JP2008075911A - Gas injection port - Google Patents

Gas injection port Download PDF

Info

Publication number
JP2008075911A
JP2008075911A JP2006253371A JP2006253371A JP2008075911A JP 2008075911 A JP2008075911 A JP 2008075911A JP 2006253371 A JP2006253371 A JP 2006253371A JP 2006253371 A JP2006253371 A JP 2006253371A JP 2008075911 A JP2008075911 A JP 2008075911A
Authority
JP
Japan
Prior art keywords
gas
furnace
flow
air
aap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006253371A
Other languages
Japanese (ja)
Inventor
Akira Baba
彰 馬場
Kimiharu Kuramasu
公治 倉増
Masayuki Taniguchi
正行 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2006253371A priority Critical patent/JP2008075911A/en
Publication of JP2008075911A publication Critical patent/JP2008075911A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Air Supply (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas injection port of a simple structure capable of stabilizing the mixing of unburned gas near a furnace wall, achieving an independent furnace central portion carry-over function, oxidatively decomposing a lean unburned gas by stabilizing ignition near an air port nozzle and the like, and performing low NOx combustion. <P>SOLUTION: This gas injection port is provided with a secondary air flow channel 23 for producing contracted flow, obliquely formed toward a center shaft from an upstream side of the air flow to provide the flow of secondary air 3 with a velocity component from an outer peripheral side of AAP 17 toward the center shaft, a guide plate 10 disposed at an outlet portion of the secondary air flow channel 23 to guide the gas flow along a throat portion 1a of a furnace 1, and a swirling unit 8 disposed at the upstream side of the secondary air flow channel 23. As the turbulence around jet is generated in the furnace 1 near the outlet portion of the secondary air flow channel 23, the surrounding combustion gas is easily accompanied therewith, and the swirl jet of the gas formed by the swirling unit 8 has the expansion of jet wider than the contracted flow, the blowing-through of the rising unburned gas can be prevented, and further the guide plate 10 prevents the attachment of ash onto a furnace wall. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ボイラ火炉などの火炉へ空気などのガスを噴出させるガス噴出ポートに係わり、特に火炉中心部への噴流到達と火炉壁近傍のガス混合促進を両立するのに好適なガス噴出ポートに関する。   The present invention relates to a gas ejection port for ejecting a gas such as air to a furnace such as a boiler furnace, and more particularly to a gas ejection port suitable for achieving both jet arrival at the center of the furnace and gas mixing acceleration near the furnace wall. .

ボイラ火炉壁には、空気や燃焼排ガス等の気体を炉内に噴出させる各種のポートが設けられている。例えば、燃焼装置として燃料と燃焼用空気とを噴出させるバーナや、二段燃焼用空気を投入するためのアフターエアポート(AAP、オーバーエアポート、OFAとも称される)等が該当する。   The boiler furnace wall is provided with various ports for ejecting gas such as air or combustion exhaust gas into the furnace. For example, a burner that ejects fuel and combustion air as a combustion device, an after-air port (also referred to as AAP, over-air port, or OFA) for introducing two-stage combustion air, and the like are applicable.

図4に代表的な微粉炭燃焼用の火炉を示す。図4(a)は石炭焚ボイラの火炉1の前壁又は後壁の概略構造図であり、図4(b)は側断面図である。水壁で構成された火炉1には3段の低NOxバーナ16と1段のエアポート17とがそれぞれ4列対向するように火炉壁に取り付けられている。低NOxバーナ16では空気比(バーナ空気量/理論空気量)が0.8程度になるような燃焼を行い、AAP17でバーナ16での燃焼で不足した分だけ空気量を吹き込んで完全燃焼を行う二段燃焼法が用いられている。   FIG. 4 shows a typical pulverized coal combustion furnace. Fig.4 (a) is a schematic structure figure of the front wall or the rear wall of the furnace 1 of a coal fired boiler, and FIG.4 (b) is a sectional side view. In the furnace 1 composed of water walls, three stages of low NOx burners 16 and one stage of air ports 17 are attached to the furnace wall so as to face each other in four rows. The low NOx burner 16 performs combustion so that the air ratio (burner air amount / theoretical air amount) is about 0.8, and the AAP 17 performs complete combustion by blowing the air amount by the shortage in the burner 16 combustion. A two-stage combustion method is used.

バーナゾーンで発生するNOx量はバーナ空気比が低いほど少ないので、このような二段燃焼炉で発生するNOx濃度は低NOxバーナ16だけを使用する場合よりも格段に低い値となる。このように二段燃焼法はNOx発生量を低減するのに有効な方法である。   Since the amount of NOx generated in the burner zone is smaller as the burner air ratio is lower, the concentration of NOx generated in such a two-stage combustion furnace is much lower than when only the low NOx burner 16 is used. Thus, the two-stage combustion method is an effective method for reducing the amount of NOx generated.

しかし、燃焼領域が火炉1の下流側へ移っているために、AAP17付近での空気と不完全燃焼した燃料との混合効率が悪いと排ガス中に未燃分を含むことがある。図4に示す低NOxバーナ16とエアポート17の各風箱4、4には排ガスの熱等を利用したエアヒータ32で300℃程度に予熱された空気34が振り分けられて供給される。   However, since the combustion region has moved to the downstream side of the furnace 1, if the mixing efficiency of the air near the AAP 17 and the incompletely combusted fuel is poor, the exhaust gas may contain unburned components. Air 34 preheated to about 300 ° C. by an air heater 32 using the heat of exhaust gas or the like is distributed and supplied to each of the wind boxes 4 and 4 of the low NOx burner 16 and the air port 17 shown in FIG.

風箱4、4からバーナ16やエアポート17の2つ以上に分割された空気流路に空気が供給される。特にバーナ16に関しては風箱4からの空気はバーナ16の中心軸上にある燃料と一次空気(燃料搬送用空気)との混合流には供給されず、前記混合流の流路の外周部に設けられる図示していない二次空気流路、三次空気流路に供給される。バーナ16が微粉炭バーナである場合にはミル33から供給される微粉炭が搬送用空気35と共にバーナ16の前記混合流の流路に供給される。なお、火炉から出た燃焼排ガスは再循環ライン37を経由して再び火炉内に供給され、前記微粉炭の不完全燃焼反応に利用される。   Air is supplied from the air boxes 4 and 4 to the air flow path divided into two or more of the burner 16 and the air port 17. In particular, with respect to the burner 16, the air from the wind box 4 is not supplied to the mixed flow of the fuel on the central axis of the burner 16 and the primary air (fuel conveying air), and is not supplied to the outer peripheral portion of the flow path of the mixed flow. It is supplied to a secondary air channel and a tertiary air channel (not shown) provided. When the burner 16 is a pulverized coal burner, the pulverized coal supplied from the mill 33 is supplied to the mixed flow passage of the burner 16 together with the conveying air 35. The combustion exhaust gas discharged from the furnace is supplied again into the furnace through the recirculation line 37 and used for the incomplete combustion reaction of the pulverized coal.

このようなAAP17の機能として、空気噴流を火炉1内の中央部まで到達させつつ、火炉壁近傍のガス混合を促進して、未燃焼ガスの火炉下流側へのすり抜けを防止する必要がある。このため、AAP17の外周側から中心軸方向に向けた流れを強めてポート出口部を構成する火炉壁のスロート部1a(図1参照)を通過させ、空気噴流がAAP17の中心軸に集中しつつスロート部1a周辺のガスを巻き込むような流れ、いわゆる縮流を形成するのに適した構造を採るものがある。   As a function of such AAP 17, it is necessary to prevent the unburned gas from passing through to the downstream side of the furnace by promoting the gas mixing in the vicinity of the furnace wall while allowing the air jet to reach the center of the furnace 1. Therefore, the flow in the direction of the central axis from the outer peripheral side of the AAP 17 is strengthened to pass through the throat portion 1a (see FIG. 1) of the furnace wall constituting the port outlet, and the air jet is concentrated on the central axis of the AAP 17 Some have a structure suitable for forming a so-called contracted flow that entrains gas around the throat portion 1a.

なお、本明細書でいうガス噴出ポートは、ガスを火炉内に噴出させるポートであれば、アフターエアポートに限らず、燃焼排ガスの投入用ポート、燃料を燃焼させるためのバーナ用のポートなどをいう。また、該ポートが設けられる火炉壁面の開口部をスロート部ということにする。   As used herein, the gas ejection port is not limited to the after-air port, as long as it is a port that ejects gas into the furnace, and refers to a combustion exhaust charging port, a burner port for burning fuel, and the like. . Moreover, the opening part of the furnace wall surface in which this port is provided is called a throat part.

特許文献1及び特許文献2には縮流を伴う二段燃焼用空気を火炉に投入するためのAAPの発明が開示されている。
特開2006−132811号公報 特開2006−132798号公報
Patent Document 1 and Patent Document 2 disclose an invention of an AAP for introducing two-stage combustion air with contracted flow into a furnace.
JP 2006-132911 A JP 2006-132798 A

AAP17からの空気流の流速を増加させることで、通常の流速(35〜45m/s)の場合と比較して、火炉1内の燃焼ガスをより多く同伴して火炉1内での空気と燃焼ガスの混合効果が増加することは周知である。   By increasing the flow rate of the air flow from the AAP 17, compared with the normal flow rate (35 to 45 m / s), more combustion gas in the furnace 1 is entrained and the air and combustion in the furnace 1 are combusted. It is well known that the gas mixing effect is increased.

しかし、AAP17からの空気流の流速増加により、火炉1の中心部分まで空気噴流が到達し、この領域において火炉1内の未燃焼ガスと良く混合することで燃焼温度が増加してサーマルNOxが増大する問題がある。   However, due to the increase in the flow velocity of the air flow from the AAP 17, the air jet reaches the center of the furnace 1, and in this region, it is well mixed with the unburned gas in the furnace 1 to increase the combustion temperature and increase the thermal NOx. There is a problem to do.

さらに、AAP17からの空気流の流速を増加するためには、AAP設置部における風箱4と火炉1との差圧を現状レベル以上に増加する必要があることから、そのためのファン動力増大の問題が発生する。したがって、いかに低流速で空気と燃焼ガスとの混合効果を得ることができるかが課題となる。   Furthermore, in order to increase the flow velocity of the air flow from the AAP 17, it is necessary to increase the differential pressure between the wind box 4 and the furnace 1 at the AAP installation part to a level higher than the current level. Will occur. Therefore, how to obtain a mixing effect of air and combustion gas at a low flow rate becomes a problem.

また、できるだけ簡易な構造で強い空気流の貫通力を維持したまま、火炉1の中央部分での空気と燃焼ガスとの急速混合を防止することが難しいだけでなく、AAP17の周囲での未燃焼ガスを同伴させて、前記未燃焼ガスがすり抜けて火炉1の出口から外部に排出してしまうことを防止することも難しかった。   In addition, it is difficult not only to prevent rapid mixing of air and combustion gas in the central portion of the furnace 1 while maintaining a strong air flow penetration force with a simple structure as much as possible, but also unburned around the AAP 17 It was also difficult to prevent the unburned gas from passing through and being discharged from the outlet of the furnace 1 to the outside with the accompanying gas.

本発明の課題は、火炉壁近傍の未燃焼ガス混合の安定化と、火炉中央部到達機能の独立化、エアポートノズルなどの近傍の着火安定化による希薄未燃焼ガスの酸化分解が可能で、低NOx燃焼が実現できる簡易構造の噴流ポートを提供することである。   The object of the present invention is to stabilize the unburned gas mixture in the vicinity of the furnace wall, to make the function to reach the center of the furnace independent, and to stabilize the ignition in the vicinity of the airport nozzle, etc. To provide a jet port having a simple structure capable of realizing NOx combustion.

本発明の課題は次の構成によって解決される。
請求項1記載の発明は、火炉の炉壁に設けられ、火炉内へガスを噴出させるための複数のガス流路からなる気体ガス噴出ポートであって、少なくとも一の気体流路は、気体流れがポートの外周側からポートの中心軸に向かう速度成分を持つように気体流れの上流側から中心軸に向かって斜めに形成された縮流生成用流路と、該縮流生成用流路の出口部に配置して火炉壁に沿うガス流れを案内する案内板と、前記縮流生成用流路の上流側に設けた旋回器とを備えたガス噴出ポートである。
The problems of the present invention are solved by the following configuration.
The invention according to claim 1 is a gas gas ejection port provided on the furnace wall of the furnace and comprising a plurality of gas flow paths for ejecting gas into the furnace, wherein at least one gas flow path is a gas flow Of the contracted flow generating channel formed obliquely from the upstream side of the gas flow toward the central axis so as to have a velocity component from the outer peripheral side of the port toward the central axis of the port, It is a gas ejection port provided with a guide plate that is arranged at the outlet and guides the gas flow along the furnace wall, and a swirler provided on the upstream side of the flow path for contracted flow generation.

請求項2記載の発明は、前記縮流生成用流路は、気体流れがポートの外周側からポートの中心軸に向かう速度成分を持つ気体流れの他に中心軸沿いに火炉内に向かう速度成分を有する請求項1記載のガス噴出ポートである。   According to a second aspect of the present invention, in the contracted flow generation flow path, in addition to the gas flow in which the gas flow has a velocity component from the outer peripheral side of the port toward the center axis of the port, the velocity component toward the furnace along the center axis It is a gas ejection port of Claim 1 which has these.

請求項1記載の発明によれば、ガスの縮流により、縮流生成用流路の出口部近傍の火炉内において噴流周囲に大きな乱れが発生し、周囲の燃焼ガスを同伴しやすくなり、旋回器により形成されるガスの旋回噴流は縮流に比べて噴流の広がりが大きいため、上昇未燃ガスのすり抜けを防止することができる。こうして請求項1記載の発明のガス噴出ポートにより、ガス中のCOガス、未燃分の低減を図ることができる。さらに縮流生成用流路の出口部に配置して火炉壁に沿うガス流れを案内する案内板により、火炉壁での灰の付着防止ができる。   According to the first aspect of the present invention, due to the contraction of the gas, a large turbulence occurs around the jet in the furnace near the outlet of the contraction flow generation passage, and the surrounding combustion gas is easily accompanied and swirled. Since the swirling jet of gas formed by the vessel has a larger spread of the jet than the contracted flow, it is possible to prevent the ascending unburned gas from passing through. Thus, the gas ejection port according to the first aspect of the invention can reduce the CO gas and unburned content in the gas. Furthermore, ash adhesion on the furnace wall can be prevented by a guide plate that is arranged at the outlet of the flow path for contracted flow generation and guides the gas flow along the furnace wall.

請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、縮流生成用流路は、気体流れがポートの外周側からポートの中心軸に向かう速度成分を持つ気体流れの他に中心軸沿いに火炉内に向かう速度成分を有するので、AAP出口部に多少燃焼灰が付着して、該出口部の断面形状が変形したとしても、気体流れの貫通力が保たれるので、噴出方向が変化することがなく、一定の気体流れの噴流パターンが維持できる。   According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, the contracted flow generation flow path is configured such that the gas flow has a velocity component from the outer peripheral side of the port toward the center axis of the port. In addition, since it has a velocity component that goes into the furnace along the central axis, even if some combustion ash adheres to the AAP outlet and the cross-sectional shape of the outlet changes, the gas flow penetration force is maintained. Thus, the jet direction of the gas flow can be maintained without changing the jet direction.

本発明の実施例を図面と共に説明する。
図1に本実施例になるAAP17の断面構造図を示す。
風箱4内に設けられるAAP17は2重構造になっており、一次空気流路22内を流れる中心空気である一次空気2は直進流であるが、火炉1の中央部にまで到達する貫通能力は無い。一方、一次空気流路22の出口部付近で一次空気2と合流する二次空気流路23内を流れる二次空気3は二次空気流路23の入口部に設けた二次空気レジスタ8により旋回機能を有しており、火炉壁近傍の希薄未燃ガスを燃焼させることができ、低流速で火炉壁近傍に拡散混合して、火炉壁近傍に局在する未燃焼ガスを酸化する。また二次空気3は一次空気2の噴流に対して、一次空気噴流の中心軸に向けて傾斜角度を有する噴流となり、一次空気噴流を縮流させる効果が得られる。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a cross-sectional structure diagram of an AAP 17 according to this embodiment.
The AAP 17 provided in the wind box 4 has a double structure, and the primary air 2 that is the central air flowing in the primary air flow path 22 is a straight flow, but can penetrate to the center of the furnace 1. There is no. On the other hand, the secondary air 3 flowing in the secondary air flow path 23 that merges with the primary air 2 near the outlet of the primary air flow path 22 is caused by the secondary air register 8 provided at the inlet of the secondary air flow path 23. It has a swirling function, can burn the lean unburned gas near the furnace wall, diffuses and mixes near the furnace wall at a low flow rate, and oxidizes the unburned gas localized near the furnace wall. Further, the secondary air 3 becomes a jet having an inclination angle toward the central axis of the primary air jet with respect to the jet of the primary air 2, and the effect of contracting the primary air jet is obtained.

一次空気2の火炉1内への噴流量は一次空気流路22の開口部22aを開閉するスライドゲート5の開度を調整レバー6で調整し、二次空気3の火炉1内への噴流量は二次空気流路23の入口部のスライドゲート9の開度を調整レバー13で調整して行うことで一次空気2と二次空気3の各噴流の流量調整が可能となる。また二次空気3の噴流の旋回強度の調整は風箱4の外側に設けた二次空気レジスタドライブ7の操作によりレジスタ8の回転軸8aを操作して行う。また、二次空気流路23の出口外周側にはルーバ10を設置した。   The flow rate of the primary air 2 into the furnace 1 is adjusted by adjusting the opening of the slide gate 5 that opens and closes the opening 22a of the primary air flow path 22 with the adjustment lever 6, and the flow rate of the secondary air 3 into the furnace 1 is adjusted. The flow rate of each jet of primary air 2 and secondary air 3 can be adjusted by adjusting the opening of the slide gate 9 at the inlet of the secondary air flow path 23 with the adjustment lever 13. Further, the swirl strength of the jet of the secondary air 3 is adjusted by operating the rotary shaft 8a of the register 8 by operating the secondary air register drive 7 provided outside the wind box 4. A louver 10 was installed on the outer peripheral side of the outlet of the secondary air flow path 23.

図6には、比較例の縮流機能を有したAAP構造を示すが、図1で説明する本実施例のAAP構造と比較して、比較例のAAP構造は一次空気2の噴流の周囲に旋回噴流が無いことが特徴である。   FIG. 6 shows the AAP structure having the contracted flow function of the comparative example, but the AAP structure of the comparative example is located around the jet of the primary air 2 as compared with the AAP structure of the present embodiment described in FIG. The feature is that there is no swirling jet.

図6に示すAAP構造の中で一次空気2の火炉1内への噴流量は一次空気流路22の開口部22aを開閉するスライドゲート5の開度を調整レバー6で調整され、一次空気2は直進流となってAAP17の軸方向に流れ、火炉1内に噴出する。また一次空気流路22の外周部に該一次空気流路22と同軸上に設けられた二次空気流路23内を流れる二次空気3は二次空気レジスタ8で旋回が掛けられた後、直進流となってAAP17の軸方向に流れ、火炉1内へ噴出する。さらに、二次空気流路23の外周に設けた三次空気流路24内を流れる三次空気25はAAP17の中心軸に向けて傾斜角度を持って噴出供給される。すなわち、比較例のAAP17は直進、旋回、縮流の3つの流れを合成して縮流機能を有する噴流を形成する。このうち、直進流は一次空気2と二次空気3の二つの流れを個別の空気供給流路22,23により実現していた。   In the AAP structure shown in FIG. 6, the flow rate of the primary air 2 into the furnace 1 is adjusted by adjusting the opening of the slide gate 5 that opens and closes the opening 22 a of the primary air flow path 22. Flows straight in the axial direction of the AAP 17 and jets into the furnace 1. The secondary air 3 flowing in the secondary air flow path 23 provided coaxially with the primary air flow path 22 on the outer peripheral portion of the primary air flow path 22 is swung in the secondary air register 8, It goes straight and flows in the axial direction of the AAP 17 and is ejected into the furnace 1. Further, the tertiary air 25 flowing in the tertiary air flow path 24 provided on the outer periphery of the secondary air flow path 23 is jetted and supplied with an inclination angle toward the central axis of the AAP 17. That is, the AAP 17 of the comparative example forms a jet having a contracted flow function by synthesizing three flows of straight travel, swirl, and contracted flow. Of these, the straight flow has been realized by the separate air supply passages 22 and 23, the primary air 2 and the secondary air 3.

一方、図1に示す本実施例のAAP17は、図6に示す比較例の直進流を形成する一次空気2に噴流形成機能は残すものの、旋回流と縮流を形成する機能を二次空気流路23に持たせている。言い換えると、本発明のAAP17では、比較例の旋回流と縮流の二つの異なる空気流路23,24からの噴流の混合で形成するのではなく、一つの二次空気流路23で旋回流と縮流の機能を有する構成とした特徴を有する。このような構成によりAAP構造を簡略化でき、重量低減と製作費用の低減が可能となる。   On the other hand, the AAP 17 of the present embodiment shown in FIG. 1 has the function of forming a swirling flow and a contracted flow in the primary air 2 that forms the straight flow of the comparative example shown in FIG. It is given to the road 23. In other words, in the AAP 17 of the present invention, the swirl flow is not formed by mixing the jet flow from the two different air flow paths 23 and 24 of the swirl flow and the contraction flow of the comparative example, but by the single secondary air flow path 23. And a feature of having a function of contraction flow. With such a configuration, the AAP structure can be simplified, and the weight can be reduced and the manufacturing cost can be reduced.

ところで、縮流型ノズルと直管ノズルとを比較した場合、縮流型ノズルでは、ノズル出口部(火炉スロート部1a)の流速分布が平坦分布であり、十分に乱流が発達しない。一方、直管型ノズルでは、直管が比較的長く、その壁面の影響によりノズル出口部では空気流速分布は正規分布となる。火炉スロート部1aにおける火炉内壁面付近の周囲ガスの同伴巻き込み能は、ノズル出口部の平坦な流速分布を有する縮流型ノズルの方が優れている。   By the way, when the reduced flow type nozzle and the straight pipe nozzle are compared, in the reduced flow type nozzle, the flow velocity distribution at the nozzle outlet (furnace throat portion 1a) is a flat distribution, and the turbulent flow is not sufficiently developed. On the other hand, in the straight pipe type nozzle, the straight pipe is relatively long, and the air flow velocity distribution becomes a normal distribution at the nozzle outlet due to the influence of the wall surface. In the furnace throat portion 1a, the ability of entrainment of surrounding gas near the inner wall surface of the furnace is superior to the reduced flow type nozzle having a flat flow velocity distribution at the nozzle outlet portion.

この基本特性をAAP構造に反映して、本実施例では空気の流れを出口部分でその流路断面積を急速に絞り込むことで、平坦な流速分布を得るAAP構造とした。   In this embodiment, this basic characteristic is reflected in the AAP structure, and in this embodiment, an AAP structure is obtained in which the air flow is rapidly narrowed at the outlet portion to narrow the flow path cross-sectional area, thereby obtaining a flat flow velocity distribution.

縮流型ノズルのAAP構造は噴流周囲の乱れが大きく周囲の燃焼ガスを同伴しやすいのであるが、欠点もある。欠点の一つは、噴流の広がりは旋回噴流の方が縮流より大きくなることである。噴流の広がりが大きいと、AAP17,17間の上昇未燃ガスのすり抜けを防止することができ、ガス中のCOガス、未燃分の低減を図ることができる。   The AAP structure of the reduced flow type nozzle has a large turbulence around the jet and is easily accompanied by the surrounding combustion gas, but has a drawback. One of the drawbacks is that the jet spread is larger for swirling jets than for contracted ones. If the spread of the jet is large, it is possible to prevent the ascending unburned gas from slipping between the AAPs 17 and 17 and to reduce the CO gas and unburned content in the gas.

図5に、図1、図2に示す本実施例のAAP構造を用いた場合の排ガス中のCO濃度とNOx濃度の相対比を示す。図5に示すように、縮流機能と旋回機能を備えたハイブリット型ではそれぞれ縮流機能だけのAAP構造と旋回流機能だけのAAP構造に比較してガス中のCO濃度が比較的低減されることが分かる。   FIG. 5 shows the relative ratio between the CO concentration and the NOx concentration in the exhaust gas when the AAP structure of the present embodiment shown in FIGS. 1 and 2 is used. As shown in FIG. 5, in the hybrid type having the contraction function and the swirl function, the CO concentration in the gas is relatively reduced as compared with the AAP structure having only the contraction function and the AAP structure having only the swirl function. I understand that.

次に実機ボイラにおいて燃焼ガスのすり抜けが発生するメカニズムについて記載する。 実機ボイラにおけるAAP17は、バーナ16の上方にバーナ16と同じ列上に構成されるのが通常である。この理由は、バーナ16及びAAP17のサポート構造が格子状になっており、それぞれの配置位置を調整することが難しいことに加えて、バーナ16からの高濃度燃焼ガスが、火炉1内で十分に混合されず、そのまま火炉内を上昇するため、AAP17がバーナ16と同じ列上に構成されていることが完全燃焼に対して最も効果的であるためである。   Next, the mechanism by which combustion gas slips through the actual boiler will be described. The AAP 17 in the actual boiler is usually configured above the burner 16 and in the same row as the burner 16. This is because the support structure of the burner 16 and the AAP 17 is in a lattice shape, and it is difficult to adjust the arrangement positions of the burner 16 and the AAP 17, and the high-concentration combustion gas from the burner 16 is sufficiently contained in the furnace 1. This is because it is most effective for complete combustion that the AAP 17 is arranged on the same row as the burners 16 because they are not mixed and rise in the furnace as they are.

しかし、バーナ16は近年大容量化による設置本数削減が進んでおり、複数のバーナ16の相互の間隔が大きくなり、それに伴って複数のAAP17の相互の間隔も増加する傾向が強いので、未燃焼ガスのすり抜けも発生しやすくなっている。   However, the number of installed burners 16 has been reduced in recent years due to the increase in capacity, and the interval between the plurality of burners 16 is increased, and accordingly, the interval between the plurality of AAPs 17 tends to increase. Gas slipping easily occurs.

以上の理由から、燃焼ガスのすり抜けを防止するには、縮流機能と旋回機能を持ったAAP構造が望ましいことが分かる。   From the above reasons, it can be seen that an AAP structure having a contraction function and a turning function is desirable to prevent the passage of combustion gas.

さらに、AAP構造は火炉スロート部1aにおける灰付着防止を図る必要がある。バーナ16からの燃焼ガスが火炉1内を上昇してAAP17に達する場合に、燃焼ガス中に含まれる灰も同伴することから、AAP出口部(火炉スロート部1a)における灰付着ポテンシャルの低減が必要である。火炉スロート部1aにおける灰付着のメカニズムと防止策を、図7と図2により説明する。なお、図7と図2において、図1で説明した部材と同一部材は同一符号を付して、その説明は省略する。   Furthermore, the AAP structure needs to prevent ash adhesion in the furnace throat portion 1a. When the combustion gas from the burner 16 rises in the furnace 1 and reaches the AAP 17, the ash contained in the combustion gas is also accompanied, so it is necessary to reduce the ash adhesion potential at the AAP outlet part (furnace throat part 1a). It is. The mechanism and prevention measures of ash adhesion in the furnace throat portion 1a will be described with reference to FIGS. 7 and 2, the same members as those described in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.

図7には二次空気流路23内を流れる二次空気3の一部3aの流れが火炉スロート部1aから剥離縮流化した状況を示している。このため、AAP17からの空気流れが剥離するので、ボイラ火炉1内部の灰を含んだ燃焼ガスが火炉スロート部1aに逆流して、この領域では灰が滞留し易くなるために、火炉スロート部1aには灰付着部18が形成される。   FIG. 7 shows a state in which the flow of a part 3a of the secondary air 3 flowing in the secondary air flow path 23 is separated and contracted from the furnace throat portion 1a. For this reason, since the air flow from the AAP 17 is separated, the combustion gas containing the ash inside the boiler furnace 1 flows back to the furnace throat portion 1a, and the ash tends to stay in this region, so the furnace throat portion 1a An ash adhering portion 18 is formed in the ash.

また、図2には二次空気流路23の出口外周側にルーバ10を設置した構造を示している。このルーバ10によって、二次空気3の一部3aが火炉スロート部1aの壁面をシールする効果が得られるため、二次空気3により形成される縮流が同伴する燃焼灰による灰付着部18の形成量を小さくすることができる。   FIG. 2 shows a structure in which the louver 10 is installed on the outer peripheral side of the outlet of the secondary air passage 23. This louver 10 provides an effect that a part 3a of the secondary air 3 seals the wall surface of the furnace throat portion 1a, so that the ash adhering portion 18 by the combustion ash accompanied by the contracted flow formed by the secondary air 3 is obtained. The amount of formation can be reduced.

なお、図2に示す灰付着部18の形成をまったく無くすことはできない。しかしながら、火炉スロート部1aの壁面における多少の灰付着は、AAP17の性能に影響せず、またボイラ性能にも影響しないので、無視してかまわない。しかし、図7に示すような大量の灰付着部18があると、ボイラを運転停止した場合にAAP17の内部へ剥離して脱落する可能性がある。   The formation of the ash adhesion part 18 shown in FIG. 2 cannot be eliminated at all. However, since some ash adhesion on the wall surface of the furnace throat portion 1a does not affect the performance of the AAP 17 and does not affect the boiler performance, it can be ignored. However, if there is a large amount of the ash adhering portion 18 as shown in FIG.

また、図3には図1、図2に示す一次空気2の直進流用の一次空気流路22を断熱材26で塞ぎ、図1などに示す二次空気流路23を用いる二次空気3の縮流用の流路だけを設けた場合のAAP構造の例である。この構造では直進流がない分、図1などに示すAAP構造に比較して、空気流の縮流度が高く、火炉1の未燃ガスを同伴しやすくなることから、CO低減と未燃分低減により効果的になる効果がある。   Also, in FIG. 3, the primary air flow path 22 for the straight flow of the primary air 2 shown in FIGS. 1 and 2 is closed with a heat insulating material 26, and the secondary air 3 using the secondary air flow path 23 shown in FIG. It is an example of the AAP structure when only the flow path for contraction is provided. In this structure, since there is no straight flow, the degree of contraction of the air flow is higher than that of the AAP structure shown in FIG. 1 and the like, and the unburned gas in the furnace 1 is easily accompanied. There exists an effect which becomes effective by reduction.

本発明は、安価で低NOx効果の高い燃焼システムに採用し得るAAP構造として利用可能性が高い。   The present invention has high applicability as an AAP structure that can be employed in a combustion system that is inexpensive and has a high low NOx effect.

本発明の一実施例のAAP構造の断面図である。It is sectional drawing of the AAP structure of one Example of this invention. 本発明の一実施例のAAP構造の断面図である。It is sectional drawing of the AAP structure of one Example of this invention. 本発明の一実施例のAAP構造の断面図である。It is sectional drawing of the AAP structure of one Example of this invention. 石炭焚事業用ボイラのバーナ及びAAPの配置図である。It is an arrangement plan of a burner and AAP of a coal fired boiler. 本発明の一実施例のAAP構造を用いた場合の排ガス中のCO濃度とNOx濃度の相対比を示す図である。It is a figure which shows the relative ratio of CO density | concentration and NOx density | concentration in waste gas at the time of using the AAP structure of one Example of this invention. 比較例の縮流構造を有するAAP構造の断面図である。It is sectional drawing of the AAP structure which has a contracted flow structure of a comparative example. 従来技術の一実施例のAAP構造の断面図である。It is sectional drawing of the AAP structure of one Example of a prior art.

符号の説明Explanation of symbols

1 火炉 1a スロート部
2 一次空気 3 二次空気
3a 二次空気の一部 4 風箱
5,9 スライドゲート 6,13 開度調整レバー
7 二次空気レジスタドライブ
8 二次空気レジスタ 8a 回転軸
10 ルーバ 16 バーナ
17 エアポート(AAP) 18 灰付着部
22 一次空気流路 22a 開口部
23 二次空気流路 24 三次空気流路
25 三次空気 26 断熱材
32 エアヒータ 34,35 空気
33 ミル 37 再循環ライン
DESCRIPTION OF SYMBOLS 1 Furnace 1a Throat part 2 Primary air 3 Secondary air 3a Part of secondary air 4 Wind box 5,9 Slide gate 6,13 Opening adjustment lever 7 Secondary air register drive 8 Secondary air register 8a Rotating shaft 10 Louver 16 Burner 17 Airport (AAP) 18 Ash adhering part 22 Primary air flow path 22a Opening 23 Secondary air flow path 24 Tertiary air flow path 25 Tertiary air 26 Heat insulating material 32 Air heater 34, 35 Air 33 Mill 37 Recirculation line

Claims (2)

火炉の炉壁に設けられ、火炉内へガスを噴出させるための複数のガス流路からなる気体ガス噴出ポートであって、
少なくとも一の気体流路は、気体流れがポートの外周側からポートの中心軸に向かう速度成分を持つように気体流れの上流側から中心軸に向かって斜めに形成された縮流生成用流路と、該縮流生成用流路の出口部に配置して火炉壁に沿うガス流れを案内する案内板と、前記縮流生成用流路の上流側に設けた旋回器とを備えたことを特徴とするガス噴出ポート。
A gas gas ejection port provided on the furnace wall of the furnace and comprising a plurality of gas flow paths for ejecting gas into the furnace,
The at least one gas flow path is a contracted flow generation flow path formed obliquely from the upstream side of the gas flow toward the central axis so that the gas flow has a velocity component from the outer peripheral side of the port toward the central axis of the port. And a guide plate that is arranged at the outlet of the contracted flow generating channel and guides the gas flow along the furnace wall, and a swirler provided on the upstream side of the contracted flow generating channel. Characteristic gas ejection port.
前記縮流生成用流路は、気体流れがポートの外周側からポートの中心軸に向かう速度成分を持つ気体流れの他に中心軸沿いに火炉内に向かう速度成分を有することを特徴とする請求項1記載のガス噴出ポート。   The contracted flow generation flow path has a velocity component toward the furnace along the central axis in addition to a gas flow having a velocity component from the outer peripheral side of the port toward the central axis of the port. Item 1. A gas ejection port according to Item 1.
JP2006253371A 2006-09-19 2006-09-19 Gas injection port Withdrawn JP2008075911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006253371A JP2008075911A (en) 2006-09-19 2006-09-19 Gas injection port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006253371A JP2008075911A (en) 2006-09-19 2006-09-19 Gas injection port

Publications (1)

Publication Number Publication Date
JP2008075911A true JP2008075911A (en) 2008-04-03

Family

ID=39348176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006253371A Withdrawn JP2008075911A (en) 2006-09-19 2006-09-19 Gas injection port

Country Status (1)

Country Link
JP (1) JP2008075911A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113501A (en) * 2011-11-29 2013-06-10 Mitsubishi Heavy Ind Ltd Burner and boiler with the same
CN105378385A (en) * 2013-07-09 2016-03-02 三菱日立电力***株式会社 Combustion device
WO2018155102A1 (en) * 2017-02-22 2018-08-30 三菱日立パワーシステムズ株式会社 Combustion device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113501A (en) * 2011-11-29 2013-06-10 Mitsubishi Heavy Ind Ltd Burner and boiler with the same
CN105378385A (en) * 2013-07-09 2016-03-02 三菱日立电力***株式会社 Combustion device
CN105378385B (en) * 2013-07-09 2017-07-21 三菱日立电力***株式会社 Burner
WO2018155102A1 (en) * 2017-02-22 2018-08-30 三菱日立パワーシステムズ株式会社 Combustion device

Similar Documents

Publication Publication Date Title
JP2544662B2 (en) Burner
JP3099109B2 (en) Pulverized coal burner
KR101421744B1 (en) Pulverized coal-fired boiler and pulverized coal combustion method
JP3343855B2 (en) Pulverized coal combustion burner and combustion method of pulverized coal combustion burner
JP5535522B2 (en) Coal fired boiler
JPH05231617A (en) Low nox short flame burner
JP2009079794A (en) Solid fuel burner, combustion device using the same, and its operation method
JP2004205161A (en) Solid fuel boiler and boiler combustion method
JP5535521B2 (en) Coal fired boiler
JP5386230B2 (en) Fuel burner and swirl combustion boiler
JP2008170040A (en) Pulverized coal burning boiler and pulverized coal combustion method of pulverized coal burning boiler
US10352555B2 (en) Low-NOx-burner
JP2004190981A (en) Combustion device and wind box
WO2004085922A2 (en) Mixing process for combustion furnaces
JP2008075911A (en) Gas injection port
JP3643461B2 (en) Pulverized coal combustion burner and combustion method thereof
JPH09170714A (en) Fine coal powder burning burner
JP2009103346A (en) Pulverized coal firing boiler and pulverized coal combustion method of pulverized coal firing boiler
JP2010270990A (en) Fuel burner and turning combustion boiler
JPH07180822A (en) Incinerator and incinerating method by incinerator
TW201727156A (en) After-air port, and combustion device equipped with same
JP2008180413A (en) Boiler for pulverized coal firing and its operation method
JP2001355832A (en) Air port structure
JP4628922B2 (en) After airport
JP6732960B2 (en) Method for burning fuel and boiler

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201