JPS6111911B2 - - Google Patents

Info

Publication number
JPS6111911B2
JPS6111911B2 JP54157073A JP15707379A JPS6111911B2 JP S6111911 B2 JPS6111911 B2 JP S6111911B2 JP 54157073 A JP54157073 A JP 54157073A JP 15707379 A JP15707379 A JP 15707379A JP S6111911 B2 JPS6111911 B2 JP S6111911B2
Authority
JP
Japan
Prior art keywords
carbon
base material
silicification
silicified
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54157073A
Other languages
Japanese (ja)
Other versions
JPS5684381A (en
Inventor
Masayuki Ookawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP15707379A priority Critical patent/JPS5684381A/en
Publication of JPS5684381A publication Critical patent/JPS5684381A/en
Publication of JPS6111911B2 publication Critical patent/JPS6111911B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は珪化炭素材の製造方法の改良に関す
る。 〔発明の技術的背景〕 従来より、炭化珪素製品の製造法としては、(1)
炭化珪素粒子の圧粉体を熱処理して炭化珪素粒子
を直接焼結する方法、(2)炭化珪素粒子を炭素質バ
インダーで結合し、これを熱処理したバインダー
分を炭化した後、外部から珪素源を導入し、炭化
したバインダーを珪化反応させて炭化珪素に変換
せしめ全体を炭化珪素化する、いわゆる再結晶珪
化方法が知られている。 しかしながら、これらの方法では焼結時、或い
は熱処理時に焼き縮みを生じるため、得られた炭
化珪素製品の寸法精度が悪化する難点があつた。
従つて、所定寸法の製品を得るために焼結又は珪
化の後に加工を行なう必要があるが、炭化珪素は
モース硬度が9.5と超硬質材料であるため、通常
のカツターでは加工できず、高価なダイヤモンド
カツターを必要とし、その結果、加工コストが非
常に高くなる欠点があつた。 一方、上述した方法とは別に炭素基材を所定寸
法に加工した後、外部からシリコン源を導入した
該基材の表層部或いは全体を化学反応により炭化
珪素化(以下珪化と称す)して炭化珪素材を造る
方法が行なわれている。しかしながら、かかる方
法では使用に供される炭素基材の強度や寸法安定
性が不揃いとなり、しかも場合によつては珪化に
際して珪化層や炭素基材に割れを生じたり、残留
歪みの生成により使用中、熱衝撃を受けた時に割
れ易くなつたりする等歩留り及び特性上種々の欠
点があつた。 〔発明の目的〕 本発明は上記欠点を解消するためになされたも
のであり、高強度で寸法安定性が良好であり、か
つ使用時に熱衝撃を受けても割れや欠け等が生じ
ない珪化炭素材を製造し得る方法を提供しようと
するものである。 〔発明の概要〕 本発明者は上記問題点を克服すべく、その原因
について以下の如く種々検討した。 まず、珪化反応に用いられるSi源としてはSiO
が知られており、このSiOによる珪化反応は次式
の如くなる。 2C+SiO→SiC+CO↑ ……(1) この反応において、珪化部分に寸法変化がある
ということは、反応の前後で体積変化を生じてい
ることである。この事実より上記反応の前後にお
ける微小反応部分の体積変化を検討すると、反応
する炭素及び生成するSiCが夫々黒鉛及び炭化珪
素の理想結晶と仮定した場合、それらの値は次の
ような値になる。すなわち、 黒鉛1モルの容積 =炭素の分子量/黒鉛結晶の密度 =12/2.26≒5.31(cm3) SiC1モルの容積=40/3.21≒12.5(cm3) となる。よつて、上記(1)式の反応においては2モ
ルの炭素が1モルのSiCに変換されるので、1.17
倍(12.46/5.31×2)の容積増加を伴なうこと
がわかつた。しかるに、本発明者は上述の膨張こ
そが炭素基材を珪化する際に発生する歪みや寸法
安定性を支配する基本因子であることを究明し
た。 そこで、本発明者は鋭意研究を重ねた結果、(イ)
珪化時の膨張の絶対量を減らすことは、同時に(ロ)
膨張を被珪化部分の内部もしくは基材中で吸収さ
せること、により珪化体に及ぼす膨張の影響を極
力小さくできることを見出した。前者の(イ)の手段
としては、基材の密度を小さくすることにより、
該基材を構成する炭素1モルの容積が大きくな
り、膨張の絶対量を減少でき、その結果、珪化前
後の容積変化率を小さくできる。後者の(ロ)の手段
としては、珪化される基材部分の近傍に微細な空
間、つまり気孔を均一に分散させることにより、
基本粒子の珪化に伴なう膨張をその気孔で吸収で
き、全体的な寸法変化を抑制乃至防止できる。 しかして、本発明者は上記究明結果より、珪化
時の体積膨張を効果的に抑制する機能は気孔の質
と量、つまり気孔径の分布と気孔の量(気孔率)
にあることに着目し、密度指標としての嵩密度を
1.85以下に規制し、かつ気孔径と気孔率の指標と
しての気孔分布を、水銀圧入法で測定される
0.006〜1μmの径を有する微細気孔の占める容
積が0.02cm3/g以上となるように規制した炭素基
材を用いて珪化した。その結果、使用時に熱衝撃
を受けて割れや欠け等が生じず、かつ高強度で寸
法安定性の良好な珪化炭素材を製造することを見
出した。 すなわち本発明の珪化炭素材の製造方法は、炭
素基材をSiOの存在下で加熱し、表面をSiC化し
て珪化炭素材を製造するにあたり、前記炭素基材
として、嵩密度が1.85以下で、かつ水銀圧入法で
測定される0.006〜1μmの径を有する微細気孔
の占める容積が0.02cm3/g以上のものを用いるこ
とを特徴とするものである。 本発明における炭素基材の嵩密度を限定した理
由は、その密度が1.85を超えると、珪化時の膨張
の絶対量を効果的に減少できなくなり、寸法安定
性等の向上が期待できなくなるためである。な
お、嵩密度は1.55以上であることが好ましい。こ
れは、嵩密度が1.55未満になると、気孔が多すぎ
るために基材の強度低下を招くためである。 本発明における炭素基材の微細気孔分布を上記
範囲に限定した理由は、その気孔径を0.006μm
未満にすると、珪化に伴なう膨張を効果的に吸収
できなくなり、かといつてその気孔径が1μmを
超えると、珪化に伴なう膨張の吸収に際し、大き
な歪発生原因となり、使用時等の熱衝撃で割れや
欠けを起こし易くなるからである。 本発明における炭素基材中に占める微細気孔の
容積を上記範囲に限定した理由は、その容積を基
材1g当り0.02cm3未満にすると、珪化に伴なう膨張
を効果的に吸収できなくなるからである。 なお、本発明に用いられる炭素基材は、骨材の
種類、バインダー、成形圧力等の各種の条件を適
宜選択することにより容易に製造することができ
る。具体的には、モザイク状コークス、カーボン
ブラツク、結晶構造の乱れた低密度の樹脂炭、或
いはこれに準ずる不融化ピツチ、半成コークス等
を骨材として使用し、これに添加するバインダー
中の低融点成分の分解、揮散によつて微細な気孔
を一様に形成させた炭素基材を製造する方法が挙
げられる。また、別の方法として自己焼結能力を
有する骨材のみを使用するノーバインダー法でも
よい。 また、本発明においては、必要に応じて珪化炭
素基材に金属を含浸せしめて耐摩耗性を向上させ
た材料にしてもよい。特に金属として金属シリコ
ンを用いた場合は耐摩耗性を効果的に向上できる
と共に気孔が充填されて不浸透性の向上とSiC粒
子の脱落防止を図ることができる。かかる金属シ
リコン含浸珪化炭素材は半導体製造用治具類等に
賞用される。 〔発明の実施例〕 以下、本発明の実施例を説明する。 下記第1表に示す特性の異なる5種の炭素材料
を加工した100L×20W×4tmmの炭素基材を各々10
枚作製し、これら炭素基材を珪化炉内に載置し、
SiOガスの存在下で1700℃の温度にて加熱し3時
間保持した表面をSiC化し、珪化炭素材とした。 得られた各珪化炭素材の珪化深さ、及び寸法変
化(Δt)等を調べた。その結果を同第1表に併
記した。
[Technical Field of the Invention] The present invention relates to an improvement in a method for producing a silicified carbon material. [Technical background of the invention] Traditionally, methods for manufacturing silicon carbide products include (1)
A method of directly sintering silicon carbide particles by heat-treating a compact of silicon carbide particles, (2) bonding silicon carbide particles with a carbonaceous binder, carbonizing the heat-treated binder portion, and then applying a silicon source from the outside. A so-called recrystallization silicification method is known in which the carbonized binder is introduced and the carbonized binder is subjected to a silicification reaction to convert it into silicon carbide, thereby converting the entire structure into silicon carbide. However, these methods have the disadvantage that dimensional accuracy of the obtained silicon carbide product deteriorates because shrinkage occurs during sintering or heat treatment.
Therefore, processing must be performed after sintering or silicification to obtain a product with the specified dimensions, but since silicon carbide is an ultra-hard material with a Mohs hardness of 9.5, it cannot be processed with a regular cutter and requires expensive processing. A diamond cutter was required, resulting in a very high processing cost. On the other hand, apart from the above-mentioned method, after processing a carbon base material to a predetermined size, a silicon source is introduced from the outside, and the surface layer or the entire base material is converted into silicon carbide (hereinafter referred to as silicification) by a chemical reaction. A method of making silicon material is being used. However, with this method, the strength and dimensional stability of the carbon base material used may vary, and in some cases, cracks may occur in the silicified layer or carbon base material during silicification, or residual strain may occur during use. However, it had various drawbacks in terms of yield and properties, such as being susceptible to cracking when subjected to thermal shock. [Object of the Invention] The present invention has been made to eliminate the above-mentioned drawbacks, and provides a silicided carbon that has high strength and good dimensional stability, and does not crack or chip even when subjected to thermal shock during use. The aim is to provide a method for manufacturing materials. [Summary of the Invention] In order to overcome the above-mentioned problems, the inventors have conducted various studies on the causes thereof as follows. First, the Si source used in the silicification reaction is SiO
is known, and this silicification reaction by SiO is as shown in the following equation. 2C+SiO→SiC+CO↑...(1) In this reaction, the fact that there is a dimensional change in the silicified part means that there is a volume change before and after the reaction. Based on this fact, when considering the volume change of the minute reaction part before and after the above reaction, assuming that the reacting carbon and the generated SiC are ideal crystals of graphite and silicon carbide, respectively, their values are as follows. . That is, the volume of 1 mole of graphite = molecular weight of carbon/density of graphite crystal = 12/2.26≒5.31 (cm 3 ), and the volume of 1 mole of SiC = 40/3.21≒12.5 (cm 3 ). Therefore, in the reaction of equation (1) above, 2 moles of carbon are converted to 1 mole of SiC, so 1.17
It was found that this was accompanied by a volume increase of (12.46/5.31×2). However, the present inventors have discovered that the above-mentioned expansion is the fundamental factor governing the distortion and dimensional stability that occur when silicifying a carbon base material. Therefore, as a result of intensive research, the inventor found (a)
At the same time, it is possible to reduce the absolute amount of expansion during silicification.
It has been found that the influence of expansion on the silicified body can be minimized by absorbing the expansion inside the silicified portion or in the base material. As a means for the former (a), by reducing the density of the base material,
The volume of 1 mole of carbon constituting the base material increases, the absolute amount of expansion can be reduced, and as a result, the rate of change in volume before and after silicification can be reduced. As a means for the latter (b), by uniformly distributing fine spaces, that is, pores, near the base material part to be silicified,
The expansion caused by silicification of the basic particles can be absorbed by the pores, and overall dimensional changes can be suppressed or prevented. Based on the above research results, the present inventors found that the function that effectively suppresses volumetric expansion during silicification is the quality and quantity of pores, that is, the distribution of pore diameter and the amount of pores (porosity).
By focusing on the fact that
1.85 or less, and the pore distribution as an index of pore diameter and porosity is measured by mercury intrusion method.
Silicification was performed using a carbon base material in which the volume occupied by micropores having a diameter of 0.006 to 1 μm was regulated to be 0.02 cm 3 /g or more. As a result, it has been found that a silicified carbon material can be produced that does not crack or chip when subjected to thermal shock during use, has high strength, and has good dimensional stability. That is, in the method for producing a silicified carbon material of the present invention, in producing a silicified carbon material by heating a carbon base material in the presence of SiO and converting the surface to SiC, the carbon base material has a bulk density of 1.85 or less, The material is characterized in that the volume occupied by micropores having a diameter of 0.006 to 1 μm measured by mercury porosimetry is 0.02 cm 3 /g or more. The reason for limiting the bulk density of the carbon base material in the present invention is that if the density exceeds 1.85, the absolute amount of expansion during silicification cannot be effectively reduced, and improvements in dimensional stability etc. cannot be expected. be. Note that the bulk density is preferably 1.55 or more. This is because if the bulk density is less than 1.55, there will be too many pores, leading to a decrease in the strength of the base material. The reason why the fine pore distribution of the carbon base material in the present invention is limited to the above range is that the pore diameter is 0.006 μm.
If the pore diameter is less than 1 μm, it will not be possible to effectively absorb the expansion caused by silicification. On the other hand, if the pore diameter exceeds 1 μm, it will cause large distortion when absorbing the expansion caused by silicification. This is because thermal shock tends to cause cracking and chipping. The reason why the volume of micropores in the carbon base material in the present invention is limited to the above range is that if the volume is less than 0.02 cm 3 per 1 g of base material, it will not be possible to effectively absorb the expansion caused by silicification. It is. The carbon base material used in the present invention can be easily manufactured by appropriately selecting various conditions such as the type of aggregate, binder, and molding pressure. Specifically, mosaic coke, carbon black, low-density resin charcoal with a disordered crystal structure, similar infusible pitch, semi-formed coke, etc. are used as aggregates, and low Examples include a method of producing a carbon base material in which fine pores are uniformly formed by decomposing and volatilizing melting point components. Alternatively, a binder-free method may be used in which only aggregates having self-sintering ability are used. Furthermore, in the present invention, a material with improved wear resistance may be obtained by impregnating a silicided carbon base material with a metal, if necessary. In particular, when metallic silicon is used as the metal, wear resistance can be effectively improved, and pores are filled to improve impermeability and prevent SiC particles from falling off. Such a metal silicon-impregnated silicified carbon material is used for semiconductor manufacturing jigs and the like. [Embodiments of the Invention] Examples of the present invention will be described below. Ten of each 100L x 20W x 4tmm carbon base material processed from five types of carbon materials with different properties shown in Table 1 below.
These carbon base materials are placed in a silicification furnace,
The surface was heated at a temperature of 1700°C in the presence of SiO gas and held for 3 hours to form SiC, resulting in a silicified carbon material. The silicification depth, dimensional change (Δt), etc. of each of the obtained silicified carbon materials were investigated. The results are also listed in Table 1.

【表】 また、上記No.1〜5の珪化前後の曲げ強さを調
べた。更に珪化後の各珪化炭素材を、炉内に装入
し大気中で800℃に充分加熱後、炉外に取出して
冷却する急熱急冷サイクルを10回繰り返した場合
のクラツク発生状況を調べた。これらの結果を下
記第2表に示す。
[Table] In addition, the bending strength of the above Nos. 1 to 5 before and after silicification was investigated. Furthermore, we investigated the occurrence of cracks when each silicified carbon material after silicification was charged into a furnace, sufficiently heated to 800°C in the atmosphere, and then taken out of the furnace and cooled, repeating a rapid heating and cooling cycle 10 times. . These results are shown in Table 2 below.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば珪化処理時
における寸法変化が少なく、急熱急冷の過酷な条
件下で使用した場合の剥離、クラツク発生を防止
でき、更に曲げ強度が著しく高い珪化炭素材を提
供できるものである。
As detailed above, according to the present invention, the silicified carbon material has little dimensional change during silicification treatment, can prevent peeling and cracking when used under severe conditions of rapid heating and cooling, and has extremely high bending strength. It is possible to provide

Claims (1)

【特許請求の範囲】[Claims] 1 炭素基材をSiOの存在下で加熱し、表面を
SiC化して珪化炭素材を製造するにあたり、前記
炭素基材として、嵩密度が1.85以下で、かつ水銀
圧入法で測定される0.006〜1μmの径を有する
微細気孔の占める容積が0.02cm3/g以上のものを
用いることを特徴とする珪化炭素材の製造方法。
1 Heating the carbon base material in the presence of SiO to make the surface
In producing a silicified carbon material by converting it into SiC, the carbon base material has a bulk density of 1.85 or less and a volume occupied by micropores having a diameter of 0.006 to 1 μm measured by mercury porosimetry of 0.02 cm 3 /g. A method for producing a silicified carbon material, characterized in that the above method is used.
JP15707379A 1979-12-04 1979-12-04 Carbon silicate material Granted JPS5684381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15707379A JPS5684381A (en) 1979-12-04 1979-12-04 Carbon silicate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15707379A JPS5684381A (en) 1979-12-04 1979-12-04 Carbon silicate material

Publications (2)

Publication Number Publication Date
JPS5684381A JPS5684381A (en) 1981-07-09
JPS6111911B2 true JPS6111911B2 (en) 1986-04-05

Family

ID=15641640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15707379A Granted JPS5684381A (en) 1979-12-04 1979-12-04 Carbon silicate material

Country Status (1)

Country Link
JP (1) JPS5684381A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115010A (en) * 1988-10-24 1990-04-27 Kirin Brewery Co Ltd Filtration apparatus
JPH041393U (en) * 1990-04-19 1992-01-08
JP2011051866A (en) * 2009-09-04 2011-03-17 Toyo Tanso Kk Method for producing silicon carbide-coated carbon substrate, silicon carbide-coated carbon substrate, silicon carbide-carbon composite sintered compact, ceramic-coated silicon carbide-carbon composite sintered compact, and method for producing silicon carbide-carbon composite sintered compact

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156595A (en) * 1982-03-08 1983-09-17 Ibiden Co Ltd Graphite crucible for silicon single crystal pulling apparatus
JPS59169988A (en) * 1983-03-14 1984-09-26 カネボウ株式会社 Carbon/silicon carbide composite body with fine pores and manufacture
JPH01249679A (en) * 1988-03-29 1989-10-04 Toyo Tanso Kk Graphite-silicon carbide composite body and production thereof
JP2008063222A (en) * 2007-10-09 2008-03-21 Toyo Tanso Kk Carbon-silicon carbide composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115010A (en) * 1988-10-24 1990-04-27 Kirin Brewery Co Ltd Filtration apparatus
JPH041393U (en) * 1990-04-19 1992-01-08
JP2011051866A (en) * 2009-09-04 2011-03-17 Toyo Tanso Kk Method for producing silicon carbide-coated carbon substrate, silicon carbide-coated carbon substrate, silicon carbide-carbon composite sintered compact, ceramic-coated silicon carbide-carbon composite sintered compact, and method for producing silicon carbide-carbon composite sintered compact

Also Published As

Publication number Publication date
JPS5684381A (en) 1981-07-09

Similar Documents

Publication Publication Date Title
US6013236A (en) Wafer
JPS6143310B2 (en)
JPH09510950A (en) Microwave sintering method
CA2339649C (en) Silicon carbide sinter and process for producing the same
US20110160035A1 (en) Method of preparing pressureless sintered, highly dense boron carbide materials
US2887393A (en) Refractory bodies containing boron nitride
US3459566A (en) Process for producing silicon carbide articles employing pyromellitic dianhydride-limonene dioxide mixture
JPS6240317B2 (en)
JPH0246540B2 (en)
JPS6111911B2 (en)
JPS62197353A (en) Manufacture of silicon carbide sintered body
US5892236A (en) Part for ion implantation device
JP2015074565A (en) Spherical silicon carbide powder and method for producing the same
JPH1067565A (en) Sintered silicon carbide body and its production
US3329514A (en) Refractory body and method of making same
JP4491080B2 (en) Method for producing sintered silicon carbide
JPS632913B2 (en)
EP0885859A2 (en) Member for semiconductor equipment
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JPH1190579A (en) Heat-shock resistant graphite die, and its manufacture
JP2000154063A (en) Production of silicon carbide sintered body
JPH06172032A (en) Production of boron carbide/carbon composite-based neutron shielding material
JPS60118673A (en) Manufacture of boron carbide formed body
JP2891042B2 (en) Joining method of silicon carbide material
JPS643830B2 (en)