JPS589073B2 - Tankakei Soshitsuhogokan - Google Patents

Tankakei Soshitsuhogokan

Info

Publication number
JPS589073B2
JPS589073B2 JP46071341A JP7134171A JPS589073B2 JP S589073 B2 JPS589073 B2 JP S589073B2 JP 46071341 A JP46071341 A JP 46071341A JP 7134171 A JP7134171 A JP 7134171A JP S589073 B2 JPS589073 B2 JP S589073B2
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon
impregnated
molded body
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP46071341A
Other languages
Japanese (ja)
Other versions
JPS4837404A (en
Inventor
渡辺正好
木村信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP46071341A priority Critical patent/JPS589073B2/en
Publication of JPS4837404A publication Critical patent/JPS4837404A/ja
Publication of JPS589073B2 publication Critical patent/JPS589073B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 この発明は例えば熱電対等の測定時に保護管として用い
られる耐スポーリング性炭化珪素質成形体の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a spalling-resistant silicon carbide molded body, which is used as a protective tube when measuring a thermocouple or the like.

最近熱電対などの保護管として、再結晶炭化珪素に溶融
シリコンを含浸させてその見掛気孔率を1係程度にした
ものの用途が広まっている。
Recently, recrystallized silicon carbide impregnated with molten silicon to have an apparent porosity of about 1 coefficient has been widely used as protective tubes for thermocouples and the like.

これは1500℃の高温でも変形せず、しかも化学的に
安定なので例えばアルミニウムを主とした溶融金属の測
温用保護管として有効である。
It does not deform even at a high temperature of 1500°C and is chemically stable, so it is effective as a temperature measuring protection tube for molten metals, such as aluminum.

しかし、このものは熱膨脹の異なる2種の成分が緻密に
組合さっているので従来から使用されている鋳鉄製保護
管に比較すると明らかに耐スポーリング性に劣る。
However, since this tube is a dense combination of two components with different thermal expansions, it is clearly inferior in spalling resistance compared to conventionally used cast iron protection tubes.

従ってシリコンを含浸した炭化珪素質保護管の課題は耐
熱性、耐蝕性等の有効な特性を残したままで高温に対す
る耐スポーリングン性を向上させることにあるとされて
きた。
Therefore, the problem with silicon-impregnated silicon carbide protection tubes has been to improve their spalling resistance against high temperatures while retaining their effective properties such as heat resistance and corrosion resistance.

この発明の目的はかかる要請に応えたもので,炭化珪素
を主成分としこれに溶融シリコンを含浸させて見掛気孔
率を極力小さくした保護管の耐スポーリング性を向上さ
せることにある。
The purpose of the present invention is to meet such demands and to improve the spalling resistance of a protective tube whose main component is silicon carbide and which is impregnated with molten silicon to minimize the apparent porosity.

すなわちこの発明は遊離炭素1係以上を含ませた炭化珪
素質の成形体を2100℃以下の溶融シリコンの下で処
理し、成形体の表面から溶融シリコンを含浸させてシリ
コンのを含浸部分を層状あるいは分散状に形成させるこ
とを特徴とする耐スポーリング性炭化珪素質成形体の製
造方法である。
That is, in this invention, a molded body of silicon carbide containing one or more parts of free carbon is treated under molten silicon at a temperature of 2100° C. or lower, and the surface of the molded body is impregnated with molten silicon, and the impregnated portion of the silicone is layered. Alternatively, it is a method for producing a spalling-resistant silicon carbide molded body, which is characterized in that it is formed in a dispersed form.

一般に炭素は炭化珪素に比べて溶融シリコンに濡れにく
いので、遊離炭素を含む炭化珪素成型体に溶融シリコン
を含浸させるとシリコンは炭化珪素の部分へ選択的に含
浸され、遊離炭素の部分は未含浸の状態で残る。
In general, carbon is less wetted by molten silicon than silicon carbide, so when a molded silicon carbide containing free carbon is impregnated with molten silicon, silicon is selectively impregnated into the silicon carbide parts, and the free carbon parts are not impregnated. remains in the state of

また炭化珪素成型体に溶融シリコンを含浸させるとシリ
コンは炭化珪素の部分へ選択的に含浸され、遊離炭素の
部分は未含浸の状態で残る。
Further, when a silicon carbide molded body is impregnated with molten silicon, the silicon carbide portion is selectively impregnated with the silicon carbide portion, and the free carbon portion remains unimpregnated.

また炭化珪素成型体に遊離炭素が含まれると溶融シリコ
ンが成型体表面から内部へ拡散する速度が著しく小さく
なるので、含浸の処理時間を調節することにより、未含
浸部分を層状に形成させたり、分散状に形成させたりす
ることが容易にできる。
Furthermore, if free carbon is contained in the silicon carbide molded body, the rate at which molten silicon diffuses from the surface of the molded body into the interior will be significantly reduced. It can be easily formed in a dispersed form.

なお、この処理での温度および時間は比較的低温、短時
間とし、温度については2100℃以下、好ましくは2
000℃以下、時間については成形体の大きさによって
1律に決し得ないが,繊密炭化珪素品を得る従来法と比
較して明確に短時間とする。
The temperature and time in this treatment are relatively low and short, and the temperature is 2100°C or less, preferably 2,100°C or less.
000° C. or less, and the time cannot be determined uniformly depending on the size of the compact, but it is clearly shorter than the conventional method for obtaining dense silicon carbide products.

遊離炭素の含有率が大きくなるほど溶融シリコンの拡散
速度が小さくなるので遊離炭素の量を調節して含浸の処
理時間を決めることも可能である。
Since the diffusion rate of molten silicon decreases as the free carbon content increases, it is also possible to determine the impregnation treatment time by adjusting the amount of free carbon.

なお炭化珪素成型体中の遊離炭素量は1〜20チの範囲
が適当である。
Note that the amount of free carbon in the silicon carbide molded body is suitably in the range of 1 to 20 inches.

以下実施の態様を図面に基づいて説明する。Embodiments will be described below based on the drawings.

第1図および第2図中1は炭化珪素質の保護管本体であ
り、これの内外両側面から溶融シリコンを拡散させて含
浸層2,3を内周および外周に沿って層状に形成してな
る。
Reference numeral 1 in Figures 1 and 2 indicates a protection tube body made of silicon carbide, and impregnated layers 2 and 3 are formed in layers along the inner and outer peripheries by diffusing molten silicon from both the inner and outer sides of the tube body. Become.

したがってこれら両層2,3に挾まれる如く未含浸部4
が形成されている。
Therefore, the unimpregnated part 4 is sandwiched between these two layers 2 and 3.
is formed.

第3図、第4図に示すものでは保護管1の内外両側面か
ら含浸した溶融シリコンが遊離炭素の少ない所に含浸し
て部分的につながった含浸部5が形成され、未含浸部4
が分散状に残っている。
In the case shown in FIGS. 3 and 4, molten silicon impregnated from both the inner and outer surfaces of the protective tube 1 impregnates areas with little free carbon, forming partially connected impregnated areas 5, and unimpregnated areas 4.
remain dispersed.

実施例 1 重量割合で粒径84ミクロンの炭化珪素粉40部、粒径
46ミクロンの炭化珪素粉60部、エチルアルコール7
部を加えて混練した後、これをラバープレスで外径30
nL,内径20tL,長さ1000mmの深護管に成型
し200℃1時間の加熱でフエノールレジンを硬化させ
た。
Example 1 40 parts of silicon carbide powder with a particle size of 84 microns, 60 parts of silicon carbide powder with a particle size of 46 microns, 7 parts of ethyl alcohol by weight
After adding and kneading the mixture, use a rubber press to make an outer diameter of 30 mm.
The phenol resin was molded into a deep-protected tube with a diameter of 20 tL, an inner diameter of 20 tL, and a length of 1000 mm, and the phenol resin was cured by heating at 200° C. for 1 hour.

この硬化後に2000℃の溶融シリコンに15分間浸漬
してシリコンを含浸させたものの切断面は中心部約1m
mが未含浸層として残っていた。
After curing, the cut surface was immersed in molten silicon at 2000°C for 15 minutes to be impregnated with silicon, and the cut surface was about 1 m in the center.
m remained as an unimpregnated layer.

すなわち第1図の如く形成された。That is, it was formed as shown in FIG.

このように形成された常温の保護管を900℃の溶融ア
ルミニウム中に50回繰返し挿入したが、保護管にクラ
ツクや浸蝕等の異常はなかった。
The protective tube thus formed at room temperature was repeatedly inserted into molten aluminum at 900° C. 50 times, but there were no abnormalities such as cracks or corrosion in the protective tube.

実施例 2 重量割合で粒径221ミクロン炭化珪素粉60部、粒径
10ミクロンの炭化珪素粉40部、力一ボンブランク5
部を混合し、フエノールレジン10部、エチルアルコー
ル5部を加えて混練した後、これをラバープレスで外径
20mm,内径12mt,長さ500mmの保護管に成
型し200℃で1時間加熱してフェノールレジンを硬化
させた。
Example 2 In terms of weight ratio, 60 parts of silicon carbide powder with a particle size of 221 microns, 40 parts of silicon carbide powder with a particle size of 10 microns, 5 parts of Rikibon blank
After mixing 10 parts of phenol resin and 5 parts of ethyl alcohol and kneading, this was formed into a protective tube with an outer diameter of 20 mm, an inner diameter of 12 mt, and a length of 500 mm using a rubber press, and heated at 200°C for 1 hour. Hardened phenol resin.

硬化後の保護管を2100℃に溶融シリコンに10分間
浸漬してシリコンを含浸させた。
The cured protective tube was immersed in molten silicon at 2100° C. for 10 minutes to impregnate it with silicon.

シリコンを含浸した保護管の切断面を顕微鏡で観察する
と0.05〜0.2nmの大きさの未含浸部分が分散し
ていた。
When the cut surface of the protection tube impregnated with silicon was observed under a microscope, unimpregnated portions with a size of 0.05 to 0.2 nm were dispersed.

すなわち第3図の如く形成された。この常温の保護管を
900℃の溶融アルミニウム中に50回繰返して挿入し
たが、保護管にはクラツクおよび浸蝕等の異常はなかっ
た。
That is, it was formed as shown in FIG. This protective tube at room temperature was repeatedly inserted into molten aluminum at 900° C. 50 times, but there were no abnormalities such as cracks or corrosion in the protective tube.

以上詳述した如く、この発明は炭化珪素成形体にシリコ
ンの未含浸部分を層状もしくは分散状に形成し、熱衝撃
に対して未含浸部分が膨脹、収縮のクッションとして働
くようにしたから、耐スポーリング性が従来の同材質の
ものに較べて著しく向上するという効果がある。
As described in detail above, the present invention forms a silicon carbide molded body with unimpregnated portions of silicon in a layered or dispersed manner so that the unimpregnated portions act as a cushion for expansion and contraction against thermal shock. It has the effect of significantly improving spalling properties compared to conventional ones made of the same material.

かかる炭化珪素保護管は測温管の他に半導体桜散用チュ
ーブ,例えばプロセスチューブ、ライナー管、或いはガ
ス吹込管として有効に利用できる。
Such a silicon carbide protection tube can be effectively used as a semiconductor spray tube, such as a process tube, a liner tube, or a gas blowing tube, in addition to a temperature measuring tube.

また、かかる炭化珪素材はその特異な性質からルツボと
しても利用可能である。
Moreover, such a silicon carbide material can also be used as a crucible due to its unique properties.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の実施によって得られた保護管を示し、第
1図はシリコンの未含浸部分が含浸層の中央に円環状の
層で形成された炭化珪素保護管の一部切欠した側面図、
第2図は第1図の横断面図、第3図はシリコンの未含浸
部分が含浸層に分散状に形成された炭化珪素保護管の一
部切欠した側面図、第4図は第3図の横断面図である。 1・・・・・・炭化珪素保護管、2・・・・・・含浸層
、3・・・・・・含浸層、4・・・・・・未含浸部、5
・・・・・・含浸部。
The figure shows a protection tube obtained by carrying out the present invention, and FIG. 1 is a partially cutaway side view of a silicon carbide protection tube in which the unimpregnated portion of silicon is formed as an annular layer in the center of the impregnated layer.
Fig. 2 is a cross-sectional view of Fig. 1, Fig. 3 is a partially cutaway side view of a silicon carbide protection tube in which unimpregnated portions of silicon are formed dispersedly in an impregnated layer, and Fig. 4 is a cross-sectional view of Fig. 3. FIG. 1... Silicon carbide protection tube, 2... Impregnated layer, 3... Impregnated layer, 4... Unimpregnated part, 5
・・・・・・Impregnation part.

Claims (1)

【特許請求の範囲】[Claims] 1 遊離炭素1係以上を含ませた炭化珪素質の成形体を
2100℃以下の溶融シリコンの下で処理し、成形体の
表面から溶融シリコンを含浸させてシリコンの未含浸部
分を層状あるいは分散状に形成させることを特徴とする
耐スポーリング性炭化珪素質成形体の製造方法。
1 A molded body of silicon carbide containing 1 or more parts of free carbon is treated under molten silicon at 2100°C or lower, and molten silicon is impregnated from the surface of the molded body, so that the unimpregnated portion of the silicone is formed into a layered or dispersed form. 1. A method for producing a spalling-resistant silicon carbide molded body, the method comprising: forming a spalling-resistant silicon carbide molded body.
JP46071341A 1971-09-14 1971-09-14 Tankakei Soshitsuhogokan Expired JPS589073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP46071341A JPS589073B2 (en) 1971-09-14 1971-09-14 Tankakei Soshitsuhogokan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP46071341A JPS589073B2 (en) 1971-09-14 1971-09-14 Tankakei Soshitsuhogokan

Publications (2)

Publication Number Publication Date
JPS4837404A JPS4837404A (en) 1973-06-02
JPS589073B2 true JPS589073B2 (en) 1983-02-18

Family

ID=13457689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP46071341A Expired JPS589073B2 (en) 1971-09-14 1971-09-14 Tankakei Soshitsuhogokan

Country Status (1)

Country Link
JP (1) JPS589073B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209885A (en) * 1981-06-22 1982-12-23 Toshiba Ceramics Co Member for low melting point metal melt keeping furnace
JPS6212668A (en) * 1985-07-09 1987-01-21 東芝セラミツクス株式会社 Constitutional member for semiconductor diffusion oven
JPH0753621B2 (en) * 1986-06-12 1995-06-07 東芝セラミックス株式会社 Immersion protection tube for molten metal

Also Published As

Publication number Publication date
JPS4837404A (en) 1973-06-02

Similar Documents

Publication Publication Date Title
JP6676525B2 (en) Composite material, heat-absorbing component and method of making the composite
US3189477A (en) Oxidation-resistant ceramics and methods of manufacturing the same
US3951587A (en) Silicon carbide diffusion furnace components
US3992497A (en) Pressureless sintering silicon nitride powders
GB1488159A (en) Heater element
JPH04273990A (en) Heating device
US5236638A (en) Process for producing a shaped body of graphite
JPS589073B2 (en) Tankakei Soshitsuhogokan
US4207672A (en) Heater element mounting
US4859525A (en) Method for low temperature processing of lightweight SiC/SiO2 composites and products
US3329514A (en) Refractory body and method of making same
US3189337A (en) Amorphous silica refractory structures
US3470276A (en) Method of manufacturing porous riser insulating sleeve
JPS6111911B2 (en)
Burke et al. Sintering
JPS63222027A (en) Production of reinforcing material-containing inorganic foam
Sazonova et al. Thermal stability of MoSi 2-SiC composites in air at temperatures of 1100–1400° C
JP2002181978A (en) Shroud
JPS6117466A (en) Ceramic sintered body and manufacture
JPS6145962Y2 (en)
JPS6199537A (en) Durable casting mold
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JPH10318445A (en) Insulated piping material
Antsiferov et al. Consolidation of slip thin-walled elements based on thixotropic dispersed systems for preparing highly porous RSSN
JPS5940197B2 (en) Method for manufacturing airtight carbon sliding material