JPS586983A - Electrolytic cell - Google Patents

Electrolytic cell

Info

Publication number
JPS586983A
JPS586983A JP56105009A JP10500981A JPS586983A JP S586983 A JPS586983 A JP S586983A JP 56105009 A JP56105009 A JP 56105009A JP 10500981 A JP10500981 A JP 10500981A JP S586983 A JPS586983 A JP S586983A
Authority
JP
Japan
Prior art keywords
iron
cathode
chamber
nickel
nickel plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56105009A
Other languages
Japanese (ja)
Inventor
Masatoshi Sugimori
正敏 杉森
Kazutaka Sakiyama
崎山 和孝
Junji Koshiba
小柴 淳治
Takashi Mori
隆 毛利
Setsuo Yoshida
節夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP56105009A priority Critical patent/JPS586983A/en
Publication of JPS586983A publication Critical patent/JPS586983A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the elution of iron to caustic alkali by subjecting all of the inside surfaces of cathode chambers constituted of cathodes applied with metallic coatings having low hydrogen overvoltage and iron frames of cathode chambers and the surfaces of the other members in the cathode chamber nickel plating. CONSTITUTION:In the stage of segmenting an electrolytic cell to anode chambers and cathode chambers by the use of diaphragms and electrolyzing alkali chloride, the cathodes made by applying metallic coatings having low hydrogen overvoltage on the surfaces of iron or ferrous metallic base bodies are mounted in the cathode chambers constituted of iron or ferrous metallic cathode frames. The low hydrogen overvoltage coatings are formed by using an active nickel plating bath dissolved with, for example, nickel rhodanide. Nickel plating or electroless plating is applied on all of the inside surfaces of the cathode chambers constituted of such cathodes and cathode chamber frames and the surfaces of the other inside members of the cathode chambers. These are plated to about 5-35mu thick. It is possible to produce caustic alkali at less electric power consumption from aq. alkali chloride soln. stably for a long period of time.

Description

【発明の詳細な説明】 電解におーて鉄の溶出が全くなく、長期IMJ安定して
、かつ少なi消費電力にて苛性アルカリを製造するに適
し良新規な電解槽に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel electrolytic cell suitable for producing caustic alkali with no iron elution during electrolysis, stable IMJ over a long period of time, and low power consumption.

陽イオン交換膜を隔膜として食塩水溶液の電解を行なり
、塩素および苛性ソーダを製造すゐ方法は公知である.
ζO陽イオ/交換膜を用いる電解方法は、陰極で生成す
る苛性ソーダ中に混入する食塩の量が極めて少なく、又
、水銀法やアスベスト法などに比較して公害問題もなく
、近年罠なって特に注目されてきた。
A method for producing chlorine and caustic soda by electrolyzing a saline solution using a cation exchange membrane as a diaphragm is known.
The electrolysis method using a ζO cation/exchange membrane has an extremely small amount of salt mixed into the caustic soda produced at the cathode, and there is no pollution problem compared to the mercury method or asbestos method, and it has become particularly popular in recent years. It has been attracting attention.

陰極室で得られる苛性ソーダの濃度及び電流効率を高く
するべく、陽イオン交換膜の開発、改良がなされ、最近
では2 0 wt%の苛性ソーダが90一以上の高ht
a効率で得ることができるパー70口カーボン重合体を
基材とした陽イオン交換膜が開発され、一部では商業化
なされようとしている。一方、近年エネルギー節約の重
要性が世界的KWl*されつりあシ、この見地からこの
分野におiては電解電力を極力少なくすること、即ち、
電槽電圧を極力低下させることが強く望まれてiる。
In order to increase the concentration and current efficiency of caustic soda obtained in the cathode chamber, cation exchange membranes have been developed and improved.
Cation exchange membranes based on par-70 carbon polymers that can be obtained with a high efficiency have been developed, and some are about to be commercialized. On the other hand, in recent years, the importance of energy conservation has become a global concern, and from this perspective, it is important to reduce electrolytic power as much as possible in this field.
It is strongly desired to reduce the battery voltage as much as possible.

これまで電槽電圧を低下させる目的で、発生するガスを
電極背後に抜は易くするために、エキスバンドメタル、
パンチメタル、金網状などの多孔性電極の使用、これら
の電極自体の組成や極間距離をコントロールしたシ、あ
るいは陽イオン交換膜の組成、交換基の種類を特定化す
る等の手段が提案されている。この内特に隔膜を用iた
水素発生反応を陰極主反応とする塩化アルカリ水溶液0
電解においては、主に前述の形状の鉄陰極がコスト的に
安価であり、かつ、かなり低い水素過電圧を示すという
理由で使用されている。しかし前述したよう罠特に陽イ
オン交換膜性食塩電解技術の発展と共K、省エネルギー
の面から電力消費の一層の低下が望まれ、%開昭55−
92295号。
Up until now, for the purpose of lowering the battery cell voltage, expanded metal,
Measures have been proposed, such as using porous electrodes such as punch metal or wire mesh, controlling the composition of these electrodes themselves and the distance between them, or specifying the composition of the cation exchange membrane and the type of exchange group. ing. Of these, an aqueous alkali chloride solution in which the main reaction is a hydrogen generation reaction using a diaphragm at the cathode.
In electrolysis, iron cathodes of the above-mentioned shape are used mainly because they are inexpensive and exhibit a fairly low hydrogen overvoltage. However, as mentioned above, with the development of cation-exchange membrane salt electrolysis technology, further reductions in power consumption are desired from the perspective of energy conservation.
No. 92295.

゛  特開昭56−62148号等に見られるように鉄
よシも低い水素過電圧を有する陰極の開発が穐々なされ
ている。これらの低水素過電圧を有する金属被覆を施し
てなる陰極自体、それなシに当初の目的は達成し得るも
のの、新たに下記の重大な問題点を含んでいることが明
らかKなっ友。
゛ As seen in Japanese Unexamined Patent Publication No. 56-62148, efforts are being made to develop cathodes that have a hydrogen overvoltage that is lower than that of iron. Although these metal-coated cathodes with a low hydrogen overvoltage can achieve their original purpose, it is clear that they include the following serious problems.

即ち、これまでの鉄陰極に代えて鉄または鉄系金属から
なる基材表面に低水素過電圧を有する金属被覆を施して
なる一極を用いた場合は、鉄の溶出量が短期間に′極端
に#′加する現象嬢認められるのである。この現象社史
に高温、高アルカリ濃度指向という厳しい電解条件下に
おいては、一層顕著になるという傾向を示す。
In other words, when a single electrode made of iron or an iron-based metal with a metal coating having a low hydrogen overvoltage applied to the surface of the base material is used instead of the conventional iron cathode, the amount of iron leached becomes extremely large in a short period of time. A phenomenon that adds to #' is recognized. This phenomenon tends to become more pronounced under severe electrolytic conditions such as high temperature and high alkali concentration.

この鉄の溶出は、取得苛性アルカリの品質悪化。This leaching of iron deteriorates the quality of the obtained caustic.

陽イオン交換膜等の隔膜の性能劣化を来たすばかシでな
く、鉄または鉄系金属で構成されfCC他極室内面腐食
へと発展し、ひいては電解槽自体のライフの短縮という
深刻な問題を引き起こす。この鉄の溶出を防止する手段
として、対アルカリ耐食性を有するニッケル等の金属に
て陰極室を構成することか考えられる。しかしながら、
陰極室の構成金属の全てに対アルカリ土類金属を用いる
ことは高価となり、実用的ではないので、列置採用する
ことは不可能である。更に、この場合は陰極     
 1・1.1基材も対アルカリ耐食性の金属を用iなけ
ればならないのである。なぜならば、鉄または鉄系金属
の基体にニッケル等の低め水素過電圧を有する被覆をメ
ッキ法等により施こした一極を用い几場合は、該電極を
陰極室に溶接等の方法により取付ける際、−かに注意深
く行なっても被膜に損傷を来たして鉄の素地が露出し、
この露出部からの鉄の溶出が進行するからである。他の
手段としてプラスチック製の電″解槽を採用することが
考えられる。
Not only does it cause performance deterioration of diaphragms such as cation exchange membranes, but it also causes corrosion of the inside of the fCC electrode, which is composed of iron or iron-based metals, and causes serious problems such as shortening the life of the electrolytic cell itself. . As a means to prevent this elution of iron, it is conceivable to construct the cathode chamber with a metal such as nickel that has corrosion resistance against alkali. however,
It is expensive and impractical to use anti-alkaline earth metals for all of the metals constituting the cathode chamber, so it is impossible to employ them in parallel. Furthermore, in this case the cathode
1.1.1 The base material must also be made of a metal that is resistant to alkali corrosion. This is because when using a single electrode made of iron or iron-based metal with a coating such as nickel that has a low hydrogen overvoltage applied by plating, etc., when attaching the electrode to the cathode chamber by a method such as welding, - Even if done carefully, the coating will be damaged and the iron substrate will be exposed.
This is because the elution of iron from this exposed portion progresses. Another possibility is to use a plastic electrolytic cell.

しかしこれは、加工及び強度の点で問題があると共に5
仮に採用できたとしても鉄の溶出防止の抜本的な手段と
はなシ得ないのである。
However, this has problems in terms of processing and strength, and
Even if it could be adopted, it would not be a fundamental means of preventing iron elution.

本発明者らは、これらの問題点を一挙に解決すべく種々
検討の結果、これまで使用していた鉄または鉄系金属で
構成された鉄陰極、陰極室枠がそのまま使用可能で、い
かなる複雑な電解槽構造であっても鉄の溶出を防ぎ、し
かも長期間安定してかつ少ない消費電力にて苛性アルカ
リを製造しうる電解槽を完成したのである。
As a result of various studies to solve these problems all at once, the inventors of the present invention have found that the iron cathode and cathode chamber frame made of iron or iron-based metals that have been used up to now can be used as they are, and that any complicated They have completed an electrolytic cell that can prevent iron from leaching out even with a simple electrolytic cell structure, and can produce caustic alkali stably over a long period of time with low power consumption.

即ち、本発明は、隔膜を用い、陽極室と陰極室とを区割
し、陽極室に塩化アルカリ水溶液を供給して、陽極室よ
り塩素、陽極室より水素並びに苛性アルカリを取得する
に用いる電解槽において、鉄または鉄系金属からなる基
体表面に低水素過電圧を有する金属被覆を施してなる電
極を、鉄または鉄系金属製の一極室枠よ)構成され九陰
極室に取付けた後、該電極、該陰極室粋の陰極室内面及
びその他の陰極室内部材表面の全てをニッケルメッキも
しく嬬無電解ニッケルメッキしてなる電解槽にある。
That is, the present invention uses a diaphragm to separate an anode chamber and a cathode chamber, supplies an aqueous alkali chloride solution to the anode chamber, and performs electrolysis to obtain chlorine from the anode chamber and hydrogen and caustic alkali from the anode chamber. In the tank, an electrode made of a metal coating having a low hydrogen overvoltage on the surface of a substrate made of iron or iron-based metal is attached to a nine-cathode chamber made of iron or iron-based metal (one-electrode chamber frame), and then The electrode, the inner surface of the cathode chamber, and the surfaces of other cathode chamber members are all plated with nickel or electroless nickel in an electrolytic cell.

本発明におiて、鉄または鹸系金属基体表面に低水素過
電圧を有する被覆を施す方法としては公知の方法を適宜
採用すればよく、特に限定されるものではない。含硫黄
化合物、例えばロダンニッケルを溶解した活性ニッケル
メッキ浴を用いて活性ニッケルメッキを行なう方法、ニ
ッケル、コバルト、白金等の金属粉末を溶射する方法、
あるいはこれらの金属粉末を含有する液を塗布後、加熱
焼結して被覆する方法を挙げることができる。
In the present invention, a known method may be suitably employed as a method for coating the surface of an iron or sapon-based metal substrate with a low hydrogen overvoltage, and is not particularly limited. A method of performing active nickel plating using an active nickel plating bath in which a sulfur-containing compound such as rhodan nickel is dissolved, a method of thermal spraying metal powder such as nickel, cobalt, platinum, etc.
Alternatively, a method may be used in which a liquid containing these metal powders is applied and then heated and sintered to cover the surface.

そして特に効果的な方法は、ニッケル塩α05〜(19
モル濃度のチオシアン基及びチオシアン基濃度の少なく
ともt1倍モル濃度のアンモニウムイオン含む活性ニッ
ケルメッキ浴を用iて活性ニッケルメッキを施す方法、
及びニッケル塩、化合物中の硫黄量でα01モル〜tO
モル濃to範囲のチオ尿素及び/又ね硫黄の酸化数が5
以下のオキソ酸塩の少なくとも一極、上記硫黄化合物中
の硫黄濃度に対し少なくとも(15倍モル濃度以上のア
ンモニウムイーオンを含む活性ニッケルメッキ浴を用i
、活性ニッケルメッキを行ない、次いで50〜500℃
で熱処理を施す方法である。
A particularly effective method is nickel salt α05~(19
A method of performing active nickel plating using an active nickel plating bath containing a molar concentration of thiocyanate groups and ammonium ions at a molar concentration at least t1 times the thiocyanate group concentration;
and nickel salt, the amount of sulfur in the compound is α01 mol ~ tO
The oxidation number of thiourea and/or sulfur in the molar concentration range is 5.
At least one of the following oxoacid salts is used in an active nickel plating bath containing ammonium ions at a molar concentration of at least 15 times the sulfur concentration in the sulfur compound.
, activated nickel plating, then 50-500℃
This method involves heat treatment.

そして本発明において特異的なことは、このような方法
によって低水素過電圧を有する金−被覆を施し九陰極に
1更にニッケルメッキもしくは無電解ニッケルメッキを
施しても水素過電圧の上昇がほとんど起こらないとiう
こと、更に加えて被膜の耐久性が飛躍的に向上するとい
う驚くべき事実である。
What is unique about the present invention is that even if a gold coating with a low hydrogen overvoltage is applied by such a method and further nickel plating or electroless nickel plating is applied to the nine cathodes, the hydrogen overvoltage hardly increases. Another surprising fact is that the durability of the film is dramatically improved.

低水素過電圧を有する金属被覆を施した陰極を陰極室に
取付けた後、該一極、鉄または鉄系金属製の陰極室枠よ
シ構成された陽極室内面及びその他の陰極室内部材表面
の全てにニッケルメッキもしくは無電解ニッケルメッキ
いずれを施してもよiが、全面に均一にメッキし得る点
で無電解ニッケルメッキ法が好ましい。そしてメッキの
厚さは任意に選択し得るが、薄すぎると鉄の溶出を防止
する効果が小さくなシ、また厚すぎるとコストが高くな
ると共に、活性被覆陰極の水素過電圧の度合いが大きく
なるので、5〜35Pが適当である。
After installing a metal-coated cathode with a low hydrogen overvoltage in the cathode chamber, the inside surface of the anode chamber composed of the cathode chamber frame made of iron or iron-based metal, and all other surfaces of the cathode chamber members are removed. Either nickel plating or electroless nickel plating may be applied to the surface, but electroless nickel plating is preferable because it allows uniform plating over the entire surface. The thickness of the plating can be selected arbitrarily, but if it is too thin, the effect of preventing iron elution will be small, and if it is too thick, the cost will increase and the degree of hydrogen overvoltage of the active coated cathode will increase. , 5-35P is suitable.

ここでいうその他の陰極室内部材とは、導電棒8集電体
、溶接部など陰極室内に存在する部材を意味する。そし
て鉄系金属でなくニッケル等の対アルカリ土類金属を用
いた部材は、可能であればニッケルメッキもしくは無電
解ニッケルメッキをする必要性はないことは勿論である
The other cathode chamber members herein refer to members present in the cathode chamber, such as the conductive rod 8 current collector and the welded portion. It goes without saying that members using anti-alkaline earth metals such as nickel instead of iron-based metals do not need to be plated with nickel or electroless nickel if possible.

ニッケルメッキ浴の組成は、以下のようなものである。The composition of the nickel plating bath is as follows.

ニッケル塩は可溶性の塩であればよく、通常、硫酸ニッ
ケル、塩化ニッケル、硫酸ニッケルアンモニクム、スル
ファミノ酸ニッケル等任意の水S性ニッケル塩の一種以
上が用いられる。
The nickel salt may be any soluble salt, and usually one or more of any aqueous nickel salts such as nickel sulfate, nickel chloride, nickel ammonium sulfate, and nickel sulfaminate are used.

ニッケル塩の濃度は特に制限を受けな−が、通常(11
モル濃度から2−0モル濃度の範囲で用いられる。
The concentration of nickel salt is not particularly limited, but is usually (11
It is used in a range of molar to 2-0 molar.

本発明は極めて簡便な方法により、これまで採用して−
る鉄系金属製の電解槽を何んち変更なくして、高温、高
アルカリ濃度とφう厳しい条件下にお−て本水素過電圧
の上昇なく、シかも苛性アルカリ中への鉄の溶出を来た
すことなくして長期間安定した極めて少ない消費電力で
苛性アルカリを製造する有効な電解槽である。殊に活性
被覆陰極を採用する場合は、極めて実用的かつ有効な電
解槽となる。
The present invention uses an extremely simple method that has not been adopted until now.
Without making any changes to the electrolytic cell made of iron-based metal, it is possible to elute iron into caustic alkali without increasing the hydrogen overvoltage under severe conditions of high temperature and high alkali concentration. This is an effective electrolytic cell that can produce caustic alkali with extremely low power consumption and is stable for a long period of time. In particular, when an active coated cathode is employed, the electrolytic cell becomes extremely practical and effective.

以下、実施例を示すが氷見F!j4Viこれらに限定適
れるものではない。
Examples are shown below, but Himi F! j4Vi is not limited to these.

実施例1及び比較例1〜2 軟鋼製エキスバンドメタルの表面に、塩化ニッケルα5
七ル/l、塩゛化アンモニウムtOモル/j。
Example 1 and Comparative Examples 1 and 2 Nickel chloride α5 was applied to the surface of expanded metal made of mild steel.
7 mol/l, ammonium chloride tO mol/j.

チオ尿素α5 ek/lを溶解した浴を用い、攪拌しな
がら50℃でa 5 A/lk?の電流密度で4時間活
性ニッケルメッキを行なった。これを−極として導電棒
を有する龜極室O#c導電棒に溶接によって取付けた。
Using a bath in which thiourea α5 ek/l was dissolved, a 5 A/lk? was heated at 50°C with stirring. Activated nickel plating was carried out for 4 hours at a current density of . This was attached by welding to a conductive rod O#c in the head electrode chamber having a conductive rod as a negative pole.

しかる後に、陰極室の該陰極を含む金属からなる部分K
)bニゼンブルーシェーマー無電解ニッケルメッキ液を
用いてニッケルの無電解メッキを施した。無電解ニッケ
ルメッキの厚さは20声であった。こO陰極室をバーフ
owスルホン酸イオン交換膜を介して、チタンラス上K
fII化ルテニウムをコーティングした陽極を有する陽
極室と組合せて電解槽を構成し、食塩水の電解を行なっ
友。電解条件を第1表に示す。また電槽電圧の経時変化
および苛性ソーダ中の鉄の濃度を第2表に示す、  − 比較例1として、実施例1と同様にして表面を活性化し
た一極を同様にして陰極室の導電棒に溶接によりて取付
叶、パー70ロスルホン酸イオン交換膜を介して、チタ
ンラス上に酸化ルテニウムをコーティングした陽極を有
する陽極室と組合せて電解槽を構成し、食塩水の電解を
行なった結果を示す。
After that, a portion K of the cathode chamber made of metal containing the cathode is removed.
)b Electroless plating of nickel was performed using Nisenbruschemer electroless nickel plating solution. The thickness of the electroless nickel plating was 20 tones. The cathode chamber is barfed through a sulfonic acid ion exchange membrane onto a titanium glass.
In combination with an anode chamber having an anode coated with ruthenium fII, an electrolytic cell is constructed, and a saline solution can be electrolyzed. The electrolysis conditions are shown in Table 1. Table 2 shows the change in cell voltage over time and the concentration of iron in caustic soda. - As Comparative Example 1, one electrode whose surface was activated in the same manner as in Example 1 was used as a conductive rod in the cathode chamber. The electrolysis cell was constructed by combining the anode chamber with an anode made of titanium lath coated with ruthenium oxide through a par 70 rosulfonic acid ion exchange membrane, which was attached by welding to the membrane. .

また比較ガ2として軟鋼製エキスバンドメタル−曽、− を表面に活性被覆を施さず、そのままkmとして上記2
的と同様に電解を行なった結果を示す。
In addition, as a comparative example 2, a mild steel expanded metal without active coating was applied to the surface, and the above 2.
The results of electrolysis performed in the same manner as above are shown.

第1表 陽極室Na0Hll[32s 温度       80℃ 電流密度     50A/lh! 第2表 実施例1 電槽電圧、CV′)   五55   A50   五
49鉄濃度−)    (Ll    (Ll    
(11比較例1 電槽電圧(V)   A48   !L63   A7
171鉄濃)   8    19   21比較ガ2 電槽電圧(V)   五71   五69   五70
鉄濃度(r19m)    5    6     b
実施例2及び比較例5 軟鋼製エキスバンドメタルにニッケル粉末をプラズマ溶
射して表面を活性化した電極を、導電棒を有する陽極室
の#導電棒に溶接によって取付けた。溶射被膜の厚さは
1(10声であった。しかる後、陽極室の該陽極を含む
金属からなる部分にカニゼンブルーシェーマ−無電解ニ
ッケルメッキ液を用いて無電解ニッケルメッキを施した
。ニッケルメッキの厚さは10声であった。次いで紋成
極室ヲパー70pスルホン酸イオン交換膜を介してチタ
ンラス上に酸化ルテニウムをコーティングした陽極を有
する陽−室と組合せて電解槽を構成し、食塩水の電解を
行なりた。電槽電圧の経時変化および苛性ソーダ中の鉄
の濃度の経時変化を第3表に示す。
1st table anode chamber Na0Hll [32s Temperature 80℃ Current density 50A/lh! Table 2 Example 1 Battery voltage, CV') 555 A50 549 Iron concentration -) (Ll (Ll
(11 Comparative Example 1 Battery voltage (V) A48 !L63 A7
171 Iron concentration) 8 19 21 Comparison Ga 2 Battery voltage (V) 571 569 570
Iron concentration (r19m) 5 6 b
Example 2 and Comparative Example 5 An electrode whose surface was activated by plasma spraying nickel powder onto a mild steel expanded metal was attached by welding to a # conductive rod in an anode chamber having a conductive rod. The thickness of the sprayed coating was 1 (10 tones). Thereafter, electroless nickel plating was applied to the metal part of the anode chamber containing the anode using Kanisenbruschemer electroless nickel plating solution. The thickness of the plating was 10 mm.Next, the plate forming chamber was combined with an anode chamber having an anode made of titanium lath coated with ruthenium oxide through a 70p sulfonic acid ion exchange membrane to form an electrolytic cell. Water was electrolyzed. Table 3 shows changes in cell voltage over time and changes in iron concentration in caustic soda over time.

比較例3として、実施例2と同様圧して表面を活性化し
た陽極を導電棒を有する陰極室の該導電棒に111接に
よって取付け、パー70ロスルホン酸(゛へ”イオン交
換膜を介してチタンラス上に酸化ルテニウムをコーテン
グした陽極を有する陽極室と組合せて電解槽を構成し、
食塩水の電解を行なりた。
As Comparative Example 3, an anode whose surface was activated by applying pressure in the same manner as in Example 2 was attached to a conductive rod in a cathode chamber having a conductive rod using a 111 contact, and a titanium lath was applied to the anode through an ion exchange membrane. An electrolytic cell is configured in combination with an anode chamber having an anode coated with ruthenium oxide on top,
Electrolysis of salt water was performed.

その結果を第3表に示す。The results are shown in Table 3.

実施例2 電槽電圧cf′)45B   A51  151鉄濃度
(2)吟   (Ll    α1   α1比較例5 電槽電圧(至)  五53   五69   五70鉄
濃度$)    10   15   15特許出願人
 東洋曹達工業株式会社
Example 2 Cell voltage cf') 45B A51 151 Iron concentration (2) Gin (Ll α1 α1 Comparative example 5 Cell voltage (To) 553 569 570 Iron concentration $) 10 15 15 Patent applicant Toyo Soda Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)隔膜を用i、陽極室と陽極室とを区割し、陽極室に
塩化アルカリ水溶液を供給して陽極室より塩素、陰極室
iり水素並びに苛性アルカリを製造するに用いる電解槽
に於て、鉄または鉄系金属基体表面に低水素過電圧を有
する金属被覆を施した成極を鉄または鉄系金属製の成極
室枠より構成された陰極室に取付けた後、該論極、該陰
極室枠の成極室内面お゛よびその他の陰極室内部材表面
の全てをニッケルメッキもしくは無電解ニッケルメッキ
してなる電解槽。
1) A diaphragm is used to separate the anode chamber and the anode chamber, and an alkali chloride aqueous solution is supplied to the anode chamber to produce chlorine from the anode chamber, hydrogen and caustic alkali from the cathode chamber. After attaching a polarization made of a metal coating with low hydrogen overvoltage on the surface of an iron or iron-based metal substrate to a cathode chamber composed of a polarization chamber frame made of iron or iron-based metal, An electrolytic cell in which the inner surface of the cathode chamber frame and the surfaces of other interior members of the cathode chamber are all nickel plated or electroless nickel plated.
JP56105009A 1981-07-07 1981-07-07 Electrolytic cell Pending JPS586983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56105009A JPS586983A (en) 1981-07-07 1981-07-07 Electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56105009A JPS586983A (en) 1981-07-07 1981-07-07 Electrolytic cell

Publications (1)

Publication Number Publication Date
JPS586983A true JPS586983A (en) 1983-01-14

Family

ID=14396070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56105009A Pending JPS586983A (en) 1981-07-07 1981-07-07 Electrolytic cell

Country Status (1)

Country Link
JP (1) JPS586983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036684A (en) * 1983-08-08 1985-02-25 Toyo Soda Mfg Co Ltd Electrolytic cell
DE4318533B4 (en) * 1992-06-03 2005-03-10 Tosoh Corp Bipolar electrolysis cell and its use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036684A (en) * 1983-08-08 1985-02-25 Toyo Soda Mfg Co Ltd Electrolytic cell
DE4318533B4 (en) * 1992-06-03 2005-03-10 Tosoh Corp Bipolar electrolysis cell and its use

Similar Documents

Publication Publication Date Title
KR950011405B1 (en) Cathode for electrolysis and process for producing the same
JPS6356316B2 (en)
US4162204A (en) Plated metallic cathode
WO2010061766A1 (en) Method for producing active cathode for electrolysis
US3350294A (en) Electrodes
US4250004A (en) Process for the preparation of low overvoltage electrodes
US5494560A (en) Low-hydrogen overvoltage cathode having activated carbon particles supporting platinum, rhodium, indium, or platinum in a nickel layer formed on a substrate
US4221643A (en) Process for the preparation of low hydrogen overvoltage cathodes
US3945907A (en) Electrolytic cell having rhenium coated cathodes
CA1260427A (en) Low hydrogen overvoltage cathode and method for producing the same
US4190514A (en) Electrolytic cell
CN114622238B (en) Preparation and application of transition metal-based hydrogen and oxygen evolution dual-functional electrode
JPS586983A (en) Electrolytic cell
US4507183A (en) Ruthenium coated electrodes
JPH06212471A (en) Method for activating cathode with catalyst
Sheela et al. Electrodeposition of iridium
JPS6045710B2 (en) electrolytic cell
JP2839153B2 (en) Process for producing alkali dichromates and chromic acid
JPS6017096A (en) Production of electrode
US5827413A (en) Low hydrogen over voltage cathode and process for production thereof
US4177129A (en) Plated metallic cathode
JPS6340874B2 (en)
JPH0417689A (en) Electrode for electrolyzing water and production thereof
JP2019210541A (en) Method of manufacturing electrode for generating hydrogen and electrolysis method using electrode for generating hydrogen
JPS622036B2 (en)