JPS59110373A - Power source switching circuit for integrated circuit - Google Patents

Power source switching circuit for integrated circuit

Info

Publication number
JPS59110373A
JPS59110373A JP21960382A JP21960382A JPS59110373A JP S59110373 A JPS59110373 A JP S59110373A JP 21960382 A JP21960382 A JP 21960382A JP 21960382 A JP21960382 A JP 21960382A JP S59110373 A JPS59110373 A JP S59110373A
Authority
JP
Japan
Prior art keywords
power supply
circuit
voltage
battery
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21960382A
Other languages
Japanese (ja)
Other versions
JPH0434168B2 (en
Inventor
Toshio Hibi
日比 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21960382A priority Critical patent/JPS59110373A/en
Publication of JPS59110373A publication Critical patent/JPS59110373A/en
Publication of JPH0434168B2 publication Critical patent/JPH0434168B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps

Abstract

PURPOSE:To suppress the erroneous operation of an integrated circuit to the minimum limit by providing a switch circuit for controlling OFF state for the prescribed period at the prescribed time, an intermediate voltage supply circuit for controlling the intermediate voltage of the first and second power source voltages for the prescribed period, and a control circuit for controlling the switch circuit and the intermediate voltage supply circuit. CONSTITUTION:A swtich circuit 35 such as the first and second MOS transistors TR36, 37 are connected in parallel between the first power source output terminal 34 and the VSS1 node N1 of a step up/down circuit 33, an intermediate voltage supply circuit 38 such as a series circuit of the third and fourth TRs 39, 40 is provided between a VDD power source and the VSS2 node N2 of the circuit 33, and the connecting point of the both TRs is connected to the first power source output terminal 34. On the other hand in a control circuit 41, the output of the data output terminal <->Q of the second shift register 43 is led to an inverter 45, the output is led to the gates of the TR39, 40 connected in series, led to the second inverter 46, and the output is led to one gate of the TR36, 37 connected in parallel with each other.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、たとえばマイクログロセッサを用いた電子時
計用集積回路に使用される集積回路用電源切換回路に係
り、特に互いの電圧が異なる2種の電池を選択的に接続
可能であって集積回路に適正レベルの電源電圧を供給す
るだめの電源切換回路に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a power supply switching circuit for an integrated circuit used, for example, in an integrated circuit for an electronic watch using a microgrocer. The present invention relates to a power supply switching circuit which can selectively connect a battery to supply an appropriate level of power supply voltage to an integrated circuit.

〔発明の技術的背景〕[Technical background of the invention]

従来の時計用LSI(大規模集積回路)としては、たと
えば−1,5V系の酸化銀電池を使用するものと、−3
,OV系のリチウム電池を使用するものとの2種類が生
産されている。前者の酸化銀電池を使用するLSIにお
ける電源回路は、第1図に示すように電池電圧VSS1
を第1電源端子1を通じて昇圧回路2のVast系入カ
とじ、この入力電圧を2倍に昇圧して得たvss2系出
カおよび電池電圧Vl!81をLSIの2系統電源とし
て供給している。また、後者のリチウム電池を使用する
LSIにおける電源回路は、第2図に示すように電池電
圧vs62を第2電源端子11を通じて降圧回路12の
Vss2系入カとし、この入力電圧を名に降圧して得た
VSSI系出方および電池電圧VS81系をLSIの2
系統電源として供給している。この場合、リチウム電池
の内部抵抗は大きいので、LSI回路動作の重負荷時、
たとえばブザー負荷の駆動時とがランプ(フィンとか内
蔵のダイナミック系ROM(リートリンリメモリ)に対
してCPUがアクセス(リード)しているときなどには
リチウム電池の電圧レベルが大きく低下することがある
。これに伴って”/881系出方の電圧レベルが大きく
低下すると、通常はVSSI系出カから電源が供給され
るLSIの論理回路とか発振回路などが誤動作し、特に
発振回路の発振が停止してしまうことがある。
Conventional watch LSIs (large-scale integrated circuits) include those that use -1.5V silver oxide batteries, and those that use -3V silver oxide batteries, for example.
, and one that uses an OV type lithium battery. The power supply circuit in the former LSI using a silver oxide battery has a battery voltage VSS1 as shown in FIG.
is input to the Vast system of the booster circuit 2 through the first power supply terminal 1, and this input voltage is doubled to obtain the vss2 system output and the battery voltage Vl! 81 is supplied as a two-system power supply for LSI. Furthermore, as shown in FIG. 2, the power supply circuit in the latter LSI using a lithium battery inputs the battery voltage vs62 to the Vss2 system of the step-down circuit 12 through the second power supply terminal 11, and steps down the voltage using this input voltage. The VSSI system output and battery voltage VS81 system obtained from LSI 2
It is supplied as grid power. In this case, the internal resistance of the lithium battery is large, so when the LSI circuit operates under heavy load,
For example, the voltage level of the lithium battery may drop significantly when the buzzer load is being driven and when the CPU is accessing (reading) the built-in dynamic ROM such as a lamp (fin). .As a result, when the voltage level of the ``/881 system output drops significantly, the LSI logic circuits and oscillation circuits that are normally supplied with power from the VSSI system output malfunction, and in particular, the oscillation circuit stops oscillating. Sometimes I end up doing it.

このような事態を避けるため、従来は第2図に示すよ・
うに、降圧回路12のvss2系入カノードN2とVS
III系出力ノードN、との間に第1のMOS(絶縁ダ
ート形)トランゾスタ13を挿入し、上記VSSI系出
カノードN1とVSSI端子14との間に直列に第2の
Mosトランノスタ15を挿入し、重負荷時に発生する
重負荷信号にょシ上記第1のトランゾスタ13を導通さ
せテ降圧回路12のvssX系出カノードN1を強制的
にvss2レベルにするように構成することがある。
In order to avoid such a situation, the conventional method is shown in Figure 2.
uni, the vss2 system input canode N2 of the step-down circuit 12 and the VS
A first MOS (insulated dart type) transistor 13 is inserted between the III system output node N, and a second MOS transistor 15 is inserted in series between the VSSI system output node N1 and the VSSI terminal 14. In response to a heavy load signal generated during a heavy load, the first transistor 13 may be made conductive to force the vssX output node N1 of the step-down circuit 12 to the vss2 level.

なお、このとき、重負荷信号がインバータ16により反
転され、第2のトランゾスタ15は遮断される。また、
重負荷信号が発生していないときには、上記第2のトラ
ンゾスタ15がオン、前記第1のトランゾスタ13がオ
ン状態になる。
Note that at this time, the heavy load signal is inverted by the inverter 16, and the second transistor 15 is cut off. Also,
When no heavy load signal is generated, the second transistor 15 is turned on and the first transistor 13 is turned on.

〔背景技術の問題点〕[Problems with background technology]

然るに、上述したように使用電池の種類によって電源回
路が異なるLSIを生産することは、コスト的に不利で
ある。
However, as described above, it is disadvantageous in terms of cost to produce LSIs with different power supply circuits depending on the type of battery used.

また第2図に示したような重負荷対策を施した場合には
、LSIのvs81系に重負荷時にVSS2レベルが供
給されることによって、V3Si系のCPUとかダイナ
ミック系ROMで誤動作が生じ易いので、ダイナミック
系システムを使用したLSIに対する重負荷対策には工
夫を要する。
Furthermore, if measures against heavy loads are taken as shown in Figure 2, the VSS2 level is supplied to the vs81 system of the LSI during heavy loads, which tends to cause malfunctions in V3Si system CPUs and dynamic system ROMs. Measures to deal with heavy loads on LSIs using system systems require some ingenuity.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に鑑みてなされたもので、外部電源
として電圧レベルが異なる2種の電池のどちらが使用さ
れても、共通の回路構成でよくてコストダウンが可能と
なり、しかも電池電圧の低下による集積回路の誤動作を
最小限におさえることが可能な集積回路用電源切換回路
を提供するものである。
The present invention has been made in view of the above circumstances, and even if two types of batteries with different voltage levels are used as an external power source, a common circuit configuration can be used, reducing costs, and reducing battery voltage. An object of the present invention is to provide a power supply switching circuit for an integrated circuit that can minimize malfunctions of the integrated circuit caused by the above.

〔発明の概要〕[Summary of the invention]

即ち、本発明は、外部電源として第1電源電圧の第1電
池または第2電源電圧の第2電池が使用される集積回路
に設けられる集積回路用電源切換回路において、前記第
1$L池から第1屯源端子を経て第1電源電圧が供給さ
れることによってこれを昇圧して第2電源電圧を生成し
、前記第2電池から第2電源端子を経て第2電源電圧が
供給さnることによってこれを降圧して第1電源電圧を
生成する昇降圧回路と、前記2種の電池のどちらを使用
するかによって異なる論理レベルが与えられる電源切換
制御用端子と、集積回路内の第1電源系の回路に電源電
圧を供給するだめの第1電源出力端子と前記第1電源供
給端子との間に設けられ、前記電源切換制御用端子の論
理レベルが第1電池使用に対応するときには常にオン状
態になり、上記論理レベルが第2電池使用に対応すると
きには所定時に所定時間だけオフ状態になり、その他の
期間はオン状態になるように制御されるスイッチ回路と
、前記第2電源出力端子から電源電圧が供給され通常1
・すオフ状態になっており前記所定時に所定時間だけ前
記第1電源電圧と第2電源電圧との中間の電圧を前記第
1電源出力端子に供給するように制御される中間′ル圧
供給回路と、集積回路に第2電池を接続したときおよび
集積回路内の重負荷回路の動作時に前記所定時間だけ制
御’1lll出力を発生して前記スイッチ回路および中
間電圧供給回路を制御する制御回路とを具0iifする
ことを特徴とするものである。
That is, the present invention provides an integrated circuit power supply switching circuit provided in an integrated circuit in which a first battery with a first power supply voltage or a second battery with a second power supply voltage is used as an external power supply. A first power supply voltage is supplied through the first power supply terminal, thereby boosting the voltage to generate a second power supply voltage, and a second power supply voltage is supplied from the second battery through the second power supply terminal. a step-up/down circuit that steps down the voltage to generate a first power supply voltage; a power supply switching control terminal that is given a different logic level depending on which of the two types of batteries is used; Provided between a first power supply output terminal for supplying power supply voltage to a power system circuit and the first power supply terminal, whenever the logic level of the power supply switching control terminal corresponds to the use of the first battery. a switch circuit that is controlled to be in an on state, to be in an off state for a predetermined time at a predetermined time when the logic level corresponds to the use of a second battery, and to be in an on state for other periods; and the second power output terminal. The power supply voltage is supplied from
- An intermediate voltage supply circuit that is in an off state and is controlled to supply a voltage intermediate between the first power supply voltage and the second power supply voltage to the first power supply output terminal for a predetermined time at the predetermined time. and a control circuit that controls the switch circuit and the intermediate voltage supply circuit by generating a control output for the predetermined period of time when a second battery is connected to the integrated circuit and when a heavy load circuit in the integrated circuit is operating. It is characterized by the following:

したがって、上記電源切換回路は、第1市池または第2
電池のどちらを使用する場合にも共通の回路構成で済む
ので、コストダウンが可能となり、しかも電池接続時と
か重負荷時に第2電池の内部抵抗による電圧降下が大き
くても、中間電圧供給回路から第1電源系回路に適正な
電源電圧を供給することができるので、その誤動作を最
少限に抑えることが可能である。
Therefore, the power supply switching circuit is
Since a common circuit configuration is required no matter which type of battery is used, it is possible to reduce costs.Moreover, even if the voltage drop due to the internal resistance of the second battery is large when the battery is connected or under heavy load, it can be used from the intermediate voltage supply circuit. Since an appropriate power supply voltage can be supplied to the first power supply system circuit, malfunction thereof can be minimized.

以下、図面を参照して本発明の一実施例を詳細に説明す
る。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第3図はたとえば時計用LSI内に設けられた電源切換
回路を示しており、3ノは外部電源としてたとえば酸化
銀電池を使用するときに、その電池電圧VSS+が供給
される第1電源端子、32はたとえばリチウム電池の使
用時にその電池電圧VSS2が外部から供給される第2
電源端子であるっ33は昇降圧回路であって、上記第1
電源端子3ノからVSSIノードN1にV8SI電圧が
供給されたときにはそれをたとえば2倍に昇圧して得た
電圧2 Vsss (ここで、Vsss =−−1,5
V。
FIG. 3 shows, for example, a power supply switching circuit provided in a watch LSI, and 3 indicates a first power supply terminal to which battery voltage VSS+ is supplied when, for example, a silver oxide battery is used as an external power supply; 32 is, for example, a second battery to which the battery voltage VSS2 is supplied from the outside when a lithium battery is used.
The power supply terminal 33 is a buck-boost circuit, and the first
When the V8SI voltage is supplied from the power supply terminal 3 to the VSSI node N1, the voltage 2 Vsss obtained by boosting it, for example, twice (here, Vsss = −-1, 5
V.

Vss2=−3,OVであるとすれば、2 vss+ 
= VSS2 )をvss2ノードN2に出力し、第2
電源端子32からVS32ノードにVS82電圧が供給
されたときにはそれをZに降圧して得た電圧+VSS2
 ”’ VSSIをVltli+ノードN1に出力する
ものである。この動作は、図示しない発振回路からのた
とえば512Hzのクロック入力に基いて行なわれる。
If Vss2=-3, OV, then 2 vss+
= VSS2 ) to the vss2 node N2, and the second
When the VS82 voltage is supplied from the power supply terminal 32 to the VS32 node, the voltage +VSS2 is obtained by stepping down the voltage to Z.
"' VSSI is outputted to Vltli+node N1. This operation is performed based on a clock input of, for example, 512 Hz from an oscillation circuit (not shown).

一方、34はLSI内部のVSSI系回路(論理回路と
が発揚回路などであり、ブザー駆動回路とかLamp 
(フィラメント)灯回路などはV8S2系回路である)
に電源電圧を供給するだめに第1電源出力端子でおる。
On the other hand, 34 is a VSSI circuit inside the LSI (the logic circuit is an activation circuit, etc., a buzzer drive circuit, a lamp etc.)
(Filament) light circuit etc. are V8S2 system circuits)
In order to supply the power supply voltage to the first power supply output terminal, the first power supply output terminal is used.

この第1電源出力端子34と前記昇降圧回路33のVl
+817−ドN、との間には、スイッチ回路35、たと
えば第1のMOSトランジスタ36および第2のMOS
トランジスタ37が並列に接続されている。壕だ、VD
D電源(接地電位)と前記昇降圧回路33のVSS2ノ
ードN2との間には、中間′重圧供給回路38、たとえ
ば第3のMOSトランジスタ39および第4のMOSト
ランジスタ40の直列回路が設けられており、このトラ
ンジスタ39および40の接続点は前記第1電源出力端
子34に接続されている。
This first power supply output terminal 34 and the Vl of the step-up/down circuit 33
A switch circuit 35, for example, a first MOS transistor 36 and a second MOS transistor 36, is connected between +817 and N.
Transistors 37 are connected in parallel. It's a trench, VD
An intermediate high voltage supply circuit 38, for example, a series circuit of a third MOS transistor 39 and a fourth MOS transistor 40, is provided between the D power supply (ground potential) and the VSS2 node N2 of the step-up/down circuit 33. The connection point between the transistors 39 and 40 is connected to the first power output terminal 34.

一方、制御回路4ノにおいて、それぞれlビットの第1
のシフトレノスタ42および第2のシフトレノスタ43
の各セット入力端Sには重負荷信号および使用電池をL
SIに接続したときに発生するパワーオンクリア信号が
印加され、それぞれの強制リセット端子■(セット人力
よりもリセット入力を優先させるだめの端子)には後述
する電源切換制御用内部端子440′直圧が印加され、
それぞれのクロック端子CLには図示しない発振回路か
らたとえばI Hzのクロックが印加される。そして、
上記第1のシフトレノスタ42のデータ入力端りにはV
SS2電圧75=与えられ、この第1のシフトレノスタ
42のデータ出力端Qに第2の7フトレノスタ43のデ
ータ入力端りが接続されているつσら(で、上言己第2
の7フトレノスタ43のデータ出力端点の出力は第1の
イン−クー夕45に導かれ、このイン・ぐ−夕45の出
力は前記直列接続されたトランジスタ39,40の各y
−トに導75上れると共に第2のインバータ46に導か
れ、このイン・り一タ46の出力は前記並列接続された
トランジスタ36.37のうちの一方36のケ0−トに
4力)れ、他方のトランジスタ37のデートには前S己
切換制御用内部端子44の電圧が導かれているつそして
、電源切換制御用内部端子44には、使用電池が酸化銀
電池の場合にたとえばVDD電圧、リチウム電池の場合
にVSS2電圧が印/Jllされるようになっており、
たとえばLSI生産段階あるいはLSIを時計に組み込
む段階でワイヤーポンディングにより上記端子44とV
oogN子あるいはVSli2端子との間を配線接続す
るものである。
On the other hand, in the control circuit 4, the first
shift reno star 42 and second shift reno star 43
A heavy load signal and the battery used are connected to each set input terminal S of
The power-on clear signal generated when connected to SI is applied, and each forced reset terminal ■ (terminal for giving priority to reset input over manual setting) is connected to internal terminal 440' direct voltage for power supply switching control, which will be described later. is applied,
For example, a clock of IHz is applied to each clock terminal CL from an oscillation circuit (not shown). and,
At the data input end of the first shift reno star 42, V is applied.
SS2 voltage 75=is given, and the data input terminal of the second shift register 43 is connected to the data output terminal Q of the first shift register 42.
The output of the data output terminal of the 7th input terminal 43 is led to the first input terminal 45, and the output of this input terminal 45 is connected to each of the transistors 39 and 40 connected in series.
The output of this inverter 46 is applied to one of the transistors 36 and 37 connected in parallel. The voltage of the internal terminal 44 for controlling the front S self-switching is led to the date of the other transistor 37, and the voltage of the internal terminal 44 for controlling the power switching is connected to, for example, VDD when the battery used is a silver oxide battery. Voltage, in the case of lithium batteries, VSS2 voltage is printed/Jll,
For example, in the LSI production stage or the stage of assembling the LSI into a watch, wire bonding is used to connect the terminals 44 and V.
This is a wire connection between the oogN terminal or the VSli2 terminal.

なお、シフトレジスタ42.43およびインバータ45
.46の動作電源はVSS2電圧である。
In addition, shift registers 42 and 43 and inverter 45
.. The operating power supply of 46 is the VSS2 voltage.

次に、第3図の動作を説明する。いま、酸化銀電池を外
部電源として利用するLSIにおいては、内部端子44
はvDD電圧(″ビ論理レベル)であるのでシフトレジ
スタ42.43はリセット状態になる。このため、第2
のシフトレジスタ43のデータ出力端4は”ビレベル(
VDD)となり、第1のインバータ45の出力は゛o″
レベル(Vss2電圧)となってトランジスタ39゜4
0は共にオフ状態となり、第2のインバータ46の出力
は゛1’レベルとなって第1のトランジスタ36はオン
状態になる。また、第2のトランジスタ37も前記内部
端子44の1”レベルでゲートに導かれるのでオン状態
になるうしたがって、昇降圧回路33のVSSIノード
N、のVI!81電圧は上記オン状態のトランジスタ3
6゜37を経て第1電源出力端子34がらLSI内部回
路に供給されるっここで、上記第2のトランジスタ37
の存在理由を述べてふ−〈。っまシ、第1のトランジス
タ36のり9−トにはVSS2系の第2のイン・ぐ−夕
46の出力が印加されるものであり゛、電池をLSIに
接続してから昇降圧回路33の昇圧動作によってvss
2電圧が発生するまでには昇圧特性上たとえば250 
rns  程度がかシ、前記第2のインバータ46の出
方が1”レベルに立ち上がるのが遅れ、この間にy、l
のトランジスタ36が完全にオンできないっそこで、内
部端子44の゛l″レベル1てより第2のトランジスタ
37をオン状態にして第14源出カ端子34に早く安定
なVSII+電圧を導出させるようにしている。
Next, the operation shown in FIG. 3 will be explained. Currently, in LSIs that use silver oxide batteries as external power supplies, internal terminals 44
is the vDD voltage (“bi-logic level”), so the shift registers 42 and 43 are in the reset state. Therefore, the second
The data output terminal 4 of the shift register 43 is at "bi-level" (
VDD), and the output of the first inverter 45 is ゛o''
level (Vss2 voltage) and the transistor 39°4
0 are both off, the output of the second inverter 46 is at the '1' level, and the first transistor 36 is on. Further, the second transistor 37 is also led to the gate at the 1" level of the internal terminal 44 and is turned on. Therefore, the VI!81 voltage at the VSSI node N of the step-up/down circuit 33 is the same as that of the transistor 3 in the on-state.
The second transistor 37 is supplied from the first power output terminal 34 to the LSI internal circuit through the
State the reason for its existence. However, the output of the second input gate 46 of the VSS2 system is applied to the first transistor 36, and the buck-boost circuit 33 is connected to the battery after connecting the battery to the LSI. By the boost operation of vss
Due to the step-up characteristics, it takes, for example, 250 volts to generate two voltages.
rns To some extent, the rise of the second inverter 46 to the 1" level is delayed, and during this time y, l
Since the transistor 36 cannot be turned on completely, the second transistor 37 is turned on by the "l" level 1 of the internal terminal 44 so that a stable VSII+ voltage can be quickly derived from the fourteenth source output terminal 34. ing.

これに対して、リチウム電池を外部電ふとして使用する
LSIにおいては、′屈曲をLSIに接続することによ
って内部端子41はVSS2電圧(” o ”レベル)
になるので、シフトレノスフ42゜43はリセットされ
ない。そして、」二i己屈曲の接続時に・ぐワーオンク
リア信号が発生してシフトし・ノスタ42,43は共に
セットされ、第2のシフトレジスタ43の6出力はパ0
”レベルになるっこれによって、第1のインバータ45
の出力は°′1パレベルとなって第3および第4(つト
ランジスタ39,4θは共にオンQζなり、第2のイン
バータ46の出力はパO″レベルとなって第1のトラン
ジスタ36はオフ状態となり、第2のトランジスタ37
も内部端子440゛O”レベルがケ9−トに導かれるの
でオフ状態になろうこの場合、それぞれオン状態の第3
のトランジスタ39と第4のトランジスタ40との接続
点の電圧がVSS2とVSSIとの中間の値、たとえば
XVS112となるように上記両トランノスタ39 、
40のガメン/ヨン比を設定しておくものとする。
On the other hand, in an LSI that uses a lithium battery as an external power source, by connecting the 'bend to the LSI, the internal terminal 41 is set to the VSS2 voltage ("o" level).
Therefore, the shift renosph 42 and 43 are not reset. Then, when the 2i self-bending is connected, a WAR ON CLEAR signal is generated and shifted. Nostars 42 and 43 are both set, and the 6th output of the second shift register 43 is set to 0.
"This will cause the first inverter 45 to
The output of the inverter 46 is at the °'1 level, and the third and fourth transistors 39 and 4θ are both on, Qζ, and the output of the second inverter is at the level, and the first transistor 36 is in the off state. Therefore, the second transistor 37
Since the internal terminal 440゛O'' level is led to the gate, it will be in the off state.In this case, the third terminal in the on state
Both transistors 39 and 40 are connected so that the voltage at the connection point between the transistor 39 and the fourth transistor 40 becomes an intermediate value between VSS2 and VSSI, for example, XVS112.
It is assumed that a Gamen/Yon ratio of 40 is set.

したがって、電池接続直後にはτVSS2電圧が第1電
源出力端子34からVSSI系回路に伊、給され、VS
S+系回路の動作が早く立ち上がる。そして、発振回路
からの1回目の111zクロツクによって@lのシフト
レジスタ42はVs32 (” I)”レベルジ人力を
取り込んでそのQ出力(c″0”レベルが現われ、2回
目のl Hzクロックによって、A2の・/フトレノス
タ43は第1の/フトレノスタ42のQ出力(′°0”
レベル)を取り込んでその4出力は゛1#レベルになる
っこれによって、第1のインバータ45の出力は” o
 ”レベルとなってトランジスタ39.40は共にオフ
状態しこ反転し、第2のインバータ46の出力は” 1
 ”レベルとなって第1のトランジスタ36はオフ状態
になるう即ち、電池接続時から約2秒後にそれまでの状
態が解除され、この間に昇降圧回路33で降圧されて得
られたVss+ %圧が上記オン状態になった第1のト
ランジスタ36を経て第1電源出力端子34からVSS
t系回路へ定常電源として供給されるようになる。この
後、重負荷信号が発生したときにも上記した電池接続時
と同様な動作によって、第1電源出力端子34にτVS
S2電圧が現われ、重負荷信号が発生しなくなってから
約2秒後に第1電源出力端子34にVSSj電圧が現わ
れるようになる。
Therefore, immediately after the battery is connected, the τVSS2 voltage is supplied from the first power output terminal 34 to the VSSI circuit, and the VS
The operation of the S+ system circuit starts up quickly. Then, by the first 111z clock from the oscillation circuit, the @l shift register 42 takes in the Vs32 ("I)" level power, and its Q output (c"0" level appears), and by the second lHz clock, A2's /Futrenostar 43 outputs the Q output of the first /Ftrenostar 42 ('°0''
The output of the first inverter 45 becomes "o".
``level, transistors 39 and 40 are both turned off, and the output of the second inverter 46 is ``1''.
" level, and the first transistor 36 turns off. That is, the previous state is canceled approximately 2 seconds after the battery is connected. During this time, the voltage is lowered by the buck-boost circuit 33 and the obtained Vss+ % voltage. VSS from the first power supply output terminal 34 through the first transistor 36 which is turned on.
It comes to be supplied to the t-system circuit as a steady power source. Thereafter, even when a heavy load signal is generated, the same operation as when connecting the battery is performed to output τVS to the first power output terminal 34.
Approximately two seconds after the S2 voltage appears and the heavy load signal is no longer generated, the VSSj voltage begins to appear at the first power supply output terminal 34.

なお、重負荷時に電池電圧V8S2が電池内部抵抗のた
めに低下し、これに伴ってVSSI電圧が低下したとし
ても、’1’881系回路はVSS+電圧の代わりに’
g VBB2電圧が供給されるので十分に動作可能であ
って、しかもこのときのτVS82電圧はVSSI系回
路の電源としてVBs2電圧はどは高くなく、VSSI
系回路にダイナミック系回路が含まれていても正常な動
作を期待できる。上記τVss2電圧は、前記第3のト
ランジスタ39と第4のトランジスタ40とのデメンジ
コン比を変えることによって、具体的には第3のトラン
ジスタ39のデメンノヨンを所定値として第4のトラン
ジスタ40のデメンノヨンを変えることによってVss
+ (= 4 Vlt82 )とVl!82との間で一
層適正な値に変更することが可能である。
In addition, even if the battery voltage V8S2 decreases due to the internal resistance of the battery during heavy load and the VSSI voltage decreases accordingly, the 881 series circuit will output '1' instead of VSS+ voltage.
g Since the VBB2 voltage is supplied, it is fully operable, and the τVS82 voltage at this time is used as a power supply for the VSSI circuit, and the VBs2 voltage is not very high.
Even if the system circuit includes a dynamic circuit, normal operation can be expected. The above-mentioned τVss2 voltage is determined by changing the demensicon ratio of the third transistor 39 and the fourth transistor 40, specifically, by setting the demenuion of the third transistor 39 to a predetermined value and changing the demenuion of the fourth transistor 40. By Vss
+ (= 4 Vlt82) and Vl! It is possible to change to a more appropriate value between 82 and 82.

上述したように本発明の集積回路用電源切換回路によれ
ば、外部電源として電圧レベルが異なる2種の電池のど
ちらが使用されても、共通の回路構成で済むのでコスト
ダウンが可能となシ、しかも電池電圧の低下による集積
回路の誤動作を最小限におさえることが可能になる。
As described above, according to the power supply switching circuit for integrated circuits of the present invention, no matter which of two types of batteries with different voltage levels are used as an external power supply, a common circuit configuration can be used, thereby reducing costs. Furthermore, malfunctions of the integrated circuit due to a drop in battery voltage can be minimized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ従来の集積回路用電源回
路を示す構成説明図、第3図は本発明に係る集積回路用
電源切換回路の一実施例を示す構成説明図である。 31.32・・・電源供給端子、33・・・昇降圧回路
、34・・・第1電源出力端子、35・・・スイッチ回
路、38・・・中間電圧供給回路、4ノ・・・制御)凸
1路、44・・・電源切換制御用内部端子、V3Si・
・・第1電源電圧、V882・・・第2電源電圧。
1 and 2 are configuration explanatory diagrams showing a conventional integrated circuit power supply circuit, respectively, and FIG. 3 is a configuration explanatory diagram showing an embodiment of an integrated circuit power supply switching circuit according to the present invention. 31.32... Power supply terminal, 33... Buck-boost circuit, 34... First power output terminal, 35... Switch circuit, 38... Intermediate voltage supply circuit, 4... Control ) Convex 1 path, 44... Internal terminal for power supply switching control, V3Si.
...First power supply voltage, V882...Second power supply voltage.

Claims (1)

【特許請求の範囲】[Claims] 外部電源として第1電源電圧の第1電池または第2電源
電圧の第2電池が使用される集積回路に設けられる集積
回路用電源切換回路において、前記第1電池から第1電
源端子を経て第1電源電圧が供給されることによってこ
れを昇圧して第2電源電圧を生成し、前記第2電池から
第2電源端子を経て第2電源電圧が供給されることによ
ってこれを降圧して第1電源電圧を生成する昇降圧回路
と、前記2種の電池のどちらを使用するかによって異な
る論理レベルが与えられる電源切換制御用端子と、集積
回路内の第1′亀源系の回路に電源電圧を供給するため
の第1電源出力端子と前記第1電源供給端子との間に設
けられ、前記電源切換制御用端子の論理レベルが第1電
池使用に対応するときには常にオン状態になり、」−記
論理レベルが第2電池使用に対応するときには所定時に
所定時間だけオフ状態になり、その他の期間はオン状態
になるように制御されるスイッチ回路と、前記第2電源
出力端子から電源電圧が供給され通常はオフ状態になっ
てお9前記所定時に所定時間だけ前記第1電源電圧と第
2電源電圧との中間の電圧を前記第1電源出力端子に供
給するように制御される中間電圧供給回路と、集積回路
に第2電池を接続したときおよび集積回路内の重負荷回
路の動作時に前記所定時間だけ制御出力を発生して前゛
記スイッチ回路および中間電圧供給回路を制御する制御
回路とを具備することを特徴とする集積回路用電源切換
回路。
In an integrated circuit power supply switching circuit provided in an integrated circuit in which a first battery with a first power supply voltage or a second battery with a second power supply voltage is used as an external power supply, the first battery is connected from the first battery to the first power supply terminal via the first power supply terminal. When the power supply voltage is supplied, it is boosted to generate a second power supply voltage, and when the second power supply voltage is supplied from the second battery via the second power supply terminal, it is stepped down to generate the first power supply voltage. A power supply voltage is supplied to a buck-boost circuit that generates voltage, a power supply switching control terminal that is given a different logic level depending on which of the two types of batteries is used, and a 1' main source circuit in the integrated circuit. provided between a first power supply output terminal for supplying power and the first power supply terminal, and is always in an on state when the logic level of the power supply switching control terminal corresponds to the use of the first battery; A power supply voltage is supplied from the second power supply output terminal and a switch circuit that is controlled to be in an off state for a predetermined time at a predetermined time when the logic level corresponds to the use of the second battery, and to be in an on state for other periods. an intermediate voltage supply circuit that is normally in an off state and is controlled to supply a voltage intermediate between the first power supply voltage and the second power supply voltage to the first power supply output terminal for a predetermined time at the predetermined time; and a control circuit that controls the switch circuit and the intermediate voltage supply circuit by generating a control output for the predetermined period of time when a second battery is connected to the integrated circuit and when a heavy load circuit in the integrated circuit is operated. A power supply switching circuit for integrated circuits, characterized in that:
JP21960382A 1982-12-15 1982-12-15 Power source switching circuit for integrated circuit Granted JPS59110373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21960382A JPS59110373A (en) 1982-12-15 1982-12-15 Power source switching circuit for integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21960382A JPS59110373A (en) 1982-12-15 1982-12-15 Power source switching circuit for integrated circuit

Publications (2)

Publication Number Publication Date
JPS59110373A true JPS59110373A (en) 1984-06-26
JPH0434168B2 JPH0434168B2 (en) 1992-06-05

Family

ID=16738114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21960382A Granted JPS59110373A (en) 1982-12-15 1982-12-15 Power source switching circuit for integrated circuit

Country Status (1)

Country Link
JP (1) JPS59110373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969029A (en) * 1992-07-29 1999-10-19 Sumitomo Chemical Company, Limited Process for producing a gas barrier resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140413U (en) * 1975-05-06 1976-11-12
JPS51144715U (en) * 1975-05-16 1976-11-20
JPS53144018U (en) * 1977-04-19 1978-11-14
JPS57196829A (en) * 1981-05-28 1982-12-02 Nippon Electric Ic Microcomput Power source circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140413U (en) * 1975-05-06 1976-11-12
JPS51144715U (en) * 1975-05-16 1976-11-20
JPS53144018U (en) * 1977-04-19 1978-11-14
JPS57196829A (en) * 1981-05-28 1982-12-02 Nippon Electric Ic Microcomput Power source circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969029A (en) * 1992-07-29 1999-10-19 Sumitomo Chemical Company, Limited Process for producing a gas barrier resin composition

Also Published As

Publication number Publication date
JPH0434168B2 (en) 1992-06-05

Similar Documents

Publication Publication Date Title
US5339236A (en) Charge pump circuit for intermediate voltage between power supply voltage and its double voltage
US7466187B2 (en) Booster circuit
US7592797B2 (en) Semiconductor device and electronics device
JP2001210093A (en) Repair signal generating circuit
US5764075A (en) Input circuit for mode setting
JP3526100B2 (en) Mode setting circuit
JPS59110373A (en) Power source switching circuit for integrated circuit
US20020014636A1 (en) Semiconductor device
JP3262070B2 (en) Output buffer
JPH04212786A (en) Semiconductor integrated circuit
JP2001195876A (en) Semiconductor device
JP2000353782A (en) Semiconductor device and electronic equipment equipped with the same
JP2608368B2 (en) Electronic equipment
JP4326961B2 (en) Protection device and method for multi-power supply circuit
JP2001228220A (en) Test circuit of semiconductor device
JP2926852B2 (en) Semiconductor memory
JP2002223160A (en) Circuit device provided with internal supply voltage
JPH098644A (en) Logic &amp; level converter circuit and semiconductor device
JPH04361422A (en) Discharge circuit
KR100745178B1 (en) Backup circuit
JPH01194861A (en) Step-up circuit
JPH02230818A (en) Output circuit for semiconductor device
JPH0744523A (en) Otp microcomputer
JP2003101403A (en) Input circuit
JPH08185240A (en) Integrated circuit device and voltage switching circuit