JPS5910101A - Controlling method of brake force of electric motor vehicle - Google Patents

Controlling method of brake force of electric motor vehicle

Info

Publication number
JPS5910101A
JPS5910101A JP11841282A JP11841282A JPS5910101A JP S5910101 A JPS5910101 A JP S5910101A JP 11841282 A JP11841282 A JP 11841282A JP 11841282 A JP11841282 A JP 11841282A JP S5910101 A JPS5910101 A JP S5910101A
Authority
JP
Japan
Prior art keywords
brake force
brake
signal
modulation
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11841282A
Other languages
Japanese (ja)
Inventor
Ikuo Yasuoka
育雄 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP11841282A priority Critical patent/JPS5910101A/en
Publication of JPS5910101A publication Critical patent/JPS5910101A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • B60L3/108Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels whilst braking, i.e. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Stopping Of Electric Motors (AREA)
  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To improve the readhesive property of an air brake of an electric motor vehicle by holding a regenerative brake force signal for the prescribed period when the rate of change of the time of the rotating speed of a motor exceeds the prescribed value and stopping the rising effect of the brake. CONSTITUTION:A pulse width modulation control unit 27 outputs a pulse modulation signal in response to an inverter frequency F, a modulation pulse mode N and a modulation rate AL. A brake force arithmetic unit 30 calculates a regenerative brake torque on the basis of the frequency F, a slip frequency FS, the mode N, the rate AL and a trolley line voltage EC, and outputs a regenerative brake force signal. A brake holder 31 stores sequential brake force signals, and applies the signals to an air brake controller. An idle skid detector 22 outputs a signal WSD when the rate of change of the time of the rotating speed of the motor, and holds the storage of the holder 31.

Description

【発明の詳細な説明】 (a)  技術分野の説明 本発明は電気車のブレーキ力制御方法に関し、特に可変
電圧可変周波数インバータ(以下VVVFインバータと
略す。)により誘導電動機を制御して得た回生ブレーキ
カC二空気ブレーキ力を補足する技術に関する。
Detailed Description of the Invention (a) Description of the Technical Field The present invention relates to a brake force control method for an electric vehicle, and in particular to a method for controlling the braking force of an electric vehicle, and in particular, a method for controlling an induction motor using a variable voltage variable frequency inverter (hereinafter abbreviated as VVVF inverter). Brake force C2 relates to technology to supplement air brake force.

(b)  従来技術の説明 第1ドIに電気車駆動用誘導′電動機をVVV Fイン
バータにより制御する電気車制御装置の主回路部を示し
た。
(b) Description of the Prior Art Part 1 shows the main circuit section of an electric vehicle control device that controls an induction motor for driving an electric vehicle using a VVV F inverter.

第1図でlid王回路を投入・開放および事故時の保護
用の高速度シャ断器である、リアクトル2コンデンサ3
は逆・L形(二構成した入力フィルタ回路で、三相イン
バータ部4で発生する^調波型、流を架線側に流出させ
ないために設けである、電圧検出器8はコンデンサ3の
電圧検出用とし、て設けてあり、電流検出器5は並列接
続した誘導電動機6の三相各相の電流を検出し、それぞ
れOTU、 OTV。
Figure 1 shows reactor 2, capacitor 3, which is a high-speed breaker for closing and opening the lid circuit and for protection in the event of an accident.
is an inverted L-type (two-configured input filter circuit), which is provided to prevent the harmonic type current generated in the three-phase inverter section 4 from flowing out to the overhead wire side.The voltage detector 8 detects the voltage of the capacitor 3. The current detector 5 detects the current of each of the three phases of the induction motor 6 connected in parallel, and detects the current of each of the three phases of the parallel-connected induction motor 6, respectively.

OTWを出力する、前記誘導電動機6は、電気車駆動用
の主電動機で、三相インバータ部4の5J変電圧・可変
周波数出力によりすべり周波数制御をする、7はパルス
ジェネレータで、前記並列接続した誘導電動機6のそれ
ぞれの回転数を検出し、各々PG1.PG2を出力する
The induction motor 6, which outputs OTW, is a main motor for driving an electric vehicle, and performs slip frequency control by the 5J variable voltage/variable frequency output of the three-phase inverter section 4. 7 is a pulse generator, which is connected in parallel with the motor. The rotational speed of each induction motor 6 is detected, and each PG1. Output PG2.

第2図は従来のパルス巾変調制御のVVV Fインバー
タの制御回路部をブロック図で示したもので、回転周波
数演算部21は、m1図に示した誘導電動機6の回転数
を検出するパルスジェネレータ7からの回転数検出信号
PGI、 PO2により、誘導電動機6の回転数に比例
した(口)転周波数FRを算出する。
FIG. 2 is a block diagram showing the control circuit section of a conventional VVV F inverter with pulse width modulation control. Based on the rotation speed detection signals PGI and PO2 from 7, a rotation frequency FR proportional to the rotation speed of the induction motor 6 is calculated.

また回転数検出信号PGI、 PO2trJ同時に空転
滑走検知部22にとりこまれ、パルス数の時t口J変化
に!よりを転−!たは滑走が検知される。ブレーキ力指
令BFに応じた電流パターンエCは電流パターン演舞部
23でyt胸され、を転または滑走が空転滑走検知部2
2により検出されると、その出力WSD +二より電流
パターンICはしほり込まれる。
In addition, the rotational speed detection signals PGI and PO2trJ are simultaneously taken into the slipping/sliding detection section 22, and when the number of pulses reaches t, J changes! Turn around! or skidding is detected. The current pattern E C corresponding to the brake force command BF is generated by the current pattern performance unit 23, and the current pattern E C corresponding to the brake force command BF is detected by the current pattern performance unit 23, and the rotation or skiing is detected by the slipping/sliding detection unit 2.
When detected by 2, the current pattern IC is squeezed by the output WSD +2.

箱、動機電流演カ一部20は、第1図に示した電流検知
益5からの電流検出信号CTU、 C!TV、 C!T
V l二より、電動機電流IMを算出する。すべり周波
数演η部24では電流パターンICによって一義的に決
定される定数項FBIと、電流パターンエCと電動機電
流工Mの電流偏差値に応じてあたえられる過渡功FS2
を加算してすべり周波aysとして出力する。
The box 20 contains the current detection signal CTU, C! from the current detection gain 5 shown in FIG. TV, C! T
Calculate the motor current IM from Vl2. The slip frequency calculation section 24 uses a constant term FBI that is uniquely determined by the current pattern IC, and a transient function FS2 that is given according to the current deviation value of the current pattern E C and the motor current M.
is added and output as the slip frequency ays.

上記により述べた回転周波数FRとすべり周波数FSよ
り力行時はFR+ FR、回生制動時はFR−FSとし
てインバータ出力周波数Fを得る。25はインバータ出
力周波数Fより変調パルスモードNを算出する変調パル
スモード演算部、26は、定トルク特性を得るようにあ
らかじめ計算記憶されたパターンg二従って、インバー
タ出力周波数Fおよび第1図C二示した電圧検出器8を
介して検出し7たコンデンサ3の電圧ECより変調率A
Lを算出する変調率演算部である。上記によりl;出し
またインバータ出力周波数F1変調パルスモードN1変
調率ALをパルス巾変調制御部27に入力し、電気角6
0度期間でのU相、■相、W相の各相の変調パルス信号
U。
From the rotation frequency FR and the slip frequency FS described above, the inverter output frequency F is obtained as FR+FR during power running and FR-FS during regenerative braking. 25 is a modulation pulse mode calculation unit that calculates a modulation pulse mode N from the inverter output frequency F; 26 is a pattern g2 calculated and stored in advance to obtain constant torque characteristics; The modulation rate A is determined from the voltage EC of the capacitor 3 detected through the voltage detector 8 shown in FIG.
This is a modulation rate calculation unit that calculates L. As a result of the above, the inverter output frequency F1 modulation pulse mode N1 modulation rate AL is input to the pulse width modulation control section 27, and the electrical angle 6
Modulated pulse signal U of each phase of U phase, ■ phase, and W phase in 0 degree period.

V、Wと、電気角60度毎の同期パルス8nを出力し、
パルス合成回路28にて、最終的なサイリスクSU、 
SV、 SW、 SX、 BY、 BZのゲート信号を
出力する。29は、電動機電流IMとすべり周波数FS
 l二より1次式(1)(二よって回生ブレーキトルク
Tを演算し、空気ブレーキ制御装置(図示せず0)へ回
生ブレーキ力指令を出力する回生ブレーキ力演算部であ
る。
Outputs V, W and 8n synchronizing pulses every 60 electrical degrees,
In the pulse synthesis circuit 28, the final cyrisk SU,
Outputs gate signals of SV, SW, SX, BY, and BZ. 29 is the motor current IM and slip frequency FS
This is a regenerative braking force calculation unit that calculates the regenerative braking torque T from the linear equation (1) (2) and outputs a regenerative braking force command to the air brake control device (0, not shown).

(1M)・r2 T=K  ・ □−□ 8 r8:訪4電動機2巻線の抵抗 に:定数 回生ブレーキ方式を採jh しているVVVFインノく
一タ?Ti1l供の電気車では、回生負荷の減少(−よ
るブレーキ力の不足分を解消するため、空気ブレーキ(
二よる補足を行なっている。これは、回生ブレーキ力が
減少した時(二空気ブレーキ力を高め、総合で7ツ(定
のブレーキ力を得るものである。このようなブレーキシ
ステムでは、車輪が滑走した時に回生ブレーキ(−よる
ブレーキ力は急速(二絃少するが、空気ブレーキにて補
足が働らくこと(二なり、総合ブレーキ力は減少しない
ので、滑走を持続する結果となる0さら(二前記(1)
式による回生プレーキカ演算では、ブレーキ力指令BF
が小さく、従って血流パターンICが小場い場合(二、
電動機電流IMが励磁電流以下にならないので、実際の
回生ブレーキ力より大きなレベルの信号を空気ブレーキ
制御側へ出力することになり、&llダブレーキ制御空
気ブレーキ制御の調和を充分に取ることが困難である。
(1M)・r2 T=K・□−□ 8 r8: For the resistance of the 2nd winding of the 4th electric motor: Is it a VVVF innocent that uses a constant regenerative braking system? In Ti1L electric cars, air brakes (
We are making two supplements. This means that when the regenerative braking force decreases (2), the braking force increases and a constant braking force is obtained in total.In such a braking system, when the wheels skid, the regenerative braking (-2) increases the The braking force decreases rapidly (2), but supplementary force is applied by the air brake (2), and the total braking force does not decrease, resulting in a sustained skid (2) (see (1) above).
In the regenerative brake force calculation using the formula, the brake force command BF
is small and therefore the blood flow pattern IC is small (2.
Since the motor current IM does not become lower than the excitation current, a signal with a higher level than the actual regenerative braking force is output to the air brake control side, making it difficult to achieve sufficient harmony between the brake control and the air brake control. .

(c)  発明の目的および概要 本発明は上記の点に鑑みなされたもので、パルス中変調
制御のVVVFインバータ(二より誘導電動機を駆動し
、回生ブレーキ力を演算してこの演算した回生ブレーキ
力がブレーキ力指令(二対して小さいときに、この差分
に応じた空気ブレーキ力な作用させる電気車のブレーキ
力制御方法で、列車の車輪が滑走を起こしたときは、こ
の滑走を誘導電動機の回転数の時間変化小が所定の値を
こえたことにより検知しで、この検知した出力により前
記し7た演算された回生ブレーキ力信号を、所定の時間
の間一定に保って空気ブレーキの立ち上りを阻止するこ
とにより総合ブレーキ力を識少させて再粘着を計り、ま
た回生ブレーキ力の演算をパルス中変調制御のVVV 
Fインバータの変調率と変調パルスモードとすべり周波
数と出力周波数と架線電圧により行なうことにより、ブ
レーキ弱め時の回生ブレーキ制御と突気ブレーキ制御の
調和を改%L5た電気車のブレーキ力制御方法を提供す
る。
(c) Object and Summary of the Invention The present invention has been made in view of the above-mentioned points. When the brake force command (2) is smaller than the brake force command (2), the brake force control method for electric cars applies an air brake force according to this difference.When the wheels of the train skid, this skid can be corrected by the rotation of the induction motor. It is detected when the time change of the number exceeds a predetermined value, and based on this detected output, the calculated regenerative brake force signal described above is kept constant for a predetermined time to control the rise of the air brake. By blocking the total braking force, readhesion is measured, and the calculation of the regenerative braking force is performed using VVV of pulse modulation control.
A braking force control method for electric vehicles that improves the harmony between regenerative braking control and sudden braking control when weakening the brake by using the F inverter's modulation rate, modulation pulse mode, slip frequency, output frequency, and overhead line voltage. provide.

(a 発明の実施例 以)本発明の実施例について図面を参照しながら説明す
る。
(A From Embodiments of the Invention) Embodiments of the present invention will be described with reference to the drawings.

第3図に本発明のパルス巾変調制御のVVVFインバー
タの制御回路部の一実施例をブロック図で示した。
FIG. 3 shows a block diagram of an embodiment of a control circuit section of a VVVF inverter with pulse width modulation control according to the present invention.

第3図でブレーキ力演舞部30.ブレーキカ信号保持部
3】、信号変化率制限(ロ)路32は本発明で新らたC
二構I戊したもので、他は第2図C二本した従来の制御
回路の構成と同じで、同一部には同一符号を符しである
In Fig. 3, the brake force performance section 30. Brake force signal holding section 3) and signal change rate limiting (b) path 32 are newly constructed by the present invention.
The configuration is otherwise the same as the conventional control circuit with two circuits shown in FIG. 2C, and the same parts are designated by the same reference numerals.

ブレーキ力演算部、30は、インバータ出力周波F1す
べり周波数演算部24からのすべり周波数FS%変調パ
ルスモード演算部2bからの変調パルスモードN1変調
率演算部26の変調率ALおよび第1図1−示した電圧
検出器8より架線電圧ECをそれぞれ取り込み、次式(
2)によって回生ブレーキトルクTを演算する。
The brake force calculation unit 30 calculates the inverter output frequency F1, the slip frequency FS% from the slip frequency calculation unit 24, the modulation pulse mode N1 from the modulation pulse mode calculation unit 2b, the modulation rate AL of the modulation rate calculation unit 26, and the modulation rate AL of the modulation rate calculation unit 26 and FIG. The overhead line voltage EC is taken in from the voltage detector 8 shown, and the following formula (
2) calculates the regenerative brake torque T.

DnoAL−Ec T=に−()・Fs  −−−−−−−−(2)ここで
Dnは変調パルスモードNにおけるVVVFインバータ
の出力電圧の基本波換算係数で、各変詞パルスモードN
l二対応してDnO旭を例へはテーブル形式で記憶し、
−ヒ記(2)式による演算に際し変調パルスモードNを
Dnのl111−変換する。
DnoAL-Ec T=ni-()・Fs -----------(2) Here, Dn is the fundamental wave conversion coefficient of the output voltage of the VVVF inverter in the modulation pulse mode N, and each transverse pulse mode N
Correspondingly, DnO Asahi is stored in table format,
- During the calculation according to Equation (2), the modulated pulse mode N is converted into Dn l111-.

即ち、 VVVFインバータの出力電圧の基本渡分を変
換パルスモードN1変調率ALおよびVVVF1ンバー
タ(二人力する架線電圧を積置することにより算出して
、前記(2)式により回生ブレーキトルクTを演算する
That is, calculate the basic distribution of the output voltage of the VVVF inverter by multiplying the converted pulse mode N1 modulation rate AL and the overhead line voltage applied by two people, and calculate the regenerative braking torque T using the formula (2) above. do.

ブレーキカイ1号保持部31は、ブレーキ力演算部30
からの回生ブレーキ力信号を受けて時々刻々の新しい信
号値を更新し、なから記憶(1、その記憶した信号値を
信号変化率制限回路32に出力する。一方壁転渭走検知
部22が、通常列車の出し得る最大減速#に相当する訪
導′亀動機の回転数の時間変化率を所定の値とし、この
θ[定の値をこえたことにより車輪の滑走を検出して信
号WSDを出力した場合は、ブレーキ力信号保持部31
はこの信号WSDを受け、少なくとも信号WSDの継続
期間中は、ブレーキ力演算部30からの回生ブレーキ力
信号を信号WSDを受けた最初の時点の信号値を記憶し
続け、時々刻々の新しい信号値に更新することなく、そ
の記憶した回生ブレーキ力信号値を、信号変化率制限回
路32に出力し続ける。
The brake chi No. 1 holding section 31 is connected to the brake force calculation section 30.
In response to the regenerative braking force signal received from the regenerative braking force signal, the new signal value is updated moment by moment, and the stored signal value is outputted to the signal change rate limiting circuit 32.Meanwhile, the wall rolling detection section 22 , the time rate of change in the rotational speed of the train's motor, which corresponds to the maximum deceleration # that a train can normally produce, is set to a predetermined value, and when this θ exceeds a predetermined value, wheel slippage is detected and a signal WSD is issued. If the brake force signal holding unit 31
receives this signal WSD, and at least during the duration of the signal WSD, continues to store the signal value of the regenerative brake force signal from the brake force calculation unit 30 at the first time it received the signal WSD, and stores the signal value at the time of receiving the signal WSD, and stores the new signal value from time to time. The stored regenerative braking force signal value continues to be output to the signal change rate limiting circuit 32 without being updated.

信号変化率制限回路32は、前記ブレーキ力信号保持部
31の出力の急激な減少変化(二対して、空気ブレーキ
制御装置への出力を制限するダンピング効果を持たした
回路である。
The signal change rate limiting circuit 32 is a circuit having a damping effect to limit the output to the air brake control device in contrast to a sudden decrease in the output of the brake force signal holding section 31.

以下本発明の作用を第4図に示した説明図を参照しなが
ら説明する。尚第4図で(a)は回生ブレーキ力、(b
)は信号変化率制限回路32の出力、(c)rj空気ブ
レーキカ、(d)は回生ブレーキ力と空気ブレーキ力の
総合ブレーキ力、(e)は滑走検知信号WEIDである
〇 いま、回生ブレーキ中C二、第4図に示したt1時点で
滑走を起したとすると、これを空転・滑走検知部22が
検知する。空転滑走検知部22はこの検知信号WSDを
ブレーキ力(i号保持部31に送り、ブレーキ力信号保
持部31は滑走直前のブレーキ力演算部30が演算した
回生ブレーキ力信号を記憶保持し6、この出力を信号変
化率制限回路32を介して空気ブレーキ制御装置へ送り
、空気ブレーキの新らたな立ち上りをおさえる。従って
、回生ブレーキ力と空気ブレーキ力の和である総合ブレ
ーキ力は減少するので、滑走が持続することなく、また
、大滑走のおそれもなく速やかに再粘着できる。次に、
t2時点で再粘着した時には、回生ブレーキ力は徐々C
−増加するととも籠二、ブレーキ力演算部゛(C)が演
算した回生ブレーキトルク演算値は滑走したことC−よ
り減少しており、従ってブレーキ力信号保持部31の出
力は、前記ホールド値から急激C低下するが、信号変化
率制限回路32の作JQにより、この急激な変化がおさ
えられて、徐々に低下するので、空気ブレーキとの重な
り$二よる再滑走を防止する。
The operation of the present invention will be explained below with reference to the explanatory diagram shown in FIG. In Figure 4, (a) is the regenerative braking force, (b)
) is the output of the signal change rate limiting circuit 32, (c) rj air brake force, (d) is the total braking force of regenerative braking force and air braking force, and (e) is the skidding detection signal WEID. Currently, regenerative braking is in progress. C2: If skidding occurs at time t1 shown in FIG. 4, the slipping/skidding detection section 22 detects this. The slip/slide detection unit 22 sends this detection signal WSD to the brake force (i) holding unit 31, and the brake force signal holding unit 31 stores and holds the regenerative brake force signal calculated by the brake force calculation unit 30 immediately before the skid. This output is sent to the air brake control device via the signal change rate limiting circuit 32 to suppress the new rise of the air brake.Therefore, the total braking force, which is the sum of the regenerative braking force and the air braking force, decreases. , it is possible to quickly re-adhere without sustained sliding and without the risk of major sliding.Next,
When re-sticking at time t2, the regenerative braking force gradually increases to C.
-The regenerative brake torque calculation value calculated by the brake force calculation unit (C) decreases due to the skidding, and therefore the output of the brake force signal holding unit 31 changes from the above-mentioned hold value. Although C drops rapidly, this sudden change is suppressed by the operation JQ of the signal change rate limiting circuit 32, and the drop gradually decreases, thereby preventing re-sliding due to overlap with the air brake.

この時、空気ブレーキはある時間ブレーキトルクの不足
分を補足するが、すぐに減衰する。
At this time, the air brake compensates for the lack of brake torque for a certain period of time, but it quickly decays.

また、回生ブレーキ力演算部30で(ハ)、(2)式で
演p−すること(二より、ブレーキ弱め時に電流パター
ン指令ICが低下し、すべり周波数2日がO付近になっ
ても、従来のようじ励磁電流の影響をうけないので、案
際の回生ブレーキ力とほぼ等価なブレーキカ侑号を空気
ブレーキ制御側へ出力できる。
In addition, the regenerative braking force calculation unit 30 calculates (c) using equation (2) (from 2), even if the current pattern command IC decreases when the brake is weakened and the slip frequency 2 becomes near O, Since it is not affected by the conventional tooth excitation current, it is possible to output a brake force signal approximately equivalent to the regenerative braking force at the time of the accident to the air brake control side.

(θ)発明の効果 以上本発明の刊本のブレーキ制御方法によれは、回生ブ
レーキ力と空気ブレーキ力を虐めた総合ブレーキ力を低
減させることができるので、大滑走(1至ることなく、
確実に再粘着が期待でき、従って、回生率を高めること
ができる。
(θ) Effects of the Invention According to the brake control method published in the book of the present invention, it is possible to reduce the total braking force that suppresses the regenerative braking force and the air braking force.
Re-adhesion can be reliably expected, and therefore the regeneration rate can be increased.

また、全ブレーキ力指令範囲において、回生ブレーキ制
御と空気ブレーキ制御の温和を改昏できる0
In addition, in the entire brake force command range, it is possible to improve the gentleness of regenerative brake control and air brake control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は′亀気車駆動用誘4電動機の制御を可変電圧o
J変周波数インバータC二より行う電気車制御装置の王
回路部の例、第2図は従来のパルス巾変調制御の可変電
圧i」変周波数インバータの制御回路部のブロック図、
第3図は本発明の制御回路部。 のブロック図、第4図は第3図の動作説明図である。 4・・・インバータ王回路 6・・・妨導電動機7・・
・パルスジェネレータ 21・・・回転周波数演算部 22・・・空転滑足検知
部23・・・電流パターン発生部 24・・・すべり周波数演算部 2り・・・変調パルスモード演算部 26・・・変調率演算部 27・・・パルス巾変眺制御
部あ・・・パルス合成回路 29 、 :31)・・・回生ブレーキ力演算部:31
・・・ブレーキカイ百号保持部 :32・・・信号変化率制限回路 (7317)代理人 弁理士 則 近 憲 佑 Cほか
1名)第4図 t/12
Figure 1 shows the control of the induction motor for driving the tortoise wheel by variable voltage o.
An example of a main circuit section of an electric vehicle control device using J variable frequency inverter C2, Fig. 2 is a block diagram of a control circuit section of a conventional variable voltage i'' variable frequency inverter for pulse width modulation control,
FIG. 3 shows a control circuit section of the present invention. FIG. 4 is an explanatory diagram of the operation of FIG. 3. 4... Inverter king circuit 6... Disturbing motor 7...
・Pulse generator 21...Rotation frequency calculation section 22...Idle slip detection section 23...Current pattern generation section 24...Slip frequency calculation section 2...Modulation pulse mode calculation section 26... Modulation rate calculation unit 27...Pulse width variation control unit A...Pulse synthesis circuit 29, :31)...Regenerative braking force calculation unit: 31
...Brake Kai No. 100 holding part: 32...Signal change rate limiting circuit (7317) Agent Patent attorney Noriyuki Chika C and 1 other person) Figure 4 t/12

Claims (2)

【特許請求の範囲】[Claims] (1)  パルス巾変調制御の可変電圧可変周波数イン
バータにより誘導tFL!1tIJ機を駆動し、回生ブ
レーキ力を演算しこの演算された回生ブレーキ力がブレ
ーキ力指令に対して小さいときに差に応じた空気ブレー
キ力を作用させる電気車のブレーキ力制御方法において
、列車の車輪が滑走を起こしたとき、この滑走を誘導電
動機の回転数の時間変化率かIツ「足の値をこえたこと
により検知し2て前記演算された回生ブレーキ力信号を
所定の時間ホールドし、を気ブレーキの立ち上りを阻止
し7たことを特徴とする電気車のブレーキ力制御方法。
(1) Induction tFL! by variable voltage variable frequency inverter with pulse width modulation control! In an electric vehicle brake force control method, a 1tIJ machine is driven, a regenerative brake force is calculated, and when the calculated regenerative brake force is smaller than a brake force command, an air brake force is applied according to the difference. When a wheel skids, this skid is detected when the time change rate of the rotational speed of the induction motor exceeds a value of 2, and the calculated regenerative braking force signal is held for a predetermined period of time. 7. A brake force control method for an electric vehicle, characterized in that the brake force is prevented from rising.
(2)回生ブレーキ力の演舞、をパルス中変調制御の可
変電圧可変周波数インバータの変調率とに調パルスモー
ドとすべり周波数と出力周波数と架線電圧により行なう
ことを特徴とする特許請求の範囲第1項記載の電気車の
ブレーキ力制御方法。
(2) The performance of the regenerative braking force is performed by the modulation rate of the variable voltage variable frequency inverter under pulse modulation control, the pulse mode, the slip frequency, the output frequency, and the overhead line voltage. Brake force control method for an electric vehicle as described in .
JP11841282A 1982-07-09 1982-07-09 Controlling method of brake force of electric motor vehicle Pending JPS5910101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11841282A JPS5910101A (en) 1982-07-09 1982-07-09 Controlling method of brake force of electric motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11841282A JPS5910101A (en) 1982-07-09 1982-07-09 Controlling method of brake force of electric motor vehicle

Publications (1)

Publication Number Publication Date
JPS5910101A true JPS5910101A (en) 1984-01-19

Family

ID=14736001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11841282A Pending JPS5910101A (en) 1982-07-09 1982-07-09 Controlling method of brake force of electric motor vehicle

Country Status (1)

Country Link
JP (1) JPS5910101A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116974A (en) * 1984-11-08 1986-06-04 Toshiba Corp Ac/dc converter
JPH06311606A (en) * 1993-04-01 1994-11-04 Westinghouse Air Brake Co Brake operating unit for locomotive
JP2015130776A (en) * 2014-01-09 2015-07-16 公益財団法人鉄道総合技術研究所 Cooperation brake control method, cooperation brake control system, slide development suppression device and electric brake control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123703A (en) * 1980-02-29 1981-09-29 Toshiba Corp Skid control method of chopper car

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123703A (en) * 1980-02-29 1981-09-29 Toshiba Corp Skid control method of chopper car

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116974A (en) * 1984-11-08 1986-06-04 Toshiba Corp Ac/dc converter
JPH06311606A (en) * 1993-04-01 1994-11-04 Westinghouse Air Brake Co Brake operating unit for locomotive
JP2015130776A (en) * 2014-01-09 2015-07-16 公益財団法人鉄道総合技術研究所 Cooperation brake control method, cooperation brake control system, slide development suppression device and electric brake control device

Similar Documents

Publication Publication Date Title
JP2555038B2 (en) Induction motor type electric vehicle controller
US5289093A (en) Antispin and antilock methods for an electric traction vehicle
US6456909B1 (en) Control apparatus of electric vehicle
WO2017199661A1 (en) Motor driving control device and electric device
US4777420A (en) Induction motor control apparatus and method
US4392091A (en) Vehicle propulsion control apparatus and method
JPS5910101A (en) Controlling method of brake force of electric motor vehicle
JP5462121B2 (en) Motor control device
JP2004088974A (en) Electric car control device
JP2796475B2 (en) Vehicle control device and electric vehicle control device
JPH07118841B2 (en) Braking method of electric car
JPH0197102A (en) Controller for electric rolling stock
KR100758979B1 (en) Regenerative inverter system for DC railway system and method thereof
JP2877577B2 (en) AC electric vehicle control device
JP2023042118A (en) Power converter control device and control method
JP2001157303A (en) Control system of power converter for car
JPS6335103A (en) Controlling device for electric train
JPS59201608A (en) Controller of induction motor type electric railcar
JPS6356102A (en) Operation of inverter for driving electric rolling stock
JP2787519B2 (en) Method and apparatus for driving electric motor
Horie et al. Efficient train traction system that reduces maintenance work
JPH0469002A (en) Control method for inverter electric vehicle
JPS62290302A (en) Induction motor-type electric rolling stock controller
JP3064638B2 (en) Control device for VVVF inverter
JPS6331402A (en) Re-adhesion control method for inverter controlled electric motor car on sliding