JPS59109714A - After-air feeding device - Google Patents

After-air feeding device

Info

Publication number
JPS59109714A
JPS59109714A JP57218426A JP21842682A JPS59109714A JP S59109714 A JPS59109714 A JP S59109714A JP 57218426 A JP57218426 A JP 57218426A JP 21842682 A JP21842682 A JP 21842682A JP S59109714 A JPS59109714 A JP S59109714A
Authority
JP
Japan
Prior art keywords
air
furnace
supply device
air passage
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57218426A
Other languages
Japanese (ja)
Other versions
JPH0259366B2 (en
Inventor
Kunikatsu Yoshida
邦勝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP57218426A priority Critical patent/JPS59109714A/en
Publication of JPS59109714A publication Critical patent/JPS59109714A/en
Publication of JPH0259366B2 publication Critical patent/JPH0259366B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/04Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air beyond the fire, i.e. nearer the smoke outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)

Abstract

PURPOSE:To reduce NOx without increasing unburnt matter in exhaust gas by a method wherein straight forward air is supplied from the central part of an after-air feeding device, while swirl air is supplied from its outer peripheral part. CONSTITUTION:A part of the air supplied from a wind box 3 is past through a swirler 5 and turned to be swirl air stream 6A, which is past through an outside air passage 42 and jetted from an after-air port 4 into a furnace 1, whereby the stream 6A is expanded in the directions of the periphery of the furnace and of a water wall 2 due to its swirling force. On the other hand, the remaining air is regulated its flow rate by a damper 22 and then introduced in an inside air passage 23 so as to be turned in straight forward air 23 in order to be jetted from the after-air port 4 in the central part of the furnace. Consequently, because the unburnt matter in the center part of the furnace can be reduced by the jetted straight forward air with a large penetrating power and the unburnt matter in the vicinity of the furnace wall can be reduced by the jetted swirl air stream with a widely expanding power, the generation of NOx can be suppressed without accompanying the increase of unburnt matter in exhaust gas.

Description

【発明の詳細な説明】 本発明はアフタエア供給装置に係り、′待に未燃分を増
加させることなく排ガス中の窒素酸化物(以下No工と
称する)を低減するに好適な燃焼装置用のアフタエア供
給装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an after-air supply device, which is suitable for use in a combustion device to reduce nitrogen oxides (hereinafter referred to as “NO”) in exhaust gas without increasing unburned gas. This invention relates to an after-air supply device.

No工は光学オキシダントや酸性雨の原因物質の1つと
されているため、近年、その発生を効果的に抑制する燃
焼法の開発が要望されている。このような目的に沿った
燃焼法として、(1)排ガス再循環法、(2)二段燃焼
法および(3)炉内脱硝燃焼法が矧られているが、特に
後2者が注目されている。二段燃焼法は、ボイラ等の燃
焼火炉に主バーナとアフタエアロとを配し、該火炉内の
ガス流動方向よシみて上流側に位+tする主バーナの空
気比を1以下に絞って燃焼を行うことによりNo工の発
生を抑制し、酸素不足のだめ生ずる未燃分については主
バーナより浸流側に位置するアフタエアロから注入され
る空気(以下、アフタエアと称する)により完全燃焼せ
しめるものである。また、炉内脱硝燃焼法は、主バーナ
の下流側に脱硝バーナまたは還元バーナと称する特殊な
バーナ(以下、脱硝バーナで代表する)を配するととも
に、さらにその下流側にアクタエアロを配し、上記脱硝
バーナにおいて空気比1以下の条件で燃焼を行うことに
よシ主バーナで生成したNo工を還元し、その後脱硝バ
ーナで生成した未燃分をアフタエアロから注入されるア
フタエアにより完全燃焼するものである。
Since NO is considered to be one of the causes of optical oxidants and acid rain, there has been a demand in recent years for the development of a combustion method that effectively suppresses its generation. Combustion methods that meet these objectives include (1) exhaust gas recirculation method, (2) two-stage combustion method, and (3) in-furnace denitrification combustion method, but the latter two have received particular attention. There is. In the two-stage combustion method, a main burner and an after-air are arranged in a combustion furnace such as a boiler, and the air ratio of the main burner located on the upstream side when viewed from the direction of gas flow in the furnace is reduced to 1 or less to perform combustion. By doing this, the occurrence of No. 1 burns is suppressed, and the unburned matter that occurs due to lack of oxygen is completely combusted by air injected from the after air located on the immersion side of the main burner (hereinafter referred to as after air). In addition, the in-furnace denitrification combustion method uses a special burner called a denitrification burner or a reduction burner (hereinafter referred to as the denitrification burner) downstream of the main burner, and an Acta Aero further downstream. By performing combustion in the denitration burner at an air ratio of 1 or less, the NO produced in the main burner is reduced, and then the unburned content produced in the denitration burner is completely combusted by the afterair injected from the afterair. be.

すなわち、いずれの方法においても、主バーナまたは脱
硝バーナの後流側には、アフタエア1」が配設され、こ
れにより前記主バーナまだは脱硝バーナの領域で発生す
る未燃分を完全燃焼者しめる構成となっている。主バー
ナまたは脱硝バーナから発生する未燃分の炉内分布状態
は燃焼状態により変化するだめ、アフタエアの供給に際
しては、上記変化に対応できるように主混合個所あるい
は到達距離の調整範囲をできるだけ広くすることが望ま
しい。
That is, in either method, an after air 1 is provided on the downstream side of the main burner or the denitrification burner, so that the unburned matter generated in the region of the main burner and the denitrification burner is completely combusted. The structure is as follows. The distribution of unburned substances generated from the main burner or denitrification burner in the furnace changes depending on the combustion conditions, so when supplying afterair, the adjustment range of the main mixing point or the reach should be made as wide as possible to accommodate the above changes. This is desirable.

従来のアフタエア供給装置としては、第1図に示すよう
に風箱3から空気通路40へ導入されるアフタエアを旋
回器5で適当な旋回を与えて旋回空気流6とし、これを
火炉1の水壁2に設けられたアフタエアロ4から噴出せ
しめる構成のものが知られている。このような旋回噴流
においては、旋回度を増すと噴流の拡がり角は増すが、
軸方向への噴出速度は減衰する。逆に旋回度を減ずれば
拡がり角が小さくなり軸方向速度は増加する。しかし、
このような装置においては第2図に示すように、火炉1
の前壁7および後壁8から噴出されるアフタエア10を
火炉中央まで到達させるために旋回度を減ずれば、噴出
空気流は炉巾方向への拡がりが減少され、火炉のコーナ
部に未燃分11が残るという問題がある。一方、旋回度
を上げて噴出空気流の拡がりを増加すれば、噴出空気流
は炉中央部方向への運動量が減少し、第2図とは逆に火
炉中央部における混合が低下することとなる。
As shown in FIG. 1, a conventional after-air supply device uses a swirler 5 to give appropriate swirl to the after-air introduced into the air passage 40 from the wind box 3 to form a swirling air flow 6, which is then transferred to the water in the furnace 1. A configuration in which the air is ejected from an after-aero 4 provided on the wall 2 is known. In such a swirling jet, as the degree of swirl increases, the divergence angle of the jet increases;
The ejection velocity in the axial direction is attenuated. Conversely, if the turning angle is reduced, the divergence angle becomes smaller and the axial speed increases. but,
In such a device, as shown in FIG.
If the degree of rotation is reduced in order to allow the after air 10 ejected from the front wall 7 and rear wall 8 of the furnace to reach the center of the furnace, the spread of the ejected air flow in the width direction of the furnace is reduced, and unburned air flows into the corners of the furnace. There is a problem that 11 minutes remain. On the other hand, if the rotation angle is increased to increase the spread of the ejected air flow, the momentum of the ejected air flow toward the center of the furnace will decrease, and the mixing at the center of the furnace will decrease, contrary to Fig. 2. .

このように、従来装置は調整範囲が狭いので、多量の酸
素を必要とする未燃分の多い個所に必要な量の空気を供
給することができず、従って排ガス中に未燃分が増大す
るという重大な欠点を有する。
As described above, the adjustment range of conventional devices is narrow, so it is not possible to supply the necessary amount of air to areas with a large amount of unburned gas that require a large amount of oxygen, and therefore, the amount of unburned gas increases in the exhaust gas. It has a serious drawback.

このような欠点を補うため、第3図に示すように、空気
通路40内に設けられた円錐台状のプラグ12を摺動軸
13を介して空気流れ方向イヘ移動させ、アフタエアロ
4の開口面積を変化させる試みもなされているが、この
方法によるときは、圧力損出が大きくなる上、プラグの
位置によって旋回空気流に与える影響が異なり、摺動距
離とアフタエアロを通過する空気量との関係が複雑で調
整が難かしい等の欠点を有する。また、アフタエアロの
開口面積を変化させる手段としては、第4図および第5
図に示すように、回転軸15に固定されたピニオン19
とこれに噛合するラック18の動作によシ機能する絞り
板16とリンク17とを1えた絞り機構14を用いる方
法もあるが、この方法においても、圧力損失が大きくな
る上に構造が複雑である等の欠点がある。
In order to compensate for such drawbacks, as shown in FIG. 3, a truncated conical plug 12 provided in the air passage 40 is moved in the air flow direction via a sliding shaft 13 to reduce the opening area of the after-air 4. Attempts have been made to change the amount of air passing through the afteraero, but this method results in a large pressure loss, and the influence on the swirling airflow varies depending on the position of the plug, making it difficult to determine the relationship between the sliding distance and the amount of air passing through the afteraero. However, it has drawbacks such as being complicated and difficult to adjust. In addition, as a means to change the opening area of the after-aero, see Figures 4 and 5.
As shown in the figure, a pinion 19 fixed to the rotating shaft 15
There is also a method of using a throttle mechanism 14 that includes a throttle plate 16 and a link 17 that function by the movement of a rack 18 meshing with the throttle plate 16, but this method also results in a large pressure loss and a complicated structure. There are some drawbacks.

本発明の目的は、上記した従来技術の欠点をなくシ、排
ガス中の未燃分を増加させることなくNo。
The object of the present invention is to eliminate the drawbacks of the prior art described above, and to eliminate the disadvantages of the prior art without increasing the amount of unburned matter in the exhaust gas.

を低減できる燃焼装置用のアフタエア供給装置を提供す
ることにある。
An object of the present invention is to provide an after-air supply device for a combustion device that can reduce the amount of air.

本発明者は、アフタエア供給装置の中央部から直進空気
を供給する一方、その外周から旋回空気を供給する場合
には、圧力損失をともなうことなく、簡単な調整の下に
火炉の中央部およびコーナ部へ空気を好適に供給し得る
ことを見出した。
The present inventor has discovered that when supplying straight air from the center of the after-air supply device while supplying swirling air from the outer periphery of the after-air supply device, the center and corners of the furnace can be easily adjusted without pressure loss. It has been found that air can be suitably supplied to the parts.

本発明は、上記の知見に基づきなされたものス風箱から
導入される空気を案内し、アフタエアロから火炉内へ噴
出させるだめの空気通路を備えたアフタエア供給装置に
おいて、上記空気通路を、中央部の直進空気案内用の内
側空気通路とその外周の旋回空気案内用の外側空気通路
とに分割して設けることを特徴とする。
The present invention has been made based on the above knowledge, and provides an after-air supply device equipped with an air passage for guiding the air introduced from the air box and blowing it out from the after-air into the furnace. It is characterized by being divided into an inner air passage for guiding straight air and an outer air passage for guiding swirling air around the outer periphery.

本発明において、上記内側空気通路は、噴出直進空気流
の貫通力を損わない限りその形状、設置位置等に関して
特に制限はないが、形状については一般に直流形成に有
利な円筒体の内部空間とすることが望ましい。内側空気
通路の火炉側先端開口部は、アフタエアロの最小断面積
を示す位置またはそれより火炉側とすることが好ましい
。このようにすることにより、外側空気通路から噴出さ
れる旋回空気流の旋回力を損うことなく、直進空気流を
噴出させることができる。
In the present invention, there are no particular restrictions on the shape or installation position of the inner air passage as long as it does not impair the penetrating force of the ejected straight air flow. It is desirable to do so. It is preferable that the furnace-side tip opening of the inner air passage be located at a position showing the minimum cross-sectional area of the after-air, or at a position closer to the furnace than that. By doing so, a straight airflow can be ejected without impairing the swirling force of the swirling airflow ejected from the outer air passage.

まだ、本発明において、内側空気通路内またはその上流
側には空気流量調節手段を設けることが望ましい。この
ようにすれば、直進空気の供給量調整が可能となるので
、火炉の燃焼状態に応じて直進空気と旋回空気の供給割
合を調節することができる。
Still, in the present invention, it is desirable to provide air flow rate regulating means within or upstream of the inner air passage. In this way, it is possible to adjust the supply amount of the straight air, so the ratio of the supply of the straight air and the swirling air can be adjusted depending on the combustion state of the furnace.

上記空気流量調節手段は、この種の技術分野で使用され
ているものが広く適用可能であり、具体例として通路横
断式の回転型また摺動型平板ダンパ、通路に沿って摺動
可能とされた開口部を有する円筒ダンパ、通路内で回転
自在とされたプレート式ダンパおよびベーン等を示すこ
とができる。
The above-mentioned air flow rate regulating means can be widely applied to those used in this type of technical field, and specific examples include rotary type or sliding type flat plate dampers that cross the passageway, and dampers that can be slid along the passageway. Examples include cylindrical dampers with open openings, plate dampers rotatable within passages, vanes, and the like.

本発明における上記外側空気通路は、内側空気通路の外
周において旋回空気流を案内可能に形成されたものであ
る限り特に制限はない。一般には、従来のアフタエア供
給装置の空気通路において、内側空気通路を除く部分に
より形成される。該外側空気通路へ旋回空気を導入する
ための旋回器は、旋回機能を有するものである限り特に
制限はないが、一般に半径流式旋回器および軸流式旋回
器が好ましい。
The outer air passage in the present invention is not particularly limited as long as it is formed to be able to guide swirling airflow around the outer periphery of the inner air passage. Generally, it is formed by the air passage of a conventional after-air supply device, excluding the inner air passage. The swirler for introducing the swirling air into the outer air passage is not particularly limited as long as it has a swirling function, but radial flow swirlers and axial flow swirlers are generally preferred.

以下、図面に示す実施列により本発明をさらに詳しく説
明する。
The present invention will be explained in more detail below with reference to the embodiments shown in the drawings.

第6図に示す装置は、第1図に示す同一符号とその説明
が同様に参照される部分と、第1図に示す空気通路40
の中央部に設けられた円筒体21の内側に形成される直
進空気案内用の内側空気通路41と、その外周に設けら
れた、半径流式旋回器5で発生する旋回空気の案内用外
側空気通路42とから構成される。なお、上記内側空気
通路41の火炉側先端開口部は、アフタエアロ4の最小
断面積を示す位置に設定されており、また、内側空気通
路41の風箱3に開口する入口部には、第7図に示すよ
うに、内側空気通路41を横断して開度を調節する回転
型の平板ダンパ22が水平方向を軸とする回転方向口へ
回転自在とされた回転軸15を介して設けられている。
The apparatus shown in FIG. 6 includes parts to which the same reference numerals and descriptions as shown in FIG. 1 are referred, and the air passage 40 shown in FIG.
An inner air passage 41 for guiding straight air formed inside the cylindrical body 21 provided at the center of the cylindrical body 21, and an outer air passage 41 for guiding swirling air generated in the radial flow swirler 5 provided on the outer periphery of the inner air passage 41 for guiding swirling air. It is composed of a passage 42. The furnace-side tip opening of the inner air passage 41 is set at a position that shows the minimum cross-sectional area of the after-air 4, and the inlet of the inner air passage 41 that opens into the wind box 3 has a seventh As shown in the figure, a rotary flat plate damper 22 that crosses the inner air passage 41 and adjusts the opening degree is provided via a rotating shaft 15 that is freely rotatable toward the opening in the rotational direction about the horizontal direction. There is.

このような構成の装置において、風箱3から供給される
空気の一部は旋回器5を通って旋回空気流6Aとなり、
外側空気通路42を11イだ後アフタエアロ4から火炉
1内へ噴出されるが、その際旋回力によりその周囲およ
び水壁2の方向へ拡がる。
In the device with such a configuration, a part of the air supplied from the wind box 3 passes through the swirler 5 and becomes a swirling air flow 6A,
After passing through the outer air passage 42 for 11 times, the air is ejected from the after-air 4 into the furnace 1, but at this time, it spreads around it and toward the water wall 2 due to the swirling force.

一方、残りの空気はダンパ22によって流量を調整され
た後内側空気通路41に導入され、ここで直進空気23
となった後アフタエアロ4から火炉中央部へ向けて噴出
される。その際、内側空気通路41の先端はアフタエア
ロ4の最小断面積部に達しているため、主としてアフタ
エアロ4の周辺部を流れている旋回空気流6Aの旋回力
を阻Hすることがないばかり・でなく、却ってその拡が
りを助長する効果が得られる。以上の総合的な結果とし
て得られるアフタエアの火炉巾方向への拡がりと火炉中
央部への貫通の割合は、旋回器5とダンパ22の位置を
それぞれ調節することにより任意に調整することができ
る。このように、本実施列によれば、燃焼状態に応じて
火炉の氷壁周辺部および同中央部へ空気を好適に供給す
ることができるので、それらの部分で発生し易いCOや
煤塵等の未燃分を確実に減少させることができる。
On the other hand, the remaining air is introduced into the inner air passage 41 after its flow rate is adjusted by the damper 22, where the straight air 23
After that, it is ejected from the after aero 4 toward the center of the furnace. At this time, since the tip of the inner air passage 41 reaches the minimum cross-sectional area of the after-aero 4, it does not impede the swirling force of the swirling air flow 6A flowing mainly around the after-aero 4. On the contrary, it has the effect of encouraging its spread. The ratio of the after air spreading in the width direction of the furnace and penetrating into the center of the furnace obtained as a comprehensive result of the above can be arbitrarily adjusted by adjusting the positions of the swirler 5 and the damper 22, respectively. As described above, according to this embodiment, air can be suitably supplied to the surrounding area of the ice wall and the central area of the furnace depending on the combustion state, so that CO, soot, etc. that are likely to be generated in these areas are prevented. It is possible to reliably reduce fuel consumption.

次に、第8図は、上記実施クリに適用可能な他のダンパ
例を示すもので、このダンパは、水平方向を軸とする回
転方向口へ回転自在とされた回転軸15と、これに固着
されたビニオン19と、ピニオン19に噛合すとともに
その回転に応じて上下方向ハヘ移動するラック20と、
ラック20に固着された慴動型の平板ダンパ22Aとか
ら構成される。このダンパを第6図に示すダンパ22に
代えて適用した場合にも、上記実施例Σ同様な効果が達
成される。
Next, FIG. 8 shows another example of a damper that can be applied to the above embodiment. A fixed pinion 19, a rack 20 that meshes with the pinion 19 and moves vertically according to its rotation,
It is composed of a sliding type flat plate damper 22A fixed to the rack 20. Even when this damper is applied in place of the damper 22 shown in FIG. 6, effects similar to those of the above embodiment Σ can be achieved.

第9図は、本発明の他の実施例を示すもので、第6図と
異なる点は、第6図に示す平板ダンパ22に代えて、摺
NJJ軸13の水平方向移動イにともない内側空気通路
41に沿って摺動する円筒ダンパ25を用いたことにあ
る。なお、該円筒ダンパ25には第1Oが参照されるよ
うに、円周上に沿つて均等に配分された切欠き部26が
設けられている。
FIG. 9 shows another embodiment of the present invention, and the difference from FIG. 6 is that instead of the flat damper 22 shown in FIG. The reason is that a cylindrical damper 25 that slides along the passage 41 is used. Note that the cylindrical damper 25 is provided with notches 26 that are evenly distributed along the circumference, as shown in the first O.

この実施例では、内側空気通路41への空気の流入23
Aが均一に行われるので、流量調節機能に加え噴出直進
空気流23に哨りがなくなるという特有の効果がある。
In this embodiment, the air inlet 23 into the inner air passage 41
Since A is performed uniformly, there is a unique effect that, in addition to the flow rate adjustment function, there is no restriction in the ejected straight air flow 23.

第11図および第12図は本発明のさらに他の実施例を
示すもので、第6図と異なる点は、風箱3から分岐した
空気を内側空気通路41へ導くだめのダクト27を風箱
3の外側に設けたこと、および該ダクト内に水平方向を
軸として口方向へ回転自在とされたダンパ28を設けた
ことにある。
11 and 12 show still another embodiment of the present invention, and the difference from FIG. 6 is that the duct 27 for guiding the air branched from the wind box 3 to the inner air passage 41 is provided in 3, and a damper 28 that is rotatable in the mouth direction around the horizontal direction is provided inside the duct.

この実施例では、前記実施例の効果に加えて風箱を小型
化できるという効果が得られる。
In addition to the effects of the previous embodiment, this embodiment has the advantage that the wind box can be made smaller.

第13図は、以上の各実施例において用いられる直進空
気流の#、:を調節用ダンパに代えて、内側空気通路4
1内にベーン29を設けた場合の実施例を示・すもので
ある。この実施列では、ベーン29を通過した空気に旋
回力が付与されるが、該空気は直進性を有しているので
第6図に示す実施例の場合と同様な効果が得られる。
FIG. 13 shows an inner air passage 4 in which #, : of the straight air flow used in each of the above embodiments is replaced with an adjusting damper.
1 shows an embodiment in which a vane 29 is provided within the vehicle. In this embodiment, a swirling force is applied to the air that has passed through the vanes 29, but since the air has straight-travel properties, the same effect as in the embodiment shown in FIG. 6 can be obtained.

さらに第14図は、第13図に示すベーンに代えて、内
側空気通路41に直交する水平方向を軸として二方向へ
回転するダンパ30を設けた場合の実施例を示すもので
あシ、第6図に示す実施例と同様な効果が達成される。
Furthermore, FIG. 14 shows an embodiment in which a damper 30 that rotates in two directions about the horizontal direction perpendicular to the inner air passage 41 is provided in place of the vane shown in FIG. 13. Similar effects to the embodiment shown in FIG. 6 are achieved.

以上は本発明の典型的な実施例について説明したもので
あるが、本発明はこれらに限定されるものではなく、本
発明の思、田内で他に種の変形や態様が存在することは
いうまでもない。例えば、上述の各実施例では1旋回器
5としていずれも半径流式のものが用いられているが、
内側空気通路の外周に軸流式旋回器を設置することも可
能であり、同様な効果が得られる。さらに、前述した如
く内側空気通路の火炉側先端はアフタエアロの最小断面
部分またはそれよりも炉内側に位置させることが望まし
いが、旋回空気流と直進空気流が互いに大きく影響し合
わない条件、例えば旋回空気流の旋回度を弱めた状態の
下では、内側空気通路の先端をアフタエアロの最小断面
部分より風箱側に位置させても、本発明の効果を妨げる
ことはない。
Although the above describes typical embodiments of the present invention, the present invention is not limited thereto, and it is understood that there are other variations and embodiments within the spirit of the present invention. Not even. For example, in each of the above-mentioned embodiments, a radial flow type is used as one swirler 5, but
It is also possible to install an axial flow swirler around the outer periphery of the inner air passage, and a similar effect can be obtained. Furthermore, as mentioned above, it is desirable that the furnace-side tip of the inner air passage be located at the minimum cross-sectional area of the after-air or inside the furnace. Under conditions where the degree of rotation of the airflow is weakened, the effects of the present invention will not be hindered even if the tip of the inner air passage is located closer to the wind box than the minimum cross section of the afteraero.

以上、本発明によれば、アフタエアの供給通路を中央部
の直進空気案内用の内側空気通路とその外周の旋回空気
案内用の外側空気通路とに分書uして設けたことにより
、前者から得られる貫通力の大きい噴出直進空気により
火炉中央部の未燃分を減少させることができ、まだ後者
から得られる。高い拡がり力をそなえだ噴出旋回空気流
により火炉壁近傍の未燃分を減少させること力;できる
ので、排ガス中の未燃分の増加をともなうことな(No
As described above, according to the present invention, by dividing the after air supply passage into an inner air passage for guiding straight air in the center and an outer air passage for guiding swirling air on the outer periphery, the former The resulting jet straight air with a large penetrating force makes it possible to reduce the amount of unburned matter in the central part of the furnace, which can still be obtained from the latter. It is possible to reduce the unburned matter near the furnace wall by the jet swirling airflow with a high spreading force; therefore, it does not increase the unburned matter in the exhaust gas (No
.

の発生を抑制することが可能となる。It becomes possible to suppress the occurrence of.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のアフタエア供給装置を示す狽U断面図
、第2図は、従来のアフタエア供給装置を備えだ火炉の
燃焼状・態を示す横断面図、第3図および第4図は、そ
れぞれ従来の池のアフタエア供給装置を示す側Ifr而
図面第5図は、第4図のA−A線に沿った矢視方向視図
、第6図は、本発明実施例に係るアフタエア供給装置を
示す側断面図、第7図は、第6図のB−B線に溢った矢
視方向視図、第8図は、第6図に示す装置の夕゛ンノく
部に替えて適用した本発明の他の実施例に係る夕゛ンノ
く部を第6図のB−B線に溢った矢視方向で示す視臥第
9図は、本発明の他の実施例に係るアフタエア供給装置
を示す側#T面図、第10図は、第9図のC−C線に沿
った矢視方向断面図、第11図は、本発明の池の実施例
に係るアフタエア供給装置の側断面図、第12図は、第
11図のD−D線に溢つだ矢視方向断面図、第13図は
、本発明実施例のいずれかに適用されるダンノく部に替
えて内側空気通路にベーンを設けた場合を示す部分側断
面図、第14図は、第13図に示すベーンに替えて夕゛
ンパを適用した場合を示す部分側断面図である。 1・・・火炉、2・・・水壁、3・・・風箱、4・・・
アフタエアロ、5・・・旋回器、6.6A・・・旋回空
気流、21・・・円筒体、22.22A・・・平板ダン
ノ(,23・・・直進空気、25・・・円筒ダン、<、
26・・・切欠き部、27・・・ダクト、28・・・ダ
ンノく、29・・・べ−y、30・・・ダンパ、41・
・・内側空気通路、42・・・外側空気通路。 代理人 弁理士  川 北 武 長 第6図  第7図 第9図 第11図 第12図 第13  図   第14図
Fig. 1 is a cross-sectional view showing a conventional after-air supply device, Fig. 2 is a cross-sectional view showing the combustion state of a furnace equipped with a conventional after-air supply device, and Figs. 3 and 4 are , FIG. 5 is a side view showing a conventional after-air supply device for a pond, and FIG. 6 is a view taken along the line A-A in FIG. 4, and FIG. 7 is a side sectional view showing the device, FIG. 7 is a view taken along line B-B in FIG. 6, and FIG. 8 is a side sectional view showing the bottom part of the device shown in FIG. FIG. 9 is a perspective view showing the bottom part of another embodiment of the present invention applied in the direction of the arrow extending from line B-B in FIG. 6. A side #T view showing the after-air supply device, FIG. 10 is a sectional view taken along the line C-C in FIG. 9, and FIG. 11 is a side #T view showing the after-air supply device according to the embodiment of the present invention. 12 is a sectional view taken along the line D-D in FIG. 11, and FIG. FIG. 14 is a partial side sectional view showing a case where vanes are provided in the inner air passage, and FIG. 14 is a partial side sectional view showing a case where an damper is applied in place of the vanes shown in FIG. 13. 1... Furnace, 2... Water wall, 3... Wind box, 4...
After aero, 5...Swivel, 6.6A...Swirling airflow, 21...Cylindrical body, 22.22A...Flat plate Danno (, 23... Straight air, 25... Cylindrical Dan, <、
26...Notch, 27...Duct, 28...Dunning, 29...B-y, 30...Damper, 41...
...Inner air passage, 42...Outer air passage. Agent Patent Attorney Takenaga Kawakita Figure 6 Figure 7 Figure 9 Figure 11 Figure 12 Figure 13 Figure 14

Claims (1)

【特許請求の範囲】 (1)風箱から導入される空気を案内し、アフタエアロ
から火炉内へ噴出させるだめの空気通路を備えたアフタ
エア供給装置において、上記空気通路を、中央部の直進
空気案内用の内側空気通路とその外周の旋回空気案内用
の外側空気通路とに分列して設けたことを特徴とするア
フタエア供給装置。 (2、特許請求の範囲第1項において、前記内側空気通
路は円筒体の内部空間であることを特徴とするアフタエ
ア供給装置。 (3)特許請求の範囲第1項において、前記内側空気通
路の火炉側先端開口部はアフタエアロの峡小断面積を示
す位置またはそれより火炉側の位置としたことを特徴と
するアフタエア供給装置。 (4)%許請求の範囲第1項において、前記内側空気通
路まだはその上流側に空気流量調節手段を設けたことを
特徴とするアフタエア供給装置。 (5)特許請求の範囲第1項において、前記外側空気通
路またはその上流側に空気旋回手段を設けたことを4畝
とするアフタエア供給装置If。
[Scope of Claims] (1) In an after-air supply device equipped with an air passage for guiding air introduced from a wind box and blowing it out from the after-air into the furnace, the air passage is connected to a straight air guide in the center. An after-air supply device characterized in that the after-air supply device is divided into an inner air passage for guiding air and an outer air passage for guiding swirling air around the outer periphery thereof. (2. In Claim 1, the after-air supply device is characterized in that the inner air passage is an internal space of a cylindrical body. (3) In Claim 1, the after-air supply device is characterized in that the inner air passage is an internal space of a cylindrical body. An after air supply device characterized in that the furnace side tip opening is located at a position showing a narrow cross-sectional area of the after air or at a position closer to the furnace side. An after-air supply device characterized in that an air flow rate adjusting means is provided on the upstream side thereof. (5) In claim 1, an air swirling means is provided on the outer air passage or its upstream side. After air supply device If has four ridges.
JP57218426A 1982-12-15 1982-12-15 After-air feeding device Granted JPS59109714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57218426A JPS59109714A (en) 1982-12-15 1982-12-15 After-air feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57218426A JPS59109714A (en) 1982-12-15 1982-12-15 After-air feeding device

Publications (2)

Publication Number Publication Date
JPS59109714A true JPS59109714A (en) 1984-06-25
JPH0259366B2 JPH0259366B2 (en) 1990-12-12

Family

ID=16719722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57218426A Granted JPS59109714A (en) 1982-12-15 1982-12-15 After-air feeding device

Country Status (1)

Country Link
JP (1) JPS59109714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053392A1 (en) 2002-12-12 2004-06-24 Babcock-Hitachi Kabushiki Kaisha Combustion apparatus and window box
JP2012145267A (en) * 2011-01-12 2012-08-02 Babcock Hitachi Kk Boiler device
EP2476954A4 (en) * 2009-09-11 2015-03-18 Babcock Hitachi Kk Pulverized coal boiler

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132907U (en) * 1981-02-09 1982-08-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132907U (en) * 1981-02-09 1982-08-19

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053392A1 (en) 2002-12-12 2004-06-24 Babcock-Hitachi Kabushiki Kaisha Combustion apparatus and window box
US7922480B2 (en) 2002-12-12 2011-04-12 Babcock-Hitachi Kabushiki Kaisha Combustion apparatus and wind box
EP2476954A4 (en) * 2009-09-11 2015-03-18 Babcock Hitachi Kk Pulverized coal boiler
JP2012145267A (en) * 2011-01-12 2012-08-02 Babcock Hitachi Kk Boiler device

Also Published As

Publication number Publication date
JPH0259366B2 (en) 1990-12-12

Similar Documents

Publication Publication Date Title
JP3140299B2 (en) Pulverized coal burner and its use
JP3344694B2 (en) Pulverized coal combustion burner
US6672863B2 (en) Burner with exhaust gas recirculation
JP3343855B2 (en) Pulverized coal combustion burner and combustion method of pulverized coal combustion burner
JPH0820047B2 (en) Low NOx short flame burner
IE62676B1 (en) Burner for the combustion of pulverised fuel
CZ293962B6 (en) Pulverized coal combustion burner
JPH0531049B2 (en)
US5357743A (en) Burner for gas turbine engines
JP3643461B2 (en) Pulverized coal combustion burner and combustion method thereof
JPS59109714A (en) After-air feeding device
JPH07127817A (en) Low nox gas combustion burner
JP3107214B2 (en) Combustion air supply device
JPS6225926B2 (en)
JPH1038216A (en) Pulverized coal burner
JPH0474603B2 (en)
JP2001355832A (en) Air port structure
JPH0318808Y2 (en)
JP2008075911A (en) Gas injection port
JPH0113241Y2 (en)
JPH11211010A (en) Method for combustion in pulverized coal-fired boiler
JPS62138607A (en) Burning equipment
JPS6078207A (en) Low nox type burner
JP2794939B2 (en) Premixing method and premixing device for gas turbine combustor
JPH0311537Y2 (en)