以
下NOxと記す)は硝酸イオン(以下NOk記す)また
は亜硝酸イオン(以下NO2−と記す)とNO3−との
混合物として洗浄液に固定される。
In these methods, nitrogen oxides (hereinafter referred to as NOx) in the gas to be treated are fixed in the cleaning liquid as a mixture of nitrate ions (hereinafter referred to as NOk) or nitrite ions (hereinafter referred to as NO2-) and NO3-. .

その際の化学反応は下記の化学式による。The chemical reaction at that time is based on the chemical formula below.

(イ)アルカリ吸収法 2N02+2NaOH −+ N a No2−(−N a No 、 −(−
H2ON0+NO+2NaOH→2NaNO2+H20
NaNO2は部分的に被処理ガス中の酸素によってNa
NO3に酸化される。
(a) Alkali absorption method 2N02+2NaOH −+ Na No2−(−Na No , −(−
H2ON0+NO+2NaOH→2NaNO2+H20
NaNO2 is partially converted into Na by oxygen in the gas to be treated.
Oxidized to NO3.

2NaNO+o −+2NaN03 2 (ロ)酸化吸収法 NO+KMnO−+KMn03+NO2 3N02+KMnO+2KOH −)3KNO,+MnO2+H2O 2N0+3NaClO+2NaOH →2 N a No3+ 3 N a Cl+I(20
4N02+NaCAO+4NaOH →4NaNO3+NaCl+2H20 (ハ)還元吸収法 2 NO2+ 3 N a 2 S 03 +H20H
2N a N02+2NaH8O3+Na2SO4・・
・・・・〔1〕2NO2+ (4n ) Na 2 S
O3+n Na H8O3→N2+(4−n)Na
2So、+nNaH3O。
2NaNO+o −+2NaN03 2 (b) Oxidation absorption method NO+KMnO−+KMn03+NO2 3N02+KMnO+2KOH −) 3KNO, +MnO2+H2O 2N0+3NaClO+2NaOH →2 Na No3+ 3 Na Cl+I(20
4N02+NaCAO+4NaOH →4NaNO3+NaCl+2H20 (c) Reduction absorption method 2 NO2+ 3 Na 2 S 03 +H20H
2N a N02+2NaH8O3+Na2SO4・・
...[1]2NO2+ (4n) Na2S
O3+n Na H8O3→N2+(4-n)Na
2So, +nNaH3O.

0 < n <4・・・・・・〔2〕 2NaNO+0−)2NaNO・・・・・・−(3:]
2 2 3 3NO+Na 5−)2NaN03+1/2N2+S2 上記のような湿式吸収法によって洗浄液中に固定された
NOxイオンを除去する試みは種々なされているが現在
までのところ安価で適切な処理方法が見あたらず、湿式
排煙脱硝方法の最大の難点とされていた。
0 < n < 4...[2] 2NaNO+0-)2NaNO...-(3:]
2 2 3 3NO+Na 5-) 2NaN03+1/2N2+S2 Various attempts have been made to remove NOx ions fixed in the cleaning solution by the wet absorption method as described above, but so far no inexpensive and appropriate treatment method has been found. This was considered to be the biggest drawback of the wet flue gas denitrification method.

この発明は上記の問題点を解決することを目的としてな
されたもので、まず被処理ガス中のNOをオゾン(以下
03と記す)によってNO2に酸化した後、亜硫酸塩(
以下MS03と記す)とチオ硫酸塩(以下MS203と
記す)とを含むアルカリ性の水溶液によって洗浄し、N
O2をNO3−と比較して無公害化処理が比較的容易な
NO2−として洗浄液中に固定した後、この洗浄液中に
含有されたNO□−のモル濃度に対して当量のアミドス
ルフォン酸塩が存在する状態の下で洗浄液のpHを4.
2以下に調整し、含有せる亜硝酸根を窒素ガスに分解す
る方法を見出し、この発明を完成したものである。
This invention was made with the aim of solving the above problems. First, NO in the gas to be treated is oxidized to NO2 by ozone (hereinafter referred to as 03), and then sulfite (
MS03) and thiosulfate (hereinafter referred to as MS203).
After O2 is fixed in the cleaning liquid as NO2-, which is relatively easy to treat to make it non-polluting compared to NO3-, an amount of amidosulfonate is added in an amount equivalent to the molar concentration of NO□- contained in this cleaning liquid. Under the conditions present, the pH of the wash solution is 4.
This invention was completed by discovering a method to adjust the concentration to 2 or less and decomposing the contained nitrite radical into nitrogen gas.

図はこの発明に係る脱硝方法を適用した脱硝装置の一実
施例の構成を示す図で、図においてNOとNO2、特に
NOを主要なNOx成分とする煙道ガス等の被処理ガス
1はまず冷却塔2に導入され、冷却塔2内においてポン
プ3により送給される冷却水4と接触して350°に以
下に冷却される。
The figure shows the configuration of an embodiment of a denitrification apparatus to which the denitrification method according to the present invention is applied. The water is introduced into the cooling tower 2, where it comes into contact with the cooling water 4 fed by the pump 3, and is cooled to 350° or less.

冷却された被処理ガス5は混合器6に導入され、混合器
6内において、オゾン発生器7から連続的に供給される
オゾン化空気8と混合され、被処理ガス5中のNOは、
03により1.2秒以下の極めて短時間内にNO□に酸
化され、酸化された被処理ガス9となって洗浄塔10に
導木される。
The cooled gas to be treated 5 is introduced into a mixer 6, where it is mixed with ozonized air 8 that is continuously supplied from an ozone generator 7, and the NO in the gas to be treated 5 is
03, it is oxidized to NO□ within an extremely short time of 1.2 seconds or less, and is led to the cleaning tower 10 as the oxidized gas to be treated 9.

なお03によるNOの酸化反応は下の化学反応式によっ
て迅速に進行する。
Note that the oxidation reaction of NO by 03 proceeds rapidly according to the chemical reaction formula below.

NO+0→NO2+02 −d (:03]/d t=K(NO) (03)K=
8X103exp(−2,500/RT)l、モJ:
3 sec ’被処理ガス9は、洗浄塔10内において
、ポンプ11により送給されてくるMgO2とMS20
3の水溶液であって、pH9以上に調整された洗浄液1
2と気液接触し、被処理ガス9中のNO2は、迅速に洗
浄液12に吸収され、脱硝された処理ガス13となって
塔外に放出される。
NO+0→NO2+02 -d (:03]/d t=K(NO) (03)K=
8X103exp (-2,500/RT)l, MoJ:
3 sec 'The gas 9 to be treated is mixed with MgO2 and MS20 fed by the pump 11 in the cleaning tower 10.
Cleaning liquid 1, which is an aqueous solution of No. 3 and whose pH is adjusted to 9 or more.
NO2 in the gas to be treated 9 is quickly absorbed by the cleaning liquid 12, becomes denitrified treated gas 13, and is discharged outside the column.

なお洗浄液12の組成は、洗浄液1 kgあたり0.0
8モル以上のMgO3と0.03モル以上のMS203
とを含み、pH9以上に調整された水溶液がNO2の吸
収速度が大きいうえMgO2の空気酸化も少く、良い結
果が得られた。
The composition of the cleaning liquid 12 is 0.0 per kg of cleaning liquid.
8 moles or more of MgO3 and 0.03 moles or more of MS203
The aqueous solution containing the above and adjusted to a pH of 9 or higher had a high NO2 absorption rate and less air oxidation of MgO2, giving good results.

なおMS203がMgO2と共存すれば前記の反応式〔
3〕によるNO2−のNO3−への酸化反応が完全に防
止されるが、その機構は明確ではない。
Note that if MS203 coexists with MgO2, the above reaction formula [
3], the oxidation reaction of NO2- to NO3- is completely prevented, but the mechanism is not clear.

また洗浄液12が常に上記の濃度、pHを維持するよう
に、補給液ピット14からポンプ15により間欠的また
は連続的に補給液16が供給されるように構成されてい
る。
Further, the replenishing liquid 16 is intermittently or continuously supplied from the replenishing liquid pit 14 by the pump 15 so that the cleaning liquid 12 always maintains the above concentration and pH.

この洗浄塔10内でのNO□吸収反応は主として前記の
化学反応式〔1〕によるものと推測される。
It is assumed that the NO□ absorption reaction within the cleaning tower 10 is mainly due to the chemical reaction formula [1] described above.

所定の濃度までNO2を吸収した洗浄液12は適宜、洗
浄廃液17として廃液脱窒槽24に放出され、含有せる
NO2−と当モル濃度のアミドスルフォン酸塩18をポ
ンプ19によって連続的に注入されなからpH調節液ピ
ット21からポンプ22を介して適量送給される工業用
硫酸水溶液等のpH調節液23と攪拌器25によって混
合され、pH4,2〜2.5に調整される。
The cleaning liquid 12 that has absorbed NO2 up to a predetermined concentration is appropriately discharged as a cleaning waste liquid 17 to a waste liquid denitrification tank 24, and the amidosulfonate 18 at a molar concentration equivalent to the NO2 contained therein is continuously injected by a pump 19. A suitable amount of pH adjusting liquid 23 such as an aqueous industrial sulfuric acid solution is fed from a pH adjusting liquid pit 21 via a pump 22 and mixed by a stirrer 25 to adjust the pH to 4.2 to 2.5.

このpH調整によってNO2−はN2に分解されるが、
その際のNO2−の分解反応は次式のように進む。
This pH adjustment decomposes NO2- into N2, but
The decomposition reaction of NO2- at that time proceeds as shown in the following equation.

HNO2+NH2SO3M−+N2+MH8O4+H2
0HNO#NO−十I(+logCNO□〕/〔HNO
2〕2 =−3,35+pH(25℃) この反応は迅速に進行し、温度40℃、pH2,5〜4
.2ではNOlの90%以上が3分以内にN2になって
放出される。
HNO2+NH2SO3M-+N2+MH8O4+H2
0HNO#NO-10I (+logCNO□)/[HNO
2] 2 = -3,35 + pH (25°C) This reaction proceeds rapidly, at a temperature of 40°C and a pH of 2,5-4.
.. 2, more than 90% of the NOl is converted to N2 and released within 3 minutes.

しかしpHが2.3以下にさがるとHNO□の分解によ
るNOの発生が増加する傾向を示し、pHが4.5〜6
.5になると共存するMgO2と亜硝酸塩とが反応しヒ
ドロキシルアミン2スルフオン酸塩を生成するので好ま
しくない。
However, when the pH drops below 2.3, the generation of NO due to the decomposition of HNO□ tends to increase;
.. 5, the coexisting MgO2 and nitrite react to form hydroxylamine disulfonate, which is not preferable.

次にこの発明を適用した脱硝装置のすぐれた性能を確認
するためにおこなった実験結果を説明する。
Next, the results of experiments conducted to confirm the excellent performance of the denitration equipment to which this invention is applied will be explained.

表1は実験条件を、表2はpH及び洗浄液の成分の測定
方法を、表3は表1の条件の下で約6時間にわたって連
続的に稼動させた場合の排煙中のNOx含有濃度の上限
及び下限におけるNOxの除去能率を示すもので市販の
化学発光方式のNOxメータで測定した平均値、及び6
時間連続稼動後の洗浄液の組成を示す。
Table 1 shows the experimental conditions, Table 2 shows the method for measuring the pH and components of the cleaning solution, and Table 3 shows the NOx concentration in the flue gas when operating continuously for about 6 hours under the conditions in Table 1. It indicates the NOx removal efficiency at the upper and lower limits, and is the average value measured with a commercially available chemiluminescent NOx meter, and 6
The composition of the cleaning solution after continuous operation for hours is shown.

この上限及び下限におけるNO□の吸収能力を示すパラ
メータであるガス基準総括容量係数K。
The gas standard overall capacity coefficient K is a parameter indicating the NO□ absorption capacity at the upper and lower limits.

A−は下記の式で与えられる。GM KGA= −1n3’t/y2(kgモル/m”、Hr
、Atm)P ここに GM :ガス質量流量(mす Z :充填部の高さく771) P :全ガス圧 (Atm) yl、y2:塔底、塔頂でのNOx濃度(ppm)この
容量係数K。
A- is given by the following formula. GM KGA=-1n3't/y2 (kg mol/m", Hr
, Atm) P where GM: Gas mass flow rate (mSZ: Height of packing section 771) P: Total gas pressure (Atm) yl, y2: NOx concentration at the bottom and top of the column (ppm) This capacity coefficient K.

Aは排煙中のNOx濃度が146p−のとき135〜1
45.50ppI[lのとき155〜162 (kgモ
ル/ m Hr 、Atm)であった。
A is 135 to 1 when the NOx concentration in the flue gas is 146p-
It was 155-162 (kg mol/m Hr, Atm) at 45.50 ppI [l].

これに対して表1の洗浄液および補給液中にN a2
N203を含まないときのKGAは、他の条件を同一と
して、NOx濃度が約150pI)mのとき初期34.
6時間稼動後には26、またNOx濃度が約50pI)
mのとき初期38.6時間稼動後に11であった。
On the other hand, Na2 in the cleaning solution and replenishment solution in Table 1
KGA without N203 is initially 34.5% when the NOx concentration is approximately 150 pI)m, all other conditions being the same.
26 after 6 hours of operation, and the NOx concentration is about 50 pI)
m, the initial value was 11 after 38.6 hours of operation.

すなわちこの発明に係る洗浄条件においてはNa2SO
3とNaOHとを含む従来の洗浄液使用の場合に比較し
てNO2吸収に係るKGAが4倍ないし15倍大きいこ
とがわかる。
That is, under the cleaning conditions according to this invention, Na2SO
It can be seen that the KGA related to NO2 absorption is 4 to 15 times larger than when using a conventional cleaning solution containing 3 and NaOH.

表4は上記の実験をおこなったあとの洗浄液に、NO2
−と当モルのアミドスルフオン酸ソーダを6%水溶液の
状態で添加した後、ヘリウム雰囲気中で6規定の希硫酸
を添加して洗浄液のpHを4.0に低下させたとき、液
温度38℃、1.5時間の間に洗浄液中のNO2−がN
2その他のガスに変換された割合を測定した結果の一例
を示すものである。
Table 4 shows that NO2 was added to the cleaning solution after the above experiment.
- After adding the same mole of sodium amidosulfonate as a 6% aqueous solution, 6N dilute sulfuric acid was added in a helium atmosphere to lower the pH of the cleaning solution to 4.0, the solution temperature was 38 ℃, during 1.5 hours, NO2− in the cleaning solution was reduced to N
2 shows an example of the results of measuring the ratio of conversion to other gases.

表によればN2への変換率は96%以上であり、すぐれ
た廃液脱窒効果を確認した。
According to the table, the conversion rate to N2 was 96% or more, confirming the excellent waste liquid denitrification effect.

以上の説明はNOの含有比率の大きい一般的な排煙を対
象とした場合についておこなったが、NOの含有比率の
犬、小は本質的な問題ではなく、N 0−)N O□に
酸化するための03の添加量の多小に関係するだけであ
る。
The above explanation was based on the case of general flue gas with a high NO content ratio, but a small NO content ratio is not an essential problem, and it is oxidized to N0-)NO□. It only depends on the amount of 03 added to achieve this.

また酸化剤としては、上記の03が好適なものと考える
が、オゾン化空気に限定されるものではない。
Further, as the oxidizing agent, the above-mentioned 03 is considered to be suitable, but the oxidizing agent is not limited to ozonized air.

更にまた還元剤としてのNa2SO3は安価であり、か
つ廃液中に形成される5042−は有用なカルシウム塩
として容易に回収しつるので好適のものであるが、目的
によってはに2SO3、や(NH4)2SO3等の水溶
性である亜硫酸塩を適用できることはいうまでもない。
Furthermore, Na2SO3 as a reducing agent is suitable because it is inexpensive and the 5042- formed in the waste liquid can be easily recovered as a useful calcium salt, but depending on the purpose, Na2SO3, or (NH4) It goes without saying that water-soluble sulfites such as 2SO3 can be used.

更にまたpH調節液としては硫酸を用いたが、塩酸等も
同様に用いることができることはいうまでもない。
Furthermore, although sulfuric acid was used as the pH adjusting liquid, it goes without saying that hydrochloric acid or the like can be used in the same manner.

なおアミドスルフォン酸塩としてはナトリウムやカリウ
ム等のアルカリ塩または酸の形で用いてもよい。
Note that the amidosulfonate may be used in the form of an alkali salt such as sodium or potassium salt or an acid.

図に示した構成は、この発明を適用した脱硝装置の一例
を示すもので、冷却塔、混合器、洗浄塔は説明の便宜上
、処理工程に対応させて分離して示したもので、適宜複
合した機能を有する装置に分割してもよいことはいうま
でもない。
The configuration shown in the figure shows an example of a denitrification equipment to which this invention is applied. For convenience of explanation, the cooling tower, mixer, and cleaning tower are shown separated according to the processing steps, and combined as appropriate. It goes without saying that the system may be divided into devices having different functions.

同様に、洗浄液の送給、補給液の送給、洗浄廃液の分離
排出、廃液脱窒槽の構成ならびにpH調節液の供給機構
等は、この実施例の構成に限られるものではないことは
いうまでもない。
Similarly, it goes without saying that the cleaning liquid supply, replenishment liquid supply, separation and discharge of cleaning waste liquid, configuration of the waste liquid denitrification tank, pH adjustment liquid supply mechanism, etc. are not limited to the configuration of this embodiment. Nor.

その他装置を構成する材料は、それぞれ適用個所に応じ
て耐酸性、耐オゾン性、及び対アルカリ性等の性質を有
するものを選択する必要があることはいうまでもなく、
この種の用途に適した材料としては例えば塩化ビニール
樹脂、ガラス繊維強化プラスチック等の合成樹脂或はこ
れらの樹脂で表面を被覆した鋼板、鋼管などが適当であ
る。
It goes without saying that the materials constituting the device must be selected to have properties such as acid resistance, ozone resistance, and alkali resistance, depending on the location of application.
Suitable materials for this type of use include, for example, synthetic resins such as vinyl chloride resin and glass fiber reinforced plastic, and steel plates and pipes whose surfaces are coated with these resins.

この発明は以上説明したように被処理ガスにオゾンを注
入して被処理ガス中の酸化窒素を二酸化窒素に酸化し、
ついで亜硫酸塩を還元主剤としpH9以上に調整された
水溶液を洗浄液として気液接触させて二酸化窒素を亜硝
酸イオンとして吸収させて上記被処理ガス中の窒素酸化
物を除去するとともに、洗浄廃液を、その液中に含有せ
る亜硝酸イオンに対して等モル比のアミドスルフォン酸
塩の存在の下に酸を添加してpHを4.2以下2.3以
上の範囲内に調整し含有せる亜硝酸イオンを窒素ガスに
分解除去するようにしたことを特徴とするもので、被処
理ガス中の窒素酸化物の除去率が従来のアルカリ洗浄方
法や、チオ硫酸ソーダを含まない、亜硫酸ソーダ吸収方
法に比し大きい外、酸化窒素を二酸化窒素に酸化するた
めに添加するオゾンを過剰に加えた場合であっても余剰
のオゾンは還元性洗浄液によって完全に分解されるので
オゾンによる二次公害を発生することがない。
As explained above, this invention injects ozone into the gas to be treated to oxidize nitrogen oxide in the gas to be treated,
Next, an aqueous solution using sulfite as a reducing agent and adjusted to pH 9 or higher is used as a cleaning liquid in gas-liquid contact to absorb nitrogen dioxide as nitrite ions to remove nitrogen oxides from the gas to be treated, and the cleaning waste liquid is Nitrous acid is added by adding an acid in the presence of an amidosulfonate in an equimolar ratio to the nitrite ion contained in the solution to adjust the pH to within the range of 4.2 or less and 2.3 or more. This method is characterized by decomposing and removing ions into nitrogen gas, and the removal rate of nitrogen oxides in the gas to be treated is higher than conventional alkaline cleaning methods or sodium sulfite absorption methods that do not contain sodium thiosulfate. In addition to being relatively large, even if excessive ozone is added to oxidize nitrogen oxide to nitrogen dioxide, the excess ozone will be completely decomposed by the reducing cleaning solution, resulting in secondary pollution caused by ozone. Never.

また廃液中に残留する硫酸塩は容易に無公害処理が行え
るので、洗浄液による二次公害の発生もない脱硝システ
ムとすることができるもので、実用上極めて大きな効果
を奏しうるものである。
In addition, since the sulfate remaining in the waste liquid can be easily treated in a non-polluting manner, it is possible to create a denitrification system that does not cause secondary pollution due to the cleaning liquid, which can be extremely effective in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の方法を適用した脱硝装置の一実施例の構
成図である。 図において1.5.9は被処理ガス、2は冷却塔、3,
11,15,19,22はポンプ、4は冷却水、6は混
合器、7はオゾン発生器、8はオシン化空気、10は洗
浄塔、12は洗浄液、13は処理ガス、14は補給液ピ
ット、16は補給液17は洗浄廃液、18は脱窒用薬液
ピット、20は脱窒用薬液、21はpH調節液ピット、
23は硫酸水溶液、24は廃液脱窒槽、25は攪拌器、
26は廃液である。
The figure is a configuration diagram of an embodiment of a denitrification apparatus to which the method of the present invention is applied. In the figure, 1.5.9 is the gas to be treated, 2 is the cooling tower, 3,
11, 15, 19, 22 are pumps, 4 is cooling water, 6 is a mixer, 7 is an ozone generator, 8 is ossinated air, 10 is a cleaning tower, 12 is a cleaning liquid, 13 is a processing gas, 14 is a replenishment liquid 16 is a replenishment liquid 17 is a cleaning waste liquid, 18 is a denitrification chemical liquid pit, 20 is a denitrification chemical liquid, 21 is a pH adjustment liquid pit,
23 is a sulfuric acid aqueous solution, 24 is a waste liquid denitrification tank, 25 is a stirrer,
26 is waste liquid.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化窒素及び二酸化窒素の形で窒素酸化物を含有せ
る排ガス中にオゾンを注入して上記酸化窒素を二酸化窒
素に酸化させる工程、この工程を経た排ガスを亜硫酸塩
とチオ硫酸塩を含むpH9以上に調整された洗浄液で洗
浄し、上記排ガス中の二酸化窒素を亜硝酸塩として吸収
液中に固定する工程、この工程を経た洗浄廃液にアミド
スルフォン酸塩を添加した状態の下で当該洗浄廃液のp
Hを2.5〜4.2の範囲内に調節し、含有せる亜硝酸
根を窒素ガスに分解する工程とを含む窒素酸化物除去方
法。
1 A step in which ozone is injected into the exhaust gas containing nitrogen oxides in the form of nitrogen oxides and nitrogen dioxide to oxidize the nitrogen oxides to nitrogen dioxide, and the exhaust gas after this step has a pH of 9 or higher containing sulfites and thiosulfates. A step of cleaning with a cleaning solution adjusted to
A method for removing nitrogen oxides, comprising the steps of adjusting H within the range of 2.5 to 4.2 and decomposing the contained nitrite radicals into nitrogen gas.
JP50130270A 1975-10-29 1975-10-29 Chitsusosankabutsujiyokiyohouhou Expired JPS5823135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50130270A JPS5823135B2 (en) 1975-10-29 1975-10-29 Chitsusosankabutsujiyokiyohouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50130270A JPS5823135B2 (en) 1975-10-29 1975-10-29 Chitsusosankabutsujiyokiyohouhou

Publications (2)

Publication Number Publication Date
JPS5253765A JPS5253765A (en) 1977-04-30
JPS5823135B2 true JPS5823135B2 (en) 1983-05-13

Family

ID=15030268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50130270A Expired JPS5823135B2 (en) 1975-10-29 1975-10-29 Chitsusosankabutsujiyokiyohouhou

Country Status (1)

Country Link
JP (1) JPS5823135B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55135100U (en) * 1979-03-17 1980-09-25
JPS62155987A (en) * 1985-12-27 1987-07-10 Hitachi Plant Eng & Constr Co Ltd Treatment of dithionic acid-containing waste water wherein nitrite ion coexists
JP4852877B2 (en) * 2005-04-28 2012-01-11 栗田工業株式会社 Treatment of wastewater containing nitrite anticorrosive

Also Published As

Publication number Publication date
JPS5253765A (en) 1977-04-30

Similar Documents

Publication Publication Date Title
US5985223A (en) Removal of NOx and SOx emissions form pickling lines for metal treatment
US4035470A (en) Process for removing sulfur oxides and/or nitrogen oxides from waste gas
ES2337997T3 (en) NOX LEVEL REDUCTION PROCESS IN RESIDUAL GAS CURRENTS BY SODIUM CHLORITE USE.
Myers Jr et al. Hydrogen peroxide scrubber for the control of nitrogen oxides
US3991167A (en) Process for lowering nitrogen oxides in effluent gases
CN108176208B (en) A kind of efficient wet denitration agent cooperating preposition oxidation technology
US5637282A (en) Nitrogen oxide scrubbing with alkaline peroxide solution
CA1165099A (en) Removal of nitrogen oxides from gas
CN101376080B (en) Method for purifying and processing waste gas from acid washing process of stainless steel
US4024219A (en) Process for removing nitrogen oxide from a waste gas
JPS5823135B2 (en) Chitsusosankabutsujiyokiyohouhou
CN107349771A (en) A kind of method for reclaiming sulphur nitrogen resource from flue gas and producing HAS
CN104941412A (en) Flue gas desulphurization-denitration integrated device and method
CN106925117A (en) The removing means and method of nitrate in a kind of industrial tail gas oxidation and denitration recirculated water
CN112169573B (en) Flue gas desulfurization and denitrification process
JPS5834174B2 (en) Chitsusosankabutsunojiyokiyohouhou
JPH02203921A (en) Wet removal of nitrogen oxide in various combustion exhaust gases
CN104941430A (en) Flue gas denitration device and method
JPS5855803B2 (en) Denitration method
JPS6335297B2 (en)
NO761914L (en)
CN113117482A (en) Method for desulfurization and denitrification by using gas-phase oxidant
KR20030053331A (en) Wet Scrubbing method of dust, sulfur oxides and nitrogen oxides from flue gas
KR100270087B1 (en) Method of removing nitrogen oxides from waste gas
CN115041000A (en) Industrial waste gas normal-pressure gas-phase oxidation liquid-phase reduction denitration method