JPS5891641A - Semiconductor device of high withstand voltage - Google Patents

Semiconductor device of high withstand voltage

Info

Publication number
JPS5891641A
JPS5891641A JP18953381A JP18953381A JPS5891641A JP S5891641 A JPS5891641 A JP S5891641A JP 18953381 A JP18953381 A JP 18953381A JP 18953381 A JP18953381 A JP 18953381A JP S5891641 A JPS5891641 A JP S5891641A
Authority
JP
Japan
Prior art keywords
substrate
layer
anionic
impurity region
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18953381A
Other languages
Japanese (ja)
Inventor
Koji Suzukawa
鈴川 光二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP18953381A priority Critical patent/JPS5891641A/en
Publication of JPS5891641A publication Critical patent/JPS5891641A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/408Electrodes ; Multistep manufacturing processes therefor with an insulating layer with a particular dielectric or electrostatic property, e.g. with static charges or for controlling trapped charges or moving ions, or with a plate acting on the insulator potential or the insulator charges, e.g. for controlling charges effect or potential distribution in the insulating layer, or with a semi-insulating layer contacting directly the semiconductor surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To enlarge the spreading range of a depletion layer in a state of high integration and to increase the degree of integration and withstand voltage for the titled semiconductor device by a method wherein an anionic insulating layer, which repulses to a number of carriers in a substrate, is formed on the surface of the substrate. CONSTITUTION:A P<+> type impurity region 21 is formed on the prescribed region of an N<-> type semiconductor substrate 20. Also, a P<+> type guard-ring layer is formed on the substrates 20 at prescribed intervals surrounding the impurity region 21. On the surface of the substrate 20, an anionic insulating layer 23 is formed surrounding the P-N junction surface, which was formed by the impurity region 21 and the substrate 20 region, and the surface of the guard-ring layer 22. As the anionic insulating layer 23 is formed in such a manner that the anionic state is given to it, the spreading of the depletion layer 25 to be formed directly below the regions 21 and 22 can be enlarged and the withstand voltage thereof can be increased as well due to the electric repulsation of a number of carriers located in the layer 23 and the substrate 20 in the state wherein the layer 22 is reduced in number.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、高耐圧半導体装置に関する。[Detailed description of the invention] Technical field of invention The present invention relates to a high voltage semiconductor device.

発明の技術的背景とその問題点 従来、高耐圧半導体装置は、例えば第1図(4)及び同
図(B)に示す如く、Nfi半導体層1,1′とpm半
導体層2,2′とで形成されたPN接合表面での電解集
中による局部的降伏を抑制して高耐圧を得るためにその
局面にメサ面3,3′を形成した構造を有している。而
して、メサ面3゜3/は、ガラス、シリコーン樹脂等の
絶縁部材で被覆されている。しかしながら、このような
メす構造を採用した高耐圧半導体装置は、製造時に基板
を構成するウエクの表面に凹凸ができ易く、所定の耐圧
を備えたものを高い歩留で製造できない欠点があった。
Technical Background of the Invention and Problems Thereto Conventionally, high voltage semiconductor devices have been constructed using Nfi semiconductor layers 1, 1' and pm semiconductor layers 2, 2', as shown in FIG. 1 (4) and FIG. 1 (B), for example. In order to obtain a high breakdown voltage by suppressing local breakdown due to electrolytic concentration on the surface of the PN junction formed by the PN junction, it has a structure in which mesa surfaces 3 and 3' are formed on the surface of the PN junction. The mesa surface 3° 3/ is covered with an insulating material such as glass or silicone resin. However, high-voltage semiconductor devices that employ this type of female structure tend to have unevenness on the surface of the substrate that makes up the substrate during manufacturing, making it impossible to manufacture devices with a predetermined breakdown voltage at a high yield. .

このような欠点を解消するために(第2図に示す如(%
N型半導体基板4の所定領域にpv不純物領域5を形成
し、この不純物領域5を囲むように所定間隔を設けてガ
ードリング層6t−2重、3重に形成した高耐圧半導体
装置lが開発されている。このような高耐圧半導体装W
tLは、第3図に示す如<、’ir−トリ/ダ層d・・
・6の数を仕様に応じて増加し、空乏層1の広がシを大
龜(することによりて耐圧の向上を図っているが、ガー
ドリング層6・・・6の増加に伴って素子の集積度が低
下する欠点がある。また、第4図に示す如く、不純物領
域5及びガードリング層6を含む半導体基板40表EI
K形成された酸化膜9中にはNa  等が混入し易いた
め、このNa+等による基板4内の多数キャリアの引き
寄せによって表面領域での空乏層8aの広がシが小さぐ
なシ耐圧を低下する欠点がありた。
In order to eliminate these drawbacks (as shown in Figure 2),
A high breakdown voltage semiconductor device 1 has been developed in which a PV impurity region 5 is formed in a predetermined region of an N-type semiconductor substrate 4, and a guard ring layer 6t--double or triple layer is formed at a predetermined interval so as to surround this impurity region 5. has been done. Such a high voltage semiconductor device W
tL is as shown in FIG.
・The number of guard ring layers 6 is increased according to the specifications, and the expansion of the depletion layer 1 is increased to improve breakdown voltage, but as the number of guard ring layers 6... Also, as shown in FIG.
Since Na, etc. are easily mixed into the K-formed oxide film 9, the depletion layer 8a spreads in the surface region due to the attraction of majority carriers in the substrate 4 by this Na+, etc., which lowers the withstand voltage. There was a drawback.

このためガードリング層6を設けた高耐圧半導体装置l
において、集積度を上げてしかも耐圧を十分に向上させ
ることが従来の解決すべき技術課題とされていた。
For this reason, a high voltage semiconductor device l provided with a guard ring layer 6
In the past, the technical problem to be solved was to increase the degree of integration and sufficiently improve the withstand voltage.

発明の目的 本発明は、集積度及び耐圧が高く、しかも製造が容易な
高耐圧半導体装置を提供するものである。
OBJECTS OF THE INVENTION The present invention provides a high voltage semiconductor device that has a high degree of integration and high voltage resistance, and is easy to manufacture.

発明の概要 本発明は、基板内の多数キャリアと反発する陰イオン性
の絶縁層を基板の表面に形成することによって、高集積
度の下に空乏層の広が9を十分に大きくシ、耐圧の向上
を達成し九高圧耐□1   半導体装置をその要旨とす
るものである。
SUMMARY OF THE INVENTION The present invention makes it possible to sufficiently increase the spread of the depletion layer 9 and withstand voltage under high integration density by forming an anionic insulating layer on the surface of the substrate that repels majority carriers within the substrate. The gist of this is a semiconductor device with nine high voltage resistance □1.

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

発明の実施例 第5図は、本発明の一実施例の断面図である。Examples of the invention FIG. 5 is a cross-sectional view of one embodiment of the present invention.

図中20は、N−型半導体基板である。この半導体基板
200所定領域には、P+型の不純物領域21が形成さ
れている。また、半導体基板20には、所定間隔を設け
て不純物領域21を囲むようKP型のガードリング層2
2が形成されている。半導体基板20の表面には、不純
物領域21と半導体基板20の領域とで形成されたPN
W!合表面及びガードリング層220表面を覆うように
陰イオン性の絶縁層23が形成されている。
In the figure, 20 is an N-type semiconductor substrate. In a predetermined region of this semiconductor substrate 200, a P+ type impurity region 21 is formed. Further, a KP type guard ring layer 2 is formed on the semiconductor substrate 20 so as to surround the impurity region 21 at a predetermined interval.
2 is formed. On the surface of the semiconductor substrate 20, there is a PN formed by the impurity region 21 and the region of the semiconductor substrate 20.
W! An anionic insulating layer 23 is formed to cover the joint surface and the guard ring layer 220 surface.

こむで、−陰イオン性の絶縁層23の形成方法としては
、第6図に示す如く、不純物領域21とガードリング層
22を含む半導体基板20の表面に酸化膜JJaを形成
し、次いで、リンゲッターを施して酸化j[j 3 a
上にリンゲッタ一層JJbを形成した後、例えばC,V
、D、法(ch・−mieal Vapor D@po
sltion法)によシリンダ、タ一層ssb上K P
SG膜jjcを積層し、再びリンダツタ−処理及びPg
G膜23eの形成を施して陰イオン性の絶縁層2Jを得
るようkしたものが望ましい。
As shown in FIG. 6, the method for forming the -anionic insulating layer 23 is to form an oxide film JJa on the surface of the semiconductor substrate 20 including the impurity region 21 and the guard ring layer 22, and then phosphorus. Apply a getter to oxidize j [j 3 a
After forming a ring getter layer JJb on top, for example, C, V
, D, law (ch・-mieal Vapor D@po
sltion method) on the cylinder, one layer on the ssb K P
The SG film jjc is laminated, and then subjected to the Lindatsuta treatment and Pg
It is preferable to form the G film 23e to obtain the anionic insulating layer 2J.

また、リンゲッター処理及びP8G膜23@の形成回数
は、最終的に得られる素子の耐圧を決定するものであF
)、50ov程度の耐圧の素子を得る場合には2回、5
00〜1ooo vの耐圧の素子を得る場合は3〜4回
、1000〜1500 Vの耐圧の素子を得る場合には
3〜5回施すのが望ましい。
Furthermore, the number of times the ring getter treatment and the P8G film 23@ are formed determines the breakdown voltage of the device finally obtained.
), twice to obtain an element with a withstand voltage of about 50 ov, and 5
It is desirable to apply the process 3 to 4 times to obtain an element with a breakdown voltage of 00 to 100 V, and 3 to 5 times to obtain an element with a breakdown voltage of 1000 to 1500 V.

また、絶縁層23の厚さも最終的に形成する素子の耐圧
を左右する因子であシ、300V程度の耐圧を得る場合
には0.8#11E1以上の厚さとし、500v程度の
耐圧を得る場合にll11.2μm以上の厚さに設定す
るのが望ましい。
In addition, the thickness of the insulating layer 23 is also a factor that affects the breakdown voltage of the element to be finally formed.When obtaining a breakdown voltage of about 300V, the thickness should be 0.8#11E1 or more, and when obtaining a breakdown voltage of about 500V, the thickness should be 0.8#11E1 or more. It is desirable to set the thickness to 11.2 μm or more.

ま九、PSG膜23@中の9ノ濃度は、耐圧及びPN接
合のリーク電流の発生に影響を及はすものであシ、耐圧
を向上させてリーク電流の発生を抑えるように1×10
20〜3x10りの濃度に設定するのが望ましい。
Nine, the concentration of 9 in the PSG film 23 has an effect on the breakdown voltage and the generation of leakage current in the PN junction.
It is desirable to set the density to 20 to 3×10.

こOように構成された高耐圧半導体装置り工によれば、
絶縁層2Jが陰イオン性になるように形成されて偽るの
で、ガードリング層22の数を少なくした状態で、絶縁
層23と半導体基板20中の多数キャリアの電気的な反
発によって不純物領域21とガードリング層22の直下
に形成される空乏層25の広が〕を大きくし、耐圧を十
分に向上させることができる。しかも、ガードリング層
22の数は、従来の装置のように多くする必要がないの
で素子の占有面積を小さくして集積度を向上させること
ができる。また、メす構造に代ってガードリング構造を
採用しているので、製造が極めて容易である。
According to a high-voltage semiconductor device engineer configured in this way,
Since the insulating layer 2J is formed to be anionic, the electrical repulsion of the majority carriers in the insulating layer 23 and the semiconductor substrate 20 causes the impurity region 21 to The spread of the depletion layer 25 formed directly under the guard ring layer 22 can be increased, and the withstand voltage can be sufficiently improved. Moreover, since the number of guard ring layers 22 does not need to be increased as in the conventional device, the area occupied by the device can be reduced and the degree of integration can be improved. Furthermore, since a guard ring structure is adopted instead of a female structure, manufacturing is extremely easy.

発明の詳細 な説明した如く、本発明に係る高耐圧半導体装置によれ
ば、集積度及び耐圧の向上を図って、しかもその製造が
容易であふ等顕著な効果を有するものである。
As described in detail, the high breakdown voltage semiconductor device according to the present invention improves the degree of integration and breakdown voltage, is easy to manufacture, and has many remarkable effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(4)及び同図(B)は、従来のメサ構造を採用
した高耐圧半導体装置の断面図、第2図は、ガードリン
グ層を設けた従来の高耐圧半導体装置の断面図、第3図
は、同装置の空乏層の広がりを示す説明図、第4図は同
装置の表面に形成された絶縁層中の不純物と空乏層の広
がシの関係を示す説明図、第5図は、本発明の一実施例
の断面図、第6図は、同実施例の半導体装置の製造方法
を示す説明図である。 20・・・半導体基板、21・・・不純物領域、22・
・・ガードリング層、23・・・絶縁層、23a・・・
酸化膜、JJb・・・リング、タ一層、23c・・・P
SG膜、ノーL・・・高耐圧半導体装置、25・・・空
乏層。
FIGS. 1(4) and 1(B) are cross-sectional views of a conventional high-voltage semiconductor device employing a mesa structure, and FIG. 2 is a cross-sectional view of a conventional high-voltage semiconductor device provided with a guard ring layer. FIG. 3 is an explanatory diagram showing the spread of the depletion layer of the same device, FIG. 4 is an explanatory diagram showing the relationship between impurities in the insulating layer formed on the surface of the device and the spread of the depletion layer, and FIG. The figure is a sectional view of one embodiment of the present invention, and FIG. 6 is an explanatory diagram showing a method of manufacturing a semiconductor device of the same embodiment. 20... Semiconductor substrate, 21... Impurity region, 22.
...Guard ring layer, 23...Insulating layer, 23a...
Oxide film, JJb...ring, single layer, 23c...P
SG film, no L...high voltage semiconductor device, 25...depletion layer.

Claims (1)

【特許請求の範囲】[Claims] N型半導体基板の所定領域に形成されたP型不純物領域
と、該不純物領域と所定間隔を設けて前記基板に形成さ
れたP型ガードリング層と、前記不純物領域と前記基板
とで形成されたPN接合表面及び前記ガードリング層を
含む前記基板上に形成された陰イオン性の絶縁層とを具
備することを特徴とする高耐圧半導体装置。
A P-type impurity region formed in a predetermined region of an N-type semiconductor substrate, a P-type guard ring layer formed on the substrate with a predetermined distance from the impurity region, and the impurity region and the substrate. A high voltage semiconductor device comprising: a PN junction surface; and an anionic insulating layer formed on the substrate including the guard ring layer.
JP18953381A 1981-11-26 1981-11-26 Semiconductor device of high withstand voltage Pending JPS5891641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18953381A JPS5891641A (en) 1981-11-26 1981-11-26 Semiconductor device of high withstand voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18953381A JPS5891641A (en) 1981-11-26 1981-11-26 Semiconductor device of high withstand voltage

Publications (1)

Publication Number Publication Date
JPS5891641A true JPS5891641A (en) 1983-05-31

Family

ID=16242887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18953381A Pending JPS5891641A (en) 1981-11-26 1981-11-26 Semiconductor device of high withstand voltage

Country Status (1)

Country Link
JP (1) JPS5891641A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799100A (en) * 1987-02-17 1989-01-17 Siliconix Incorporated Method and apparatus for increasing breakdown of a planar junction
CN102217070A (en) * 2009-09-03 2011-10-12 松下电器产业株式会社 Semiconductor device and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799100A (en) * 1987-02-17 1989-01-17 Siliconix Incorporated Method and apparatus for increasing breakdown of a planar junction
CN102217070A (en) * 2009-09-03 2011-10-12 松下电器产业株式会社 Semiconductor device and method for producing same

Similar Documents

Publication Publication Date Title
JPH07312372A (en) Accumulation edge structure for high-voltage semiconductor device and its preparation
JPS5891641A (en) Semiconductor device of high withstand voltage
JP2989113B2 (en) Semiconductor device and manufacturing method thereof
JPS60117755A (en) Manufacture of semiconductor device
JP3300530B2 (en) Method of manufacturing mesa-type semiconductor device
JPS59194441A (en) Planar type semiconductor device
JPS5913333A (en) Semiconductor device
JP3435171B2 (en) High voltage semiconductor device
JPS6244535Y2 (en)
JPS6126267A (en) Bidirectional zener diode
JPS583301Y2 (en) semiconductor equipment
JPH0312458B2 (en)
JPS5944869A (en) Semiconductor device
JPS643346B2 (en)
JPS60153157A (en) Bi-polar ic
JPS61251083A (en) Semiconductor device
JPS60180138A (en) Semiconductor device
JPS5835363B2 (en) Manufacturing method for semiconductor devices
JPS5812337A (en) Manufacture of semiconductor device
JPH03248465A (en) Schottky barrier semiconductor device
JPH03192758A (en) Semiconductor device
JPH07321305A (en) Semiconductor device
JPS605073B2 (en) High voltage field effect semiconductor device
JPH07307348A (en) Semiconductor device and its manufacture
JPH0428266A (en) Semiconductor device