JPS5891178A - Diaphragm type electrolyzing method - Google Patents

Diaphragm type electrolyzing method

Info

Publication number
JPS5891178A
JPS5891178A JP56189754A JP18975481A JPS5891178A JP S5891178 A JPS5891178 A JP S5891178A JP 56189754 A JP56189754 A JP 56189754A JP 18975481 A JP18975481 A JP 18975481A JP S5891178 A JPS5891178 A JP S5891178A
Authority
JP
Japan
Prior art keywords
anode
cathode
active material
diaphragm
micromesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56189754A
Other languages
Japanese (ja)
Inventor
Noriyuki Yokota
横田 範之
Yukio Nikaho
仁加保 幸雄
Shigeo Asada
茂雄 麻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP56189754A priority Critical patent/JPS5891178A/en
Publication of JPS5891178A publication Critical patent/JPS5891178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To lower an electrolytic bath voltage and to improve electrolytic power efficiency with regard to a diaphragm type electrolytic bath of an alkali chloride solution, by forming an anode and a cathode on both sides of a diaphragm, and using a micromesh type having an adhered anode active material as the anode. CONSTITUTION:In an electrolytic bath of a solution of alkali chloride such as NaCl, a micromesh type anode 7 having an adhered layer 6 of an anode active material is fitted to a rough gas-permeable conductive anode base 5, and a micromesh type cathode 10 having an adhered layer 9 of a cathode active material is fitted to a gas-permeable cathode base 8 in such a way that they are at <=2mm. distance on both sides of the diaphragm 3. In this case, the micromesh type electrodes use expansion metal, wire netting, etc., which have <=100mm.<2> pore area, 20-85% opening ratio, 0.8-6mm. lateral hole length L, W 0.4-3mm. longitudinal length S, W and 0.1-1mm. thickness.

Description

【発明の詳細な説明】 本発明は塩化アルカリ水溶液を電解する隔膜式電解法に
おいてマイクロメツシュの表面に陽極活物質を被着した
ものを電極面とし、且つ上記マイクロメツシュを1枚、
または複数枚、ガス透過性導電性基体上に取りつけて陽
極体とし、さらに陽極活物質被着面と隔膜との距離を2
 mm以下に保った隔膜式電解槽で電解する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION In the diaphragm electrolysis method of electrolyzing an aqueous alkali chloride solution, the present invention uses a micromesh surface coated with an anode active material as an electrode surface, and one sheet of the micromesh,
Alternatively, multiple sheets are attached on a gas-permeable conductive substrate to form an anode body, and the distance between the surface to which the anode active material is adhered and the diaphragm is 2.
This invention relates to a method of electrolyzing in a diaphragm type electrolytic cell maintained at less than mm.

なお本明細書にいうマイクロメツシュとはエキスバンド
メタル、パンチングメタル、金網等よりなるメツシュ状
の微細多孔板体を指し、また隔膜とはアスベスト隔膜9
合成樹脂製隔躾のみならず陽イオン交換膜をも含むもの
とする。
Note that the term "micromesh" as used herein refers to a mesh-like microporous plate made of expanded metal, punched metal, wire mesh, etc., and the term "diaphragm" refers to an asbestos diaphragm 9.
It shall include not only a synthetic resin septum but also a cation exchange membrane.

従来より隔膜式電解槽においてエキスバンドメタル等の
メツシュ状電極を使用することは般に行われており、で
きるだけ極間距離を小ならしめることにより液抵抗を減
少させてI電圧の低下を削らうとする傾向にある。極間
距離を短縮することにより従来使用している程度の目の
粗いエキスバンドメタルでは膜の見掛は上の電流密度は
変らなくとも躾のデッドスペースは増加し、実質的な電
流密度も増加する傾向にあり、その結果、極間距離を短
縮したにもかかわらず摺電圧に及ぼす影響は余りなく、
したがって電圧は下らない。また目の粗いエキスバンド
メタルの電極で極間距離を短縮し、電極を膜に近接せし
めることにより生ずる膜の高電流密度化のため膜の寿命
にも影響を与えることが予想される。
Conventionally, it has been common practice to use mesh-like electrodes such as expanded metal in diaphragm electrolytic cells, and by reducing the distance between the electrodes as much as possible, the liquid resistance is reduced and the drop in I voltage is reduced. There is a tendency to By shortening the distance between the electrodes, the current density on the surface of the membrane does not change in the case of the conventionally used coarse expanded metal, but the dead space increases and the actual current density also increases. As a result, even though the distance between the electrodes is shortened, there is little effect on the sliding voltage.
Therefore, the voltage does not drop. In addition, by shortening the distance between the electrodes with coarse expanded metal electrodes and bringing the electrodes close to the membrane, it is expected that the life of the membrane will be affected due to the high current density of the membrane.

一方、固体重合体電解質(S of id  P ol
yn+erE +ectro+yte、以下SPEと略
称する)を応用して塩化アルカリ溶液の電解を行う装置
が知られている。この装置は陽イオン交換膜を電解質隔
膜とし、その両面に直接陽極および陰極活物質を層状に
接着担持させ、該電極活物質層に給電体を接触させて電
流を供給し水溶液の電解を行うもので、極間距離は隔膜
の厚さまで短縮され、通常の電解装置では避けられない
電極間の電解液および発生気泡による電気抵抗損失を無
視し得られ、従来の隔膜法に比べ電解電圧を低下し得る
On the other hand, solid polymer electrolyte (Sof id Pol
An apparatus is known that performs electrolysis of an alkali chloride solution by applying yn+erE+electro+yte (hereinafter abbreviated as SPE). In this device, a cation exchange membrane is used as an electrolyte diaphragm, an anode and a cathode active material are directly adhered and supported on both sides of the membrane in a layered manner, and a current is supplied by contacting the electrode active material layer to electrolyze an aqueous solution. With this method, the distance between the electrodes is shortened to the thickness of the diaphragm, and the electrical resistance loss due to the electrolyte between the electrodes and the bubbles that are generated, which is inevitable in normal electrolysis devices, can be ignored, and the electrolysis voltage is lower than that of the conventional diaphragm method. obtain.

しかしSPE電解装置は有機質であるイオン交換膜の表
面に、炭素や金属または金属酸化物の電極活物質層を一
体に保持させこれに給電体を接触させるため、イオン交
換膜が機械的に弱くまた高温で容易に破壊されるので電
極活物質を均一かつ強固に膜面に被着させることが困難
であり、またイオン交換膜と電極活物質との寿命に差が
あるため一方を別個に交換1回収等を行うことは不可能
であった。
However, in SPE electrolyzers, an electrode active material layer of carbon, metal, or metal oxide is integrally held on the surface of an organic ion exchange membrane, and a power supply body is brought into contact with this, so the ion exchange membrane is mechanically weak and Since it is easily destroyed at high temperatures, it is difficult to adhere the electrode active material uniformly and firmly to the membrane surface, and there is a difference in the lifespan of the ion exchange membrane and the electrode active material, so one must be replaced separately. It was impossible to carry out any recovery.

また躾と電解活物質とは一体となり間隙がないため陰極
側で生成するO H−が濃縮されイオン交換膜、より陽
極側にバックマイグレーションを起しやすく塩素発生効
率の低下・ひいては電流効率の低下を来づという問題点
があった。
In addition, since the electrolyte and the electrolytic active material are integrated and there is no gap, O H- generated on the cathode side is concentrated and tends to back-migrate to the ion exchange membrane and the anode side, resulting in a decrease in chlorine generation efficiency and, in turn, a decrease in current efficiency. There was a problem with this.

本発明者らは以上の問題点を解決するため種々検討を行
った結果、特に陽性活物質を被着さぜたマイクロメツシ
ュをガス透過性の金属基体に取りつけ、かつ陽極活物質
層と隔膜との距離を2mm以下に保つことにより、従来
の隔膜式塩化アルカリ電解法に比べ低い摺電圧および良
好な電流効率を収めうるという知見を得、これに基づい
て本発明方法を完成した。
The present inventors conducted various studies in order to solve the above problems, and found that, in particular, a micromesh coated with a positive active material was attached to a gas-permeable metal substrate, and a positive electrode active material layer and a diaphragm were attached. It was found that by keeping the distance to 2 mm or less, lower sliding voltage and better current efficiency can be achieved than in the conventional diaphragm-type alkali chloride electrolysis method, and based on this, the method of the present invention was completed.

第1図、第2図は従来の隔膜(イオン交換膜)式電解槽
の説明図、第3図、第4図は本発明法に使用される隔膜
(イオン交換膜)式電解槽の説明図である。第1図のご
とく目の粗いガス透過性の陽極(1)および陰極(2)
を隔膜(3)の両側にある程度離して配置した構造にお
いては、陽極(1)より陰極(2)に流れる電流流路(
4)は隔膜(3)の全面を蔽った状態になり電流分布は
比較的良好で5− ある。しかし電解電圧を下げるために第2図のごとく陽
極(1)と陰極(2)とを近接せしめると、そのその距
離が小となるに従い、電流流路(4)は直線的になり隔
11(3)面にデッドスペースを生じ電流密度は見掛上
より高くなり電流分布が不均一となる。本発明において
は第3図に例示するごとく目の粗いガス透過性導電性陽
極基体(5)に、陰極活物質被着層(6)を有するマイ
ロ0メツシユ状陽極(7)を取りつけ、一方ガス透過性
陰極基体(8)に、陰極活物質被着層(9)を有するマ
イクロメツシュ状陰極(10)を取りつけ、それぞれ隔
IM(3)の両側に配置する。このような構成を採るこ
とにより極間距離を短縮せしめても図の示すごとく電流
流路(4)は均一に分散され膜面のデッドスペースが減
少し膜面を有効に利用でき実質的な電流密度の上昇が無
くなる。
Figures 1 and 2 are explanatory diagrams of a conventional diaphragm (ion exchange membrane) type electrolytic cell, and Figures 3 and 4 are explanatory diagrams of a diaphragm (ion exchange membrane) type electrolytic cell used in the method of the present invention. It is. Open gas permeable anode (1) and cathode (2) as shown in Figure 1.
In a structure in which the electrodes are placed on both sides of the diaphragm (3) at a certain distance, the current flow path (
4), the entire surface of the diaphragm (3) is covered, and the current distribution is relatively good. However, when the anode (1) and cathode (2) are brought closer together as shown in Fig. 2 in order to lower the electrolytic voltage, as the distance becomes smaller, the current flow path (4) becomes straighter and the distance 11 ( 3) A dead space is created on the surface, the current density becomes higher than it appears, and the current distribution becomes non-uniform. In the present invention, as exemplified in FIG. A micromesh cathode (10) having a cathode active material coating layer (9) is attached to a transparent cathode substrate (8) and placed on both sides of the partition IM (3). By adopting such a configuration, even if the distance between the electrodes is shortened, the current flow path (4) is uniformly distributed as shown in the figure, the dead space on the membrane surface is reduced, and the membrane surface can be used effectively, resulting in a substantial current flow. There is no increase in density.

本発明に使用されるマイクロメツシュ状陽極(7)とし
ては1つの孔面積が10IllII2以下、6− 開化比が20〜85%であるエキスバンド、メタル。
The micromesh-like anode (7) used in the present invention is an expanded band or metal having a pore area of 10IllII2 or less and a 6-opening ratio of 20 to 85%.

パンチングメタル、金−が使用され、特に第5図に示す
エキスバンドメタルにおいてLW(目の横の長さ)  
0.8〜5111111. SW (目)mの長さ) 
 0.4〜2.5+++m、板の厚み0.1〜1mmの
らのが有効である。LW、SWが0.8mm。
Punched metal, gold, is used, especially in the expanded metal shown in Figure 5, LW (horizontal length of the eye)
0.8-5111111. SW (eyes) length of m)
A plate having a thickness of 0.4 to 2.5 +++ m and a plate thickness of 0.1 to 1 mm is effective. LW and SW are 0.8mm.

0.4111Iより小さい場合は陽極より発生するガス
が隔1!(3)との間より逸出する速度が遅(なり、ま
たLW、SWが5 n+m、  2.5mmより大きい
場合は電流分布効果が不充分で良好な電力原単位が得ら
れない。陽極活物質としては白金、ルテニウム、イリジ
ウム、パラジウム等の白金族金属やその合金、またはこ
れらの金属の酸化物が使用され、またエキスバンドメタ
ル、パンチングメタル、金網の材質としてはチタン、ジ
ルコニウム、タンタル、二Aブ等の弁金属あるいは他の
卑金属との混合物、これらの金属の酸化物、窒化物、炭
化物等が使用される。またガス透過性の導電性陽極v体
(5)は通常マイクロメツシュより目の粗い同材質のエ
キスバンドメタル、バンヂングメタル、金網が使用され
、エキスバンドメタルの場合、SW3〜8+a+e、L
W7〜15mm程度のものが好適である。
If it is smaller than 0.4111I, the gas generated from the anode is 1! (3) The escape speed is slower than that between The materials used include platinum group metals such as platinum, ruthenium, iridium, and palladium, their alloys, and oxides of these metals, and the materials used for expanded metals, punched metals, and wire mesh include titanium, zirconium, tantalum, and dichloromethane. Valve metals such as A or mixtures with other base metals, oxides, nitrides, carbides of these metals, etc. are used.The gas-permeable conductive anode body (5) is usually made of micromesh. Extracted band metal, banding metal, and wire mesh made of the same material with coarse mesh are used. In the case of expanded band metal, SW3~8+a+e, L
A material with a width of about 7 to 15 mm is suitable.

またこのような板状基体の他にマイクロメツシュに電流
を供給し、また機械的支持を行うリブを基体としてもよ
い。陽極活物質をマイクロメツシュ状陽極に被着させる
方法としては熱分解法、メッキ法、WI漬もしくは塗布
焼付法、蒸着法等が挙げられる。こ9陽極活物買被着層
(6)はマイクロメツシュ状陽極(7)の陰極対向面の
みならず裏面に設けてもよい。但しいづれの場合も被着
層によりマイクロメツシュの微細孔面積を実質的に減少
させてはならない。適当な被着層の厚みは0.1〜5μ
程度である。
In addition to such a plate-like substrate, the substrate may also be a rib that supplies current to the micromesh and provides mechanical support. Examples of methods for depositing the anode active material on the micromesh-like anode include a thermal decomposition method, a plating method, a WI dipping method or a coating/baking method, and a vapor deposition method. The anode active material adhesion layer (6) may be provided not only on the surface facing the cathode of the micromesh-like anode (7) but also on the back surface. However, in either case, the adhesion layer must not substantially reduce the micropore area of the micromesh. The appropriate thickness of the adhesion layer is 0.1 to 5μ.
That's about it.

本発明においては陽極活物質被着層と隔膜との距離を2
11m以下に保つことが必要であり、2m1mをこえる
と電流分布は良好となるが電解液の抵抗が大となって電
解電圧が高くなる。
In the present invention, the distance between the anode active material coating layer and the diaphragm is 2
It is necessary to maintain the distance to 11 m or less, and if it exceeds 2 m to 1 m, the current distribution will be good, but the resistance of the electrolytic solution will increase and the electrolytic voltage will increase.

また陰極側において陰極活物質被着層、(9)は白金族
金属またはその酸化物、またはニッケル黒等が使用され
、マイクロメツシュ状陰極(10)および陰極基体(8
)は鉄、ニッケル、ステンレス鋼等通常の陰極材質で構
成される。陰極活物質被着層(9)と隔膜(3)との距
離は上記と同じ理由で短い方がよい。
In addition, on the cathode side, a cathode active material coating layer (9) is made of a platinum group metal or its oxide, nickel black, etc., and a micromesh-like cathode (10) and a cathode substrate (8
) are made of common cathode materials such as iron, nickel, and stainless steel. The distance between the cathode active material coating layer (9) and the diaphragm (3) is preferably short for the same reason as above.

第4図は本発明の他の例を示し、第3図における陰極活
物質被着11(9)を省略したマイクロメツシュ〈11
)を陰極基体(12)に取りつけたものであり、これら
は鉄、ニッケル、ステンレス鋼等通常の陰極材質で構成
され陰極として作用する。また図面はいづれも隔膜とし
てイオン交換膜を使用した例を示したが他の合成樹脂隔
膜、アスベスト隔膜にも適用可能である。すなわちアス
ベスト隔膜を沈着させた将来の陰極構造体をそのまま使
用し陽極体のみマイクロメツシュ状陽極を使用すること
もできる。
FIG. 4 shows another example of the present invention, in which the cathode active material coating 11 (9) in FIG. 3 is omitted.
) is attached to a cathode substrate (12), which is made of common cathode materials such as iron, nickel, and stainless steel, and acts as a cathode. In addition, although the drawings show examples in which an ion exchange membrane is used as the diaphragm, other synthetic resin diaphragms and asbestos diaphragms are also applicable. That is, it is also possible to use the future cathode structure on which the asbestos diaphragm is deposited as is, and use a micromesh-like anode only for the anode body.

以−ト説明したように本発明によれば、陽極活9− 物質波@層を有するマイクロメツシュ状陽極を基体上に
取りつけることにより極間距離を極小ならしめても電流
分布が良好に保たれ、また電解ガスが大気泡を生ぜず微
細に分散され電解液より逸出されやすいの、で電気抵抗
が小となり電解電圧を低下させることができる。
As explained above, according to the present invention, by attaching a micromesh-like anode having an anode active 9-matter wave layer on a substrate, a good current distribution can be maintained even if the distance between the electrodes is minimized. In addition, the electrolytic gas is finely dispersed without producing air bubbles and easily escapes from the electrolytic solution, so the electrical resistance becomes small and the electrolytic voltage can be lowered.

また陽極活物質をSPE電解装置のごとくイオン交換膜
に接着担持させるのではなくマイクロメツシユ状の金属
板に被着させるので加工が簡単であり、電極体および隔
膜を別個に交換、修理することが可能である。また陽極
体を特に隔膜と密着させずどもよいので電流分布の均一
化による低電流密度化と相いまって膜内体の寿命に与え
る影響を小ならしめることができる。
In addition, the anode active material is not adhesively supported on the ion exchange membrane as in SPE electrolyzers, but is adhered to a micromesh-shaped metal plate, making processing easy, and the electrode body and diaphragm can be replaced and repaired separately. is possible. Furthermore, since the anode body does not need to be brought into close contact with the diaphragm, it is possible to lower the current density by making the current distribution uniform, and to reduce the influence on the life of the membrane inner body.

実施例1 陰極マイクロメツシュとして厚さ0.2 am 。Example 1 Thickness 0.2 am as cathode micromesh.

縦横長さ70x70+ua、 LW5 gas、 SW
 2+agn、開ロ比64%のエキスバンドチタン板、
陰極マイクロメツシュとして同形状のエキスパントス−
1〇− テンレス板、また陽極導電性基体とし工厚さ1.5μm
、縦横長さ70x70va、 LW14mn+、 SW
7■のエキスバンドチタン板、陰極導電性基体として同
形状のエキスバンドステンレス板を使用し、陽極マイク
ロメツシュ上にPt :【rの重量比が7:3となるよ
うに塩化白金酸および塩化イ夢ジウムを含有したラベン
ダー油をハケで塗布し、乾燥後的450℃に加熱して焼
結し、この操作を繰り返して厚さ約0.7μの陽極活物
質層を形成させ陽極*’m性基体上に点溶接して陽極体
を作製した。一方陰極マイクロメッシュには常法により
ニッケル黒メッキを施し、陰極導電性基体上に点溶接し
て陰極体を作製した。次に隔膜として陽イオン交換膜(
商品名ナフィオン214.デュポン社!りを使用し陽極
−交換膜間は略1 +n。
Length and width 70x70+ua, LW5 gas, SW
2+agn, extended band titanium plate with aperture ratio of 64%,
Expantos with the same shape as the cathode micromesh
10- Stainless steel plate and anode conductive substrate with a thickness of 1.5 μm
, length and width 70x70va, LW14mn+, SW
A 7■ expanded titanium plate and an expanded stainless steel plate of the same shape were used as the cathode conductive substrate, and chloroplatinic acid and chloride were placed on the anode micromesh so that the weight ratio of Pt:[r] was 7:3. Lavender oil containing Imudin is applied with a brush, and after drying, it is heated to 450℃ and sintered, and this operation is repeated to form an anode active material layer with a thickness of about 0.7 μm. An anode body was fabricated by spot welding onto a steel substrate. On the other hand, the cathode micromesh was plated with nickel black using a conventional method, and spot welded onto the cathode conductive substrate to produce a cathode body. Next, a cation exchange membrane (
Product name Nafion 214. DuPont! The distance between the anode and the exchange membrane is approximately 1 + n.

陰極−交換11間は0.8111Illとして陽極体、
陰極体を電解槽に組込んだ。これを用いて陽極室に飽和
食塩水、陰極室に20%Na OH水溶液になるように
水を供給し、槽温度80℃、電流密度20A/dm’に
て300日間達続運転を行った結果、電流効率は初期9
0〜92%、  300日後9o〜91%、摺電圧3.
2〜3.3Vにて安定した電解成績を示した。
The anode body is 0.8111Ill between the cathode and exchange 11,
The cathode body was assembled into an electrolytic cell. The results of continuous operation for 300 days at a bath temperature of 80°C and a current density of 20 A/dm' using this product, supplying water to the anode chamber with saturated saline solution and the cathode chamber with 20% NaOH aqueous solution. , the current efficiency is initially 9
0~92%, 9o~91% after 300 days, sliding voltage 3.
Stable electrolytic results were shown at 2 to 3.3V.

比較例1 実施例1の陽極側および陰極側のマイクロメツシュを使
用せず、その代り同じ陽極導電性基体上に上記と同方法
でPt:)rの重量比1:3の陽極活物質層を設けて陽
極とし、また同じ陰極導電性基体上にニッケル黒メッキ
を施して陰極とした以外は実施例1と全く同条件で飽和
食塩水の電解を100日間連続して行った。電流効率お
よび摺電圧は初期においてそれぞれ90〜92%、3.
3〜3.5vであり、100日後においてそれぞれ85
〜81%、3.6〜3.8vであった。
Comparative Example 1 The micromeshes on the anode side and cathode side of Example 1 were not used, and instead, an anode active material layer with a Pt:)r weight ratio of 1:3 was formed on the same anode conductive substrate in the same manner as described above. Electrolysis of saturated saline solution was carried out continuously for 100 days under exactly the same conditions as in Example 1, except that a conductive substrate was provided with nickel black plating to serve as a cathode. Current efficiency and sliding voltage are 90-92%, respectively, at the initial stage; 3.
3-3.5v, respectively 85 after 100 days
~81%, 3.6-3.8v.

実施例2 陽極マイク0メツシコとして厚さ0.1+++e、縦横
fflす70x70+++a+、 LW2 am、 S
WI u+、 開口比67%のエキスバンドチタン板、
陰極マイクロメツシュとして同形状のエキスパン、ドニ
ッケル板、また陽極導電性基板として厚さ1.5I+m
、 II!横長さ70x70mm+、 LW14am、
 SW7 mm、開口比52%のエキスバンドチタン板
Example 2 Anode microphone 0 mesh thickness 0.1+++e, length and width ffl 70x70+++a+, LW2 am, S
WI u+, expanded titanium plate with an aperture ratio of 67%,
Expanded nickel plate of the same shape as the cathode micromesh, and 1.5I+m thick as the anode conductive substrate.
, II! Width 70x70mm+, LW14am,
Extended titanium plate with SW7 mm and aperture ratio of 52%.

陰極導電性基体として同形状のエキスバンドステンレス
板を使用し、陽極マイクロメツシュl−に実施例1と同
様にしてPt:Irの重量比が7=3の陽極活物質層を
形成し、陽極導電性基体に点溶接して陽極体を作製した
An expanded stainless steel plate of the same shape was used as the cathode conductive substrate, and an anode active material layer with a Pt:Ir weight ratio of 7=3 was formed on the anode micromesh l- in the same manner as in Example 1. An anode body was fabricated by spot welding to a conductive substrate.

一方陰極マイクロメッシュはそのまま陰極導電性基体に
点溶接して陰極体を作製した。次に隔膜として実施例1
と同じ陽イオン交換膜を使用し陽極−交換m間は0.5
mm、陰極−交換膜間は0.5III11として電解槽
に組込んだ。電解条件は実施例1と同様にして飽和食塩
水の電解を100日間連続して行ったところ電流効率お
よび摺電圧は初期においてそれぞれ91〜92%、3.
2〜3.3V 、  100日後においてそれぞれ90
〜92%、3.2〜3.3Vであった。
On the other hand, the cathode micromesh was spot-welded to the cathode conductive substrate as it was to prepare a cathode body. Next, as a diaphragm, Example 1
Using the same cation exchange membrane, the distance between the anode and the exchange m is 0.5.
mm, and the distance between the cathode and the exchange membrane was set to 0.5III11 and incorporated into the electrolytic cell. The electrolysis conditions were the same as in Example 1, and when electrolysis of saturated saline solution was performed continuously for 100 days, the current efficiency and sliding voltage were 91 to 92%, respectively, at the initial stage.
2-3.3V, 90 respectively after 100 days
~92%, 3.2-3.3V.

比較例2 13一 実施例1の陽極側および陰極側のマイクロメツシュを使
用せず、その代り同じ陽極導電性基体上に上記と同方法
でpt:rrの重量比7:3の陽極活物質層を設けて陽
極とし、また同じ形状の陰極導電性基体をニッケル板で
作成して陰極とした以外は実施例2と全く同条件で飽和
食塩水の電解を100日間連続して行った。電流効率お
よび摺電圧は初期においてそれぞれそれぞれ90〜91
%、3.4〜3.5V 。
Comparative Example 2 13 - The micromesh on the anode side and the cathode side of Example 1 was not used, but instead an anode active material with a pt:rr weight ratio of 7:3 was deposited on the same anode conductive substrate in the same manner as above. Electrolysis of saturated saline solution was carried out continuously for 100 days under exactly the same conditions as in Example 2, except that a layer was provided to serve as an anode, and a cathode conductive substrate of the same shape was made of a nickel plate to serve as a cathode. The current efficiency and sliding voltage are each 90 to 91 at the initial stage.
%, 3.4-3.5V.

100日後においてそれぞれ84〜87%、3.6〜3
.8vであった。
84-87% and 3.6-3 after 100 days, respectively.
.. It was 8v.

実施例3 陽極マイクロメツシュとして10メッシコ、IIIO2
!lvm、開ロ比64%、縦横長さyox 70111
111のタンタル金網、陰極マイクロメツシュとして同
形状のニッケル金網、また陽極導電性基体として縦横長
さ70x 70mm、厚さ1.5u+、 L W14m
s、 SW7 mm+のエキスバンドチタン板、陰極導
電性基体として同形状の鋼板を使用し、陽極マイクロメ
ツシュ上にRu:Tiの重は14− 比が3ニアとなる量の塩化ルテニウム1.ブチルチタネ
ートを含有する塩酸アルコール溶液をへケで塗布し乾燥
倹約450℃で加熱焼結しこの操作を繰り返して厚さ約
2μの陽極活物質層を形成し陽極導電性基体上に点溶接
して陽極体を作製した。一方陰極マイク0メッシコおよ
び陰極導電性基体には常法によりニッケル黒メッキを施
して点溶接し、陰極体を作製した。隔膜としては実施例
1と同じ陽イオン交換膜を使用し、陽極−交換ramは
約1.2−一、陰極−交換股間は0.5mmとして電解
槽に組み込んだ。これを用いて陽極室には飽和塩化カリ
水溶液、陰極室に20%KOH水溶液になるように水を
供給し、槽温度80℃、電流密度20A / d+++
”にて300日間連続運転を行った結果、電流効率およ
び摺電圧は初期においてそれぞれ95〜96%、3.4
〜3.5V 、  300日後においてそれぞれ92〜
94%、3.5〜4.6vであった。
Example 3 10 mesh as anode micromesh, IIIO2
! lvm, aperture ratio 64%, length and width yox 70111
111 tantalum wire mesh, a nickel wire mesh of the same shape as the cathode micromesh, and a nickel wire mesh of the same shape as the anode conductive substrate, length and width 70 x 70 mm, thickness 1.5 u +, L W 14 m
s, an expanded titanium plate with SW7 mm+, a steel plate of the same shape as the cathode conductive substrate, and ruthenium chloride in an amount such that the weight of Ru:Ti is 14- and the ratio is 3-nea on the anode micromesh. A hydrochloric acid-alcohol solution containing butyl titanate was applied with a spatula, dried, and heated and sintered at about 450°C. This operation was repeated to form an anode active material layer with a thickness of about 2μ, and spot welded onto the anode conductive substrate. An anode body was produced. On the other hand, the cathode microphone 0meshco and the cathode conductive substrate were plated with nickel black by a conventional method and spot welded to produce a cathode body. The same cation exchange membrane as in Example 1 was used as the diaphragm, and the anode-exchange ram was approximately 1.2 mm and the cathode-exchange ram was 0.5 mm, and the membrane was incorporated into the electrolytic cell. Using this, water was supplied so that the anode chamber was a saturated potassium chloride aqueous solution and the cathode chamber was a 20% KOH aqueous solution, the bath temperature was 80°C, and the current density was 20A/d+++.
As a result of continuous operation for 300 days, the current efficiency and sliding voltage were 95-96% and 3.4% at the initial stage, respectively.
~3.5V, 92~ after 300 days, respectively
94%, 3.5-4.6v.

比較例3−1 陽極−交換股間の距離を3IIl−とした以外は全〈実
施例3と同−分装置1条件にて飽和塩化カリ水溶液の電
解を行ったところ電流効率および摺電圧は初期において
それぞれ95〜96%。
Comparative Example 3-1 Electrolysis of a saturated potassium chloride aqueous solution was carried out under the same conditions as in Example 3 except that the distance between the anode and the exchange gap was 3IIl-, and the current efficiency and sliding voltage were as follows at the initial stage. 95-96% respectively.

3.7〜3.8V、  300日後ニオイテそれぞれ9
3〜94%、3.8〜3.9vであった。
3.7~3.8V, 9 each after 300 days
It was 3-94% and 3.8-3.9v.

比較例3−2 実吟例3の陽極側および陰極側のマイクロメツシュを使
用せず、その代り同じ陽極導電性基体上に上記と同じ方
法でRurTiの重量比が3ニアの陽極活物質層を設け
て陽極とし、また同じ陰極導電性基体上にニッケル黒メ
ッキを施しで陰極とした。
Comparative Example 3-2 The micromesh on the anode side and the cathode side of Practical Example 3 was not used, but instead an anode active material layer with a RurTi weight ratio of 3 was formed on the same anode conductive substrate in the same manner as above. was provided as an anode, and nickel black plating was applied on the same cathode conductive substrate to serve as a cathode.

それ以上は実施例3と全く同条件で飽和塩化カリ水溶液
の電解を100日間行ったところ、電流効率および摺電
圧は初期においてそれぞれ93〜95%、3.7〜3,
9V 、  100日後においてそれぞれ88〜91%
、4.0〜4.1vであった。
After that, electrolysis of a saturated potassium chloride aqueous solution was carried out for 100 days under exactly the same conditions as in Example 3, and the current efficiency and sliding voltage were 93-95% and 3.7-3, respectively at the initial stage.
9V, 88-91% after 100 days, respectively
, 4.0 to 4.1v.

実施例4 陽極マイクロメツシュとして厚さ0.1mm、縦II長
さ70x 70mm、 1つの孔径1.5mm、 y@
口比51%のニオビウム製パンチングメタル板、陰極マ
イクロメツシュとして同形状のニッケル製パンチングメ
タル板をそれぞれ2枚づつ使用し、陽極導電性基体とし
て厚さ1.Fvw+、縦横長さ70x70mo+、 L
W14mm、 5W7111111のエキスバンドチタ
ン板、陰極導電性基体として同形状のエキスバンドステ
ンレス鋼板を使用した。陽極マイクロメツシュには実施
例1と同様の方法でpt:lrの重量比が7:3の陽極
活物質層を形成し2枚重ねこれをさらに導電性陽極基体
上にそれぞれ点溶接して陽極体を作製した。また陰極マ
イクロメツシュにも同じ方法で白金、イリジウムの陰極
活物質層を形成し2枚重ねて点溶接し、陰極導電性基体
上には常法によりニッケル黒をメッキし、上記陰極マイ
クロメツシュを点溶接して陰極体を作製した。
Example 4 As an anode micromesh, thickness is 0.1 mm, vertical II length is 70 x 70 mm, one hole diameter is 1.5 mm, y@
Two niobium punched metal plates with an opening ratio of 51%, two nickel punched metal plates of the same shape as the cathode micromesh, and a 1mm thick nickel metal plate as the anode conductive substrate. Fvw+, length and width 70x70mo+, L
An expanded titanium plate with a width of 14 mm and a size of 5W7111111 was used, and an expanded stainless steel plate with the same shape was used as the cathode conductive substrate. An anode active material layer with a weight ratio of pt:lr of 7:3 was formed on the anode micromesh in the same manner as in Example 1, and two layers were stacked and each layer was spot welded onto a conductive anode substrate to form an anode. The body was created. In addition, a cathode active material layer of platinum and iridium is formed on the cathode micromesh using the same method, two layers are stacked and spot welded, and the cathode conductive substrate is plated with nickel black using a conventional method. A cathode body was fabricated by spot welding.

隔膜としては実施例1と同じ陽イオン交換膜を使用し陽
極−交換股間は11111.陰極−交換17− 喚問は0.5!1I11として電解槽に組み込んだ。電
解条件は実施例1と同様にして飽和食塩水の電解を10
0日間行ったところ電流効率および摺電圧は初期におい
てそれぞれ91〜92%。
The same cation exchange membrane as in Example 1 was used as the diaphragm, and the anode-exchange crotch was 11111. Cathode Replacement 17 - The electrode was installed in the electrolytic cell as 0.5!1I11. The electrolysis conditions were the same as in Example 1, and the electrolysis of saturated saline was carried out for 10 minutes.
When tested for 0 days, the current efficiency and sliding voltage were each 91-92% at the initial stage.

3.0〜3.1V、  100日後においてそれぞれ9
0〜92%、3.0〜3.2vであった。
3.0-3.1V, 9 each after 100 days
It was 0-92% and 3.0-3.2v.

比較例4 実施例4の陽極側および陰極側のマイクロメツシュを使
用せず同じ陽極導電性基体上に上記と同じ方法でpt 
:」−rの重量比γ: 3の陽極活物質層を設けて陽極
とし、また同じ形状の陰極導電性基体をニッケル板で作
製し、その表面に同じ比率の白金イリジウムの陰極活物
質層を形成して陰極とした。それ以外は実施例4と全く
同条件で飽和食塩水の電解を100日間行ったところ電
流効率および摺電圧は初期においてそれぞれ90〜91
%、3.2〜3.3Vであり、100日後においてそれ
ぞれ85〜87%、3.3〜3.5Vであった。
Comparative Example 4 PT was applied on the same anode conductive substrate in the same manner as above without using the micromesh on the anode side and cathode side of Example 4.
A cathode active material layer with a weight ratio of γ: 3 is provided as an anode, and a cathode conductive substrate of the same shape is made of a nickel plate, and a cathode active material layer of platinum iridium with the same ratio is formed on its surface. It was formed into a cathode. When saturated saline solution was electrolyzed for 100 days under the same conditions as in Example 4, the current efficiency and sliding voltage were 90 to 91, respectively, at the initial stage.
%, 3.2-3.3V, and 85-87% and 3.3-3.5V after 100 days, respectively.

以上実施例、比較例に示すように本発明方法18− によれば槽温約り0℃、電流密度20A / da2で
横電圧3.0〜3.3V 、電流効率90〜92%(ソ
ーダ塩電解)、摺電圧3.4〜3.6V 、電流効率9
2〜96%(カリ電解)、従来法に比べ電圧面で約0.
2〜0.5vの降下、電流効率面で約2〜4%の上昇が
認められ、特に長期間運転後においてその効果が顕著で
ある。
As shown in the Examples and Comparative Examples above, according to method 18- of the present invention, the bath temperature was about 0°C, the current density was 20 A/da2, the transverse voltage was 3.0 to 3.3 V, and the current efficiency was 90 to 92% (soda salt electrolysis), sliding voltage 3.4 to 3.6V, current efficiency 9
2 to 96% (potash electrolysis), about 0.0% in terms of voltage compared to the conventional method.
A drop of 2 to 0.5V and an increase of about 2 to 4% in current efficiency were observed, and the effect is particularly noticeable after long-term operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は隔膜として陽イオン交換膜を使用した
従来の塩化アルカリ電解槽の説明図、第3図、第4図は
隔膜として陽イオン交換膜を使用した本発明法に使用さ
れる塩化アルカリ電解槽の説明図である。第5図は陽極
体として使用されるエキスバンドメタルの一部見取図で
ある。 (1)・・・陽極、(2)・・・陰極、(3)・・・隔
膜(4)・・・電流流路、(5)・・・ガス透過性導電
性陽極基体、(6)・・・陽極活物質被着■。 (7)・・・マイクロメツシュ状陽極 19−
Figures 1 and 2 are explanatory diagrams of a conventional alkali chloride electrolyzer using a cation exchange membrane as a diaphragm, and Figures 3 and 4 are illustrations of a conventional alkali chloride electrolyzer using a cation exchange membrane as a diaphragm. FIG. 2 is an explanatory diagram of an alkali chloride electrolytic cell. FIG. 5 is a partial sketch of an expanded metal used as an anode body. (1)...anode, (2)...cathode, (3)...diaphragm (4)...current flow path, (5)...gas permeable conductive anode substrate, (6)... ...Adhesion of anode active material■. (7)...Micromesh-like anode 19-

Claims (3)

【特許請求の範囲】[Claims] (1)隔膜とその両側に陽極体および陰極体を設け、上
記陽極体は陽極活物質被着層を有し、 3゜Dつ1つの
孔面積が10IllIB2以下、開孔比が20〜85%
である微細多孔性のエキスバンドメタル、パンチングメ
タル、金網を1枚または複数枚、ガス透過性導電性陽極
基体上に取り付けてなり、↓配陽極活物質被着層と隔膜
との距離を21Il以下に保った電解槽を使用して塩化
アルカリ水溶液を電解することを特徴とする隔膜式電解
方法。
(1) A diaphragm and an anode body and a cathode body are provided on both sides thereof, and the anode body has an anode active material coating layer, each pore area of 3°D is 10IllIB2 or less, and the pore opening ratio is 20 to 85%.
One or more sheets of microporous expanded metal, punched metal, or wire mesh are attached on a gas-permeable conductive anode substrate, and the distance between the anode active material coating layer and the diaphragm is 21 Il or less. A diaphragm electrolysis method characterized by electrolyzing an aqueous alkali chloride solution using an electrolytic tank maintained at
(2)微細多孔性のエキスバンドメタルの目の横の良さ
くLW)  0.8〜6 arm、目の縦の長さく5W
)0.4〜31I1m、厚さ0.1〜111111であ
る特許請求の範囲第1項記載の電解方法。
(2) Microporous expanded metal width LW) 0.8 to 6 arms, vertical length 5W
) 0.4 to 31 I1 m and a thickness of 0.1 to 111111 m, the electrolysis method according to claim 1.
(3)陰極体が陰極活物買被@層を有し、もしくは有し
ない、且つ1つの孔面積が10mm2以下。 開孔比が20〜85%である微細多孔性のエキスバンド
メタル、パンチングメタル、金網を1枚または複数枚、
ガス透過性導電性陰極基体上に取りつけてなる特許請求
の範囲第1項もしくは第2項記載の電解方法。
(3) The cathode body has or does not have a cathode active material layer, and the area of one hole is 10 mm2 or less. One or more pieces of microporous expanded metal, punched metal, or wire mesh with an open area ratio of 20 to 85%,
The electrolytic method according to claim 1 or 2, wherein the electrolytic method is mounted on a gas-permeable conductive cathode substrate.
JP56189754A 1981-11-25 1981-11-25 Diaphragm type electrolyzing method Pending JPS5891178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56189754A JPS5891178A (en) 1981-11-25 1981-11-25 Diaphragm type electrolyzing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56189754A JPS5891178A (en) 1981-11-25 1981-11-25 Diaphragm type electrolyzing method

Publications (1)

Publication Number Publication Date
JPS5891178A true JPS5891178A (en) 1983-05-31

Family

ID=16246615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56189754A Pending JPS5891178A (en) 1981-11-25 1981-11-25 Diaphragm type electrolyzing method

Country Status (1)

Country Link
JP (1) JPS5891178A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170926A (en) * 2004-12-20 2006-06-29 Furuno Electric Co Ltd Underwater detector
WO2015146944A1 (en) * 2014-03-28 2015-10-01 国立大学法人横浜国立大学 Device for manufacturing organic hydride

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719387A (en) * 1980-07-11 1982-02-01 Asahi Glass Co Ltd Electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719387A (en) * 1980-07-11 1982-02-01 Asahi Glass Co Ltd Electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170926A (en) * 2004-12-20 2006-06-29 Furuno Electric Co Ltd Underwater detector
WO2015146944A1 (en) * 2014-03-28 2015-10-01 国立大学法人横浜国立大学 Device for manufacturing organic hydride
CN106133199A (en) * 2014-03-28 2016-11-16 国立大学法人横浜国立大学 Organic hydride material producing device
KR20170012199A (en) * 2014-03-28 2017-02-02 내셔널 유니버서티 코포레이션 요코하마 내셔널 유니버서티 Device for producing organic hydride
JPWO2015146944A1 (en) * 2014-03-28 2017-04-13 国立大学法人横浜国立大学 Organic hydride production equipment
US10202698B2 (en) 2014-03-28 2019-02-12 Yokohama National University Device for manufacturing organic hydride

Similar Documents

Publication Publication Date Title
US5082543A (en) Filter press electrolysis cell
CN111433391B (en) Membrane-electrode-gasket composite for alkaline water electrolysis
EP0031660A1 (en) Electrolysis apparatus using a diaphragm of a solid polymer electrolyte, and a method for the production of the same
EP3234226B1 (en) Method for manufacturing 2,3-butanediol
JP5178959B2 (en) Oxygen gas diffusion cathode, electrolytic cell using the same, chlorine gas production method, and sodium hydroxide production method
JPH0581677B2 (en)
US7001494B2 (en) Electrolytic cell and electrodes for use in electrochemical processes
JPS607710B2 (en) Electrolysis method of alkali metal chloride using diaphragm electrolyzer
JP3080971B2 (en) Electrode structure for ozone production and method for producing the same
JP2641584B2 (en) Anode with dimensional stability
AU2009299918B2 (en) Cathode member and bipolar plate for hypochlorite cells
JPS63140093A (en) Electrode structure for gas forming electrolytic cell
US3945907A (en) Electrolytic cell having rhenium coated cathodes
JPS5891178A (en) Diaphragm type electrolyzing method
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
JPS5848686A (en) Cation exchange membrane for electrolyzing aqueous solution of alkali chloride
US20150017554A1 (en) Process for producing transport and storage-stable oxygen-consuming electrode
RU2562457C1 (en) Method of making electrode-diaphragm unit for alkaline water electrolysis cell
US6165333A (en) Cathode assembly and method of reactivation
JPH04131392A (en) Electrode for electrochemical use
JP3167054B2 (en) Electrolytic cell
JP3008953B2 (en) Ion-exchange membrane electrolytic cell
JP3212318B2 (en) Monopolar ion exchange membrane electrolytic cell
KR850001799B1 (en) Electrolysis apparatus using a diaphragm of a solid polymer electrolyte
JPS586983A (en) Electrolytic cell