JPS59116302A - Method for reducing hyperfine metallic particle - Google Patents

Method for reducing hyperfine metallic particle

Info

Publication number
JPS59116302A
JPS59116302A JP57208500A JP20850082A JPS59116302A JP S59116302 A JPS59116302 A JP S59116302A JP 57208500 A JP57208500 A JP 57208500A JP 20850082 A JP20850082 A JP 20850082A JP S59116302 A JPS59116302 A JP S59116302A
Authority
JP
Japan
Prior art keywords
particles
hyperfine
reducing
reduction
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57208500A
Other languages
Japanese (ja)
Other versions
JPH0232321B2 (en
Inventor
Toyoji Hayashi
豊治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Research Development Corp of Japan
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Shingijutsu Kaihatsu Jigyodan filed Critical Research Development Corp of Japan
Priority to JP57208500A priority Critical patent/JPS59116302A/en
Publication of JPS59116302A publication Critical patent/JPS59116302A/en
Publication of JPH0232321B2 publication Critical patent/JPH0232321B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors

Abstract

PURPOSE:To reduce uniformly and easily hyperfine metallic particles coated with oxide layers without causing sintering by fluidizing the particles with a flow of a gas contg. hydrogen and by heating and reducing the particles. CONSTITUTION:Hyperfine metallic particles having <=1,000Angstrom average primary particle size coated with oxide layers are charged into a fluidized bed reactor, and a gas contg. hydrogen is introduced into the reactor to fluidize the particles. The fluidized particles are heated from ordinary temp. to about 170 deg.C and reduced. The hyperfine metallic particles are reduced uniformly and easily without causing sintering.

Description

【発明の詳細な説明】 本発明は1次粒子平均粒径が1000 A以下の金Fi
 l1v(微粒子の還元方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses gold Fi having an average primary particle diameter of 1000 A or less.
l1v (Relating to a method for reducing fine particles.

1次粒子平均粒子径が1000Å以下の金属超微れ′1
子は磁気記篩付料、導電性ペーストなどの電子材料、粉
末冶金材f′11化学反応試剤、触媒等に優れた性質を
示1ことが知られている。
Ultra-fine metal particles with an average primary particle diameter of 1000 Å or less'1
It is known that the powder exhibits excellent properties in magnetic sieving materials, electronic materials such as conductive pastes, powder metallurgy materials, chemical reaction reagents, catalysts, etc.

従来の金Ei <”h扮(1;Ijえば1ミクロン以上
)の製法としては、金属を機械的に粉砕したり、あるい
は溶液中で金属含有化学試剤を適当な貸元剤により処理
干ることにより製造されてきた。捷だ、金属超微粒子(
通常1ミクロン以下の粒径の粒子)の製法としては、(
1)真空(10−’ tOrr以下)中で金属を加熱蒸
発させる真空蒸発法、(2)数100torr以下のア
ルゴン、窒素、水素等の雰囲気ガス中で金属を加熱蒸発
させるガス中蒸発法により製造する方法が開発されてき
た。
Conventional methods for producing gold (1; if Ij is 1 micron or more) include mechanically crushing the metal, or processing and drying metal-containing chemical reagents in a solution with an appropriate base agent. It has been manufactured by.
The manufacturing method for (usually particles with a particle size of 1 micron or less) is (
1) Vacuum evaporation method in which the metal is heated and evaporated in a vacuum (10-' tOrr or less), (2) Manufactured by the in-gas evaporation method in which the metal is heated and evaporated in an atmospheric gas such as argon, nitrogen, hydrogen, etc. at several 100 torr or less. A method has been developed to do so.

これらのいずれの方法においても、製造される金漢扮の
粒径がミクロンオーダー程度より小さくなると、空気中
では、その高い比表面積、酸素との強い親和性のために
自然発火にいたる性質がある。そのために、製造時に金
属微粒子表面を除重化し、これを貯蔵・運搬する方法が
採用されている。勿論製造時に金属に対して不活性なガ
スあるいは液による密封等の方法により自然発火を防止
することはnJ能であるが、製造、貯蔵、運搬における
煩雑さ及び危険性が倍加するだめ、金属超微粒子を応用
使用することが制約されてきた。表面す飲酸化、された
金属超微粒子をその特性を摸う(例えば粒子間の焼結に
より粒径が増大する)ことなく、還元する方法が確立す
るならば産業的価値は大きい。
In any of these methods, if the particle size of the produced Jinhange becomes smaller than the micron order, it has the tendency to spontaneously ignite in the air due to its high specific surface area and strong affinity for oxygen. . For this purpose, a method has been adopted in which the surface of metal fine particles is deweighted during production and then stored and transported. Of course, it is possible to prevent spontaneous ignition by sealing the metal with an inert gas or liquid during manufacturing, but this would double the complexity and danger of manufacturing, storage, and transportation. Applications of fine particles have been restricted. It would be of great industrial value if a method could be established for reducing ultrafine metal particles whose surface has been oxidized without altering their properties (for example, increasing the particle size due to sintering between particles).

本発明はこの間!、III点を)・イ決ぜんとするもの
であり、その目的は表面が酸化物層で覆われた金属超微
粒子をその特性を4’t1うことなく還元する方法を提
供するにある。
This invention is now available! , III), and its purpose is to provide a method for reducing ultrafine metal particles whose surfaces are covered with an oxide layer without changing their properties.

本発明者は前記目的を達成すべく種々のい4元方法につ
いて研冗を重ねだ結果、水、アルコール等の溶媒中に金
属l5−1微粒子を分散させ、還元剤例えば水素化ホウ
岩ナトリウノ1.ヒドラジン、ポルマリン等を添1川す
ることにより5元し得られることが分った。しかし、こ
の方法によると、金属の悸ン)1によっては、ゴ頑元剤
が強力でありすき゛だり、微弱でありすぎたり、斗た溶
媒の関与による還元された表面の、J+)劣化が起った
l)、還元7晶度、処理時間の条件設定に手数がかかる
等の間穎点がある。
In order to achieve the above object, the present inventor has repeatedly studied various quaternary methods, and as a result, the metal l5-1 fine particles are dispersed in a solvent such as water or alcohol, and a reducing agent such as borohydride sodium 15-1 is used. .. It was found that a 5-component solution can be obtained by adding hydrazine, polymerine, etc. However, according to this method, depending on the concentration of the metal, the hardening agent may be too strong or too weak, and the reduced surface may deteriorate due to the involvement of the solvent. There are some disadvantages such as low crystallinity, reduction of crystallinity, and the time required to set the processing time.

外だ、金属超微粒子を固定床とし、Jq元ガス雰囲包下
で’ii1. ’i局するJ二、−1除去の不完全、ガ
ス流のかだ、しり等によりIり1(公的ハ゛^結が進行
し/ζりあるいけ不十分なバ元部分が生ずる間顕点があ
ることが分った。
Outside, 'ii1. 'i station J2, -1 removal is incomplete, gas flow rafts, tails, etc. cause I-1 (official high condensation progresses / It turns out that there is.

川に61F究を車ね、金属超微粒子を水素含有ガス流に
より流動化し、昇温するときは極めて容易に、且つ焼結
することなく、均一に還元[7得られることが分った。
After conducting a 61F study, it was found that when ultrafine metal particles are fluidized by a hydrogen-containing gas flow and heated, they can be uniformly reduced extremely easily and without sintering [7].

この知見に基いて本発明を完成した。The present invention was completed based on this knowledge.

本発明の要旨は、表面が酸化物層に晋われた1次粒子平
均粒径が1000Å以下の金属超微粒子を水素含有ガス
流により流動化させながら昇温して還元する方法にある
The gist of the present invention is a method for reducing ultrafine metal particles whose surfaces are covered by an oxide layer and whose primary particle average diameter is 1000 Å or less by raising the temperature while fluidizing them with a hydrogen-containing gas flow.

本発明において汀う1次粒子平均粒径1000Å以下と
は、粒子平均粒径1000Å以下の粒子が物理力、化学
力により集合した例えばそれらの粒子が繊維状に繋がっ
た2次粒子の形r1号のものも含んだものを総称する。
In the present invention, the primary particle average particle size of 1000 Å or less refers to the form of secondary particles No. A general term for things that include things like.

そして金属は種類を問わず、Ag舌の貴金属、紺。And regardless of the type of metal, it is a precious metal with Ag tongue, and navy blue.

ニッケル、コバルト等の卑金属にすべて適用し得られる
It can be applied to all base metals such as nickel and cobalt.

本発明の方法は、これらの金属超微粒子を流動層反応器
に仕込み、通常は純水素ガスを月1い、還元速度を抑え
る場合は不活性ガスで稀釈した水素ガスを使用して流動
化させる。流入させるガスの空す速度(空塔基準)はG
H8vテ500〜100001/hrがよいが、分留り
をよくする上からは1000〜50001./hrであ
ることが好機しい。還元温度は100〜300℃がよい
。この温度より低いと還元速度がおそく、300℃を超
えると焼結を起こす恐れがある。金属超微粒子の滞留時
間は0.1〜10分間、好機しくは帆1〜1分である。
In the method of the present invention, these ultrafine metal particles are charged into a fluidized bed reactor, and normally pure hydrogen gas is supplied once a month, but if the reduction rate is to be suppressed, hydrogen gas diluted with an inert gas is used to fluidize the particles. . The emptying speed of the inflowing gas (empty tower standard) is G
H8vte 500-100001/hr is good, but 1000-50001/hr is recommended for better fractionation. /hr is preferred. The reduction temperature is preferably 100 to 300°C. If the temperature is lower than this, the reduction rate is slow, and if it exceeds 300°C, there is a risk of sintering. The residence time of the ultrafine metal particles is 0.1 to 10 minutes, preferably 1 to 1 minute.

これらの条件は金属の種類、所望する還元程度により選
定する。
These conditions are selected depending on the type of metal and the desired degree of reduction.

実施例1 1次粒子平均粒径が300人である表面が酸化されたニ
ッケル超微粒子0゜1yを外径10關φの流動層反応器
に仕込み、予め窒素ガスで系内を置換した後、水素ガス
で流動化させた。水素ガス量は常温常圧で120m(7
分で供給し、層高は18mmであった。常温から175
℃まで昇温し、175℃で0.25分間保持した後、反
応器外壁を急冷した。
Example 1 Ultrafine nickel particles 0゜1y with an oxidized surface and an average primary particle diameter of 300 mm were charged into a fluidized bed reactor with an outer diameter of 10 mm, and after purging the system with nitrogen gas in advance, Fluidized with hydrogen gas. The amount of hydrogen gas is 120 m (7 m) at normal temperature and pressure.
The layer height was 18 mm. From room temperature to 175
After raising the temperature to 175°C and holding it for 0.25 minutes, the outer wall of the reactor was rapidly cooled.

得られた蹟元ニッケル超微粒子の比表面積は27.0m
2/2であシ、還元前の比表面積27.3 m2/ t
と比較すると焼結の防止が達成されていることが分かる
。水蒸気発生を伴う還元による酸素損失のためによる重
量減は0.005 Fであった。
The specific surface area of the obtained ultrafine nickel particles was 27.0 m
2/2 size, specific surface area before reduction 27.3 m2/t
It can be seen that the prevention of sintering has been achieved when compared with the above. The weight loss due to oxygen loss due to reduction with steam generation was 0.005 F.

実施例2 1次粒子平均粒径が500人である表面が酸化されたニ
ッケル超微粒子を用いて実施例1と同様な方法で還元し
た。還元前の比表面積は2.2 m2/S’、還元後の
比表面積は2.1m2/f’であり、才だ重量減は0.
0069であった。
Example 2 Reduction was carried out in the same manner as in Example 1 using ultrafine nickel particles with an oxidized surface and an average primary particle diameter of 500 nm. The specific surface area before reduction was 2.2 m2/S', the specific surface area after reduction was 2.1 m2/f', and the weight loss was 0.
It was 0069.

実施例3 1次粒子平均粒径が100OAである表面が酸化された
ニッケル超微粒子を用いて実施例と同様な方法で還元し
た。還元前の比表面積は2.2 m2/ fで還元後の
比表面積は2.1 m2/2であり、重量減は0.00
03 fであった。
Example 3 Reduction was carried out in the same manner as in Example using ultrafine nickel particles with an oxidized surface and an average primary particle diameter of 100 OA. The specific surface area before reduction is 2.2 m2/f, the specific surface area after reduction is 2.1 m2/2, and the weight loss is 0.00
It was 03 f.

実施例4 1次粒子平均粒径が500八である表面が酸化された銅
超微粒子を用いて実施例1と同様な方法で還元した。還
元前の比表面積は7.6 m2/f’で、還元後の比表
面積は7.3m277であり、重量減は0.003 r
であった。
Example 4 Reduction was carried out in the same manner as in Example 1 using surface-oxidized ultrafine copper particles having an average primary particle diameter of 500. The specific surface area before reduction was 7.6 m2/f', the specific surface area after reduction was 7.3 m277, and the weight loss was 0.003 r
Met.

以上のように、本発明の方法によると、金属超微粒子の
表面酸化層を全く焼結させることなく、1だ均一に容易
に還元し得られる効果を有する。
As described above, the method of the present invention has the effect of easily and uniformly reducing the surface oxidized layer of ultrafine metal particles without sintering them at all.

特許用1人 新技術開発事業団 同  出卯人  林      @   治手続補正書 昭和59年1月301」 特許庁長官若杉和夫 殿 1、事件の表示 昭和57年 特 許 願第20850052  発明o
名m  金属超微粒子。還元方法3 補正をする者 事件との関係 特許出願人 古、□+12jl  東京都千代田区永田町2丁目5番
2号氏 名(7山、)新技術開発事業団 (ほか1名) 4° 代  理  人 〒160電話556−6090
6 補正により増加する発明の数 なし7 補正の対象 明細書の発明の詳細な説明の欄 8 補正の内容 (1)明細書第6頁6行「2.2m2/り」を[20,
3m2/S’jと訂正する。
1 person for patent use, New Technology Development Corporation, Ishuto Hayashi @ Administrative Procedures Amendment Document, January 1982, 301'' Kazuo Wakasugi, Commissioner of the Japan Patent Office, 1, Indication of Case 1982 Patent Application No. 20850052 Invention o
Name: ultrafine metal particles. Reduction method 3 Relationship with the person making the amendment Patent applicant Furu, □+12jl 2-5-2 Nagatacho, Chiyoda-ku, Tokyo Name (7 mountains) New Technology Development Corporation (and 1 other person) 4° Representation Person 160 Phone number 556-6090
6 Number of inventions increased by the amendment None 7 Column 8 for detailed explanation of the invention in the specification subject to the amendment Contents of the amendment (1) Change “2.2 m2/litre” on page 6, line 6 of the specification to [20,
Corrected to 3m2/S'j.

(2)同第6頁7tコ[2,1m2/’ii’ Jを1
19 、7 m/ylと訂正する。
(2) Same page 6 7t [2,1m2/'ii' J to 1
19, corrected to 7 m/yl.

Claims (1)

【特許請求の範囲】[Claims] 1、 表面が酸化物層に覆われた1次粒子平均粒径が1
000Å以下の金属超微粒子の還元処理工程において、
水素含有ガス流により金属超微粒子を流動化し昇温還元
することを特徴とする金属超微粒子の還元方法。
1. The average particle size of primary particles whose surface is covered with an oxide layer is 1.
In the reduction treatment process of ultrafine metal particles of 000 Å or less,
A method for reducing ultrafine metal particles, which is characterized by fluidizing ultrafine metal particles using a hydrogen-containing gas flow and reducing the ultrafine metal particles by increasing the temperature.
JP57208500A 1982-11-30 1982-11-30 Method for reducing hyperfine metallic particle Granted JPS59116302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57208500A JPS59116302A (en) 1982-11-30 1982-11-30 Method for reducing hyperfine metallic particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57208500A JPS59116302A (en) 1982-11-30 1982-11-30 Method for reducing hyperfine metallic particle

Publications (2)

Publication Number Publication Date
JPS59116302A true JPS59116302A (en) 1984-07-05
JPH0232321B2 JPH0232321B2 (en) 1990-07-19

Family

ID=16557180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57208500A Granted JPS59116302A (en) 1982-11-30 1982-11-30 Method for reducing hyperfine metallic particle

Country Status (1)

Country Link
JP (1) JPS59116302A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626645A (en) * 1995-09-27 1997-05-06 The United States Of America As Represented By The Department Of Energy Process for making silver metal filaments
JP2007092099A (en) * 2005-09-27 2007-04-12 Nippon Steel Corp Method for producing iron particle for producing hydrogen and method for producing gaseous hydrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626645A (en) * 1995-09-27 1997-05-06 The United States Of America As Represented By The Department Of Energy Process for making silver metal filaments
JP2007092099A (en) * 2005-09-27 2007-04-12 Nippon Steel Corp Method for producing iron particle for producing hydrogen and method for producing gaseous hydrogen

Also Published As

Publication number Publication date
JPH0232321B2 (en) 1990-07-19

Similar Documents

Publication Publication Date Title
TW500820B (en) Method for improving the morphology of refactory metal thin films
US4784686A (en) Synthesis of ultrafine powders by microwave heating
US9972410B2 (en) Ti-included oxide dispersion strengthened copper alloy and method for manufacturing dispersed copper
US20080105085A1 (en) Method Of Production Of High Purity Silver Particles
US5639318A (en) Oxidation resistant copper
US4748737A (en) Method of removing surface oxidation from particulates
JPS58189373A (en) Manufacture of protective oxide layer
CN116917063A (en) Soft magnetic metal powder
JPS59116302A (en) Method for reducing hyperfine metallic particle
JP2012533685A (en) Manufacture and use of metal powders and alloys
JPH05193943A (en) Method for preparing reduced titanium oxide
JP2509799B2 (en) Silver-metal oxide material used for electrical contacts
JPS62282635A (en) Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder
JPS60135506A (en) Production of ferromagnetic metallic powder
JPS58171506A (en) Manufacture of fine metallic nickel powder
KR101537888B1 (en) a method for fabricating metal powder on which an oxide insulation film is formed, and metal powder fabricated thereby
JPS6017431B2 (en) Manufacturing method of ultrafine silver-silica composite powder
JP2000178721A (en) Ruthenium sputtering target, ruthenium raw material powder for producing the target and production thereof
JP2001049301A (en) Method for modifying surface of fine metal powder
JP2933293B2 (en) Method for producing fine-grained rare earth / transition metal / boron type magnetic material for corrosion resistant magnet
US3684479A (en) Method for the inactivation of pulverulent ferrosilicon
JPS5847550A (en) Production of composite structural pipe
JPS61119009A (en) Manufacture of rare-earth cobalt magnet
JPS63238226A (en) Production of sintered copper alloy for mechanical structural parts
WO2005021189A1 (en) Nickel powder coated with titanium compound and electroconductive paste using the same