JPS5940197B2 - Method for manufacturing airtight carbon sliding material - Google Patents

Method for manufacturing airtight carbon sliding material

Info

Publication number
JPS5940197B2
JPS5940197B2 JP54018587A JP1858779A JPS5940197B2 JP S5940197 B2 JPS5940197 B2 JP S5940197B2 JP 54018587 A JP54018587 A JP 54018587A JP 1858779 A JP1858779 A JP 1858779A JP S5940197 B2 JPS5940197 B2 JP S5940197B2
Authority
JP
Japan
Prior art keywords
resin
carbon
impregnated
pores
sliding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54018587A
Other languages
Japanese (ja)
Other versions
JPS55110193A (en
Inventor
淳一 相沢
光義 柏木
義伸 下山田
誠 石井
猛 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP54018587A priority Critical patent/JPS5940197B2/en
Publication of JPS55110193A publication Critical patent/JPS55110193A/en
Publication of JPS5940197B2 publication Critical patent/JPS5940197B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は気密質カーボン摺動材料の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing an airtight carbon sliding material.

カーボン材料から成る摺動部品は乾式あるいは湿式の周
囲環境下で、軸受、ブレード、シール等に使用されて(
・る。
Sliding parts made of carbon materials are used in bearings, blades, seals, etc. in dry or wet ambient environments (
・Ru.

カーボン材料は天然黒鉛、油煙、人造黒鉛、ピッチコー
クス等を所定の割合に配合し、常法によりタールピッチ
、タール等をバインダーとして押合し、粉砕、成形の後
、約1000℃で焼成したものが多く用いられている。
またさらに2500〜3000℃の温度で黒鉛化処理を
行なうものもある。これら、カーボン材料には、バイン
ダーが蒸発するために生ずる第1図に示すような開気孔
2があり、特にメカニカルシールの場合は気密性が要求
されるため、上記開気孔2にフェノール樹脂、エポキシ
樹脂、フラン樹脂等の含浸処理を施して(・る。
The carbon material is made by blending natural graphite, soot, artificial graphite, pitch coke, etc. in a predetermined ratio, pressing together with tar pitch, tar, etc. as a binder using a conventional method, crushing, molding, and firing at approximately 1000℃. It is often used.
Furthermore, there are also those in which graphitization treatment is performed at a temperature of 2500 to 3000°C. These carbon materials have open pores 2, as shown in Figure 1, which are created when the binder evaporates.Particularly in the case of mechanical seals, airtightness is required, so the open pores 2 are filled with phenol resin, epoxy resin, etc. Impregnated with resin, furan resin, etc.

上記樹脂含浸処理を施した場合、機械的強度や、耐荷重
性が向上し、また、耐摩耗性も向上するので軸受にも用
いられている。なお第1図において1はカーボン基材部
分である。上記樹脂含浸処理を施したカーボン材料を1
50℃、10時間の熱処理を行なうと微量の寸法変化(
以後ΔLと記す)が生ずる。この寸法変化はほぼ0.0
1〜0.05%程度の伸びであり、精密メカニカルシー
ル材料ではこの程度の微少寸法変化が問題となつている
。本発明は上記の欠点を解決するため樹脂含浸を施す前
に、開気孔のうち、より小さな気孔の部分に、樹脂より
も熱膨張係数の小さい無機物質として燐酸アルミニウム
、珪酸エチル又は硼酸を含浸処理し、ΔLを少なくし、
寸法安定性が高く、かつ完全な気密性を有するカーボン
摺動材料を提供することを目的とするものである。
When subjected to the resin impregnation treatment, mechanical strength, load resistance, and wear resistance are improved, so it is also used in bearings. Note that in FIG. 1, 1 is a carbon base material portion. 1. Carbon material subjected to the above resin impregnation treatment
After heat treatment at 50℃ for 10 hours, a slight dimensional change (
(hereinafter referred to as ΔL) occurs. This dimensional change is approximately 0.0
The elongation is on the order of 1 to 0.05%, and such minute dimensional changes pose a problem in precision mechanical seal materials. In order to solve the above-mentioned drawbacks, the present invention impregnates the smaller open pores with aluminum phosphate, ethyl silicate, or boric acid as an inorganic substance having a smaller coefficient of thermal expansion than the resin before impregnating with the resin. and reduce ΔL,
The object of the present invention is to provide a carbon sliding material that has high dimensional stability and complete airtightness.

さらに詳細に説明すると、カーボン材料の気孔2は大き
な部分は5μm−0.1mm、小さな部分は0.007
5μmのものもある。
To explain in more detail, the large part of the pores 2 of the carbon material is 5 μm-0.1 mm, and the small part is 0.007 mm.
Some have a diameter of 5 μm.

また第2図に示す如く細孔部部分は、より小さな気孔直
径の気孔容積が多くなつている。一方、通常0.05〜
0.07mmの境として、これより小さな気孔部分には
樹脂が残りやすく、これより大きな気孔部分には樹脂が
残りにくい傾向がある。
Further, as shown in FIG. 2, the pore volume of the pore portion with smaller pore diameter is increased. On the other hand, usually 0.05~
As a boundary of 0.07 mm, resin tends to remain in pores smaller than this, and resin tends not to remain in pores larger than 0.07 mm.

この一例を示せば第3図のようになつている。真空含浸
した時点では大きな気孔部分にも樹脂が含浸されている
が、硬化処理の際、大きな気孔部分の樹脂は流れ出して
しまうからである。なお第3図において1はカーボン基
材部分、2は気孔部分および3は樹脂含浸部分である。
ところで、このような特徴を有する樹脂含浸カーボン材
料について考察すると、樹脂の熱膨張係数は通常60〜
200X10−6/℃でありカーボン材料の熱膨張係数
3〜4×10−6/℃に比べ、約10〜70倍と大きな
値となつている。
An example of this is shown in Figure 3. This is because the large pores are also impregnated with resin at the time of vacuum impregnation, but the resin in the large pores flows out during the curing process. In FIG. 3, 1 is a carbon base material portion, 2 is a pore portion, and 3 is a resin-impregnated portion.
By the way, when considering resin-impregnated carbon materials having such characteristics, the coefficient of thermal expansion of the resin is usually 60 to 60.
The coefficient of thermal expansion is 200 x 10-6/°C, which is about 10 to 70 times larger than the thermal expansion coefficient of carbon material, which is 3 to 4 x 10-6/°C.

また、樹脂含浸カーボン材料では6〜8×10−6/℃
と2倍の値を示すようになる。このように熱膨張係数の
大幅に異なる材料を含浸することが上記ΔLを生じさせ
るものと考えられる。
In addition, for resin-impregnated carbon materials, 6 to 8 x 10-6/℃
and will show twice the value. It is thought that impregnating materials with significantly different coefficients of thermal expansion causes the above-mentioned ΔL.

このためには気孔率の少ないカーボン材料を用いて、含
浸樹脂を少なくし上記ΔLを低下することが必要である
。しかしながら開気孔率10〜15%のカーボン材料を
用いて、フラン樹脂の粘度を変えて含浸した結果、第1
表のように粘度の小さい樹脂の場合、上記ΔLが大きく
なることを見出した。
For this purpose, it is necessary to use a carbon material with low porosity and reduce the amount of impregnated resin to reduce the above ΔL. However, as a result of impregnating a carbon material with an open porosity of 10 to 15% and changing the viscosity of the furan resin, the first
It has been found that, as shown in the table, in the case of a resin with a low viscosity, the above ΔL becomes large.

このことは、粘度の低い樹脂ほど上記細孔部に樹脂が浸
透しやすく、またΔLはこのように細孔部に浸透した樹
脂が大きな影響をもつているものと考えられる。
This is because the resin with a lower viscosity is more likely to penetrate into the pores, and the resin that has penetrated into the pores has a greater influence on ΔL.

本発明はこれらの結果から、カーボン材料の細孔部にま
ず熱膨張係数の低い無機物質として燐酸アルミニウム、
珪酸エチル又は硼酸を含浸処理し、その後気密性を持た
せるための樹脂含浸を施すことによりΔLの小さな寸法
安定な気密質カーボン摺動材料を得ようとするものであ
る。
Based on these results, the present invention first injects aluminum phosphate into the pores of the carbon material as an inorganic substance with a low coefficient of thermal expansion.
The purpose is to obtain a dimensionally stable airtight carbon sliding material with a small ΔL by impregnating it with ethyl silicate or boric acid and then impregnating it with a resin to provide airtightness.

本発明は、カーボン材料の焼成時にバインダーの蒸発に
よつて形成される開気孔の細孔部に、無機物質として燐
酸アルミニウム、珪酸エチル又は硼酸を含浸処理し、そ
の後樹脂含浸を行なうことを特徴とする気密質カーボン
摺動材料の製造方法に関する。
The present invention is characterized in that the pores of open pores formed by evaporation of the binder during firing of the carbon material are impregnated with aluminum phosphate, ethyl silicate, or boric acid as an inorganic substance, and then impregnated with a resin. The present invention relates to a method of manufacturing an airtight carbon sliding material.

なお本発明においてカーボン材料は天然黒鉛、油煙、人
造黒鉛、ピツチコークス等にタールピツチ、タール等の
バインダーを加えて混合、焼成して得られたものである
In the present invention, the carbon material is obtained by adding a binder such as tar pitch or tar to natural graphite, oil smoke, artificial graphite, pitch coke, etc., and mixing and firing the mixture.

本発明において樹脂含浸を行なう樹脂については特に制
限はないが熱硬化性の樹脂が好ましく、例えばフエノー
ル樹脂、ポリエステル樹脂、エポキシ樹脂、フラン樹脂
等が使用される。
The resin used for resin impregnation in the present invention is not particularly limited, but thermosetting resins are preferred, and for example, phenol resins, polyester resins, epoxy resins, furan resins, etc. are used.

無機物質は上記樹脂の約%(30×10−6/℃)以下
の熱膨張係数を有する。
The inorganic material has a coefficient of thermal expansion less than about % (30 x 10-6/°C) of the resin.

この無機物質の含浸量は特に制限はないが細孔部に入る
だけの量、すなわち開気孔率のうちの1〜5%を含浸で
きる量であれば充分である。なお開気孔率は蒸留水を真
空含浸し、その含浸率により求めた。
The amount of this inorganic substance impregnated is not particularly limited, but it is sufficient as long as it can enter the pores, that is, the amount can impregnate 1 to 5% of the open porosity. The open porosity was determined by vacuum impregnation with distilled water and the impregnation rate.

以下本発明の実施例を説明する。Examples of the present invention will be described below.

実施例 1 開気孔率10〜15%の人造黒鉛質カーボン材料に粘度
0.2ポイズの第一リン酸アルミニウム水溶液を真空含
浸後、130℃で乾燥し、引き続いて非酸化雰囲気中に
て800℃の熱処理を行なつて、メタリン酸アルミニウ
ム(熱膨張率約25×10−6/℃)をカーボンの細孔
部に介在せしめた。
Example 1 An artificial graphite carbon material with an open porosity of 10 to 15% was vacuum impregnated with an aqueous solution of monoaluminum phosphate with a viscosity of 0.2 poise, dried at 130°C, and then heated to 800°C in a non-oxidizing atmosphere. A heat treatment was performed to interpose aluminum metaphosphate (coefficient of thermal expansion of about 25 x 10-6/°C) into the pores of the carbon.

さらにフラン樹脂を常法により真空含浸し、160℃で
硬化処理を行なつて気密質カーボン摺動材料を得た。次
にこの気密質カーボン摺動材料150℃、10時間の熱
処理を行なつたところ、ΔLは0.003%であつた。
Furthermore, a furan resin was vacuum impregnated by a conventional method, and a curing treatment was performed at 160° C. to obtain an airtight carbon sliding material. Next, when this airtight carbon sliding material was heat treated at 150° C. for 10 hours, ΔL was 0.003%.

また、リン酸アルミニウムの含浸後、上記、樹脂含浸を
行なわないものはΔLは0.001%であつた。実施例
2 開気孔率10〜15%の人造黒鉛質カーボン材料に、粘
度1.0ポイズの珪酸エチルのアルコール溶液を真空含
浸後、130℃で乾燥し、さらに1100℃で熱処理を
行なつて、シリカ(熱膨張率10×10−6/℃)をカ
ーボンの細孔部に介在せしめた。
Further, after impregnation with aluminum phosphate, ΔL was 0.001% in the case where resin impregnation was not performed. Example 2 An artificial graphite carbon material with an open porosity of 10 to 15% was vacuum impregnated with an alcoholic solution of ethyl silicate having a viscosity of 1.0 poise, dried at 130°C, and further heat-treated at 1100°C. Silica (coefficient of thermal expansion 10 x 10-6/°C) was interposed in the pores of carbon.

さらにフラン樹脂を真空含浸し、160℃で硬化処理を
行なつて気密質カーボン摺動材料を得た。次にこの気密
質カーボン摺動材料を150℃、10時間の熱処理を行
なつたところΔLは0.005%であつた。実施例 3 開気孔率10〜15%の人造黒鉛質カーボン材料に、粘
度0.1ポイーズの硼酸水溶液を真空含浸後、130℃
で乾燥し、さらに900℃で加熱処理を行なつて、酸化
硼素(熱膨張率30×10−6/℃)をカーボンの細孔
部に介在せしめた。
Furthermore, a furan resin was vacuum impregnated and a curing treatment was performed at 160° C. to obtain an airtight carbon sliding material. Next, this airtight carbon sliding material was heat treated at 150° C. for 10 hours, and ΔL was 0.005%. Example 3 An artificial graphite carbon material with an open porosity of 10 to 15% was vacuum impregnated with a boric acid aqueous solution having a viscosity of 0.1 poise, and then heated at 130°C.
The carbon was dried and further heat-treated at 900 DEG C., thereby interposing boron oxide (thermal expansion coefficient 30.times.10@-6/ DEG C.) into the pores of the carbon.

さらにフエノール樹脂を真空含浸し、160℃で硬化処
理を行なつて気密質カーボン摺動材料を得た。次にこの
カーボン摺動材料を150℃、10時間の熱処理を行な
つたところΔLは0.006%であつた。次に上記各実
施例で得られた気密質カーボン摺動材料と従来の気密質
カーボン摺動材料について、90〜95℃の高温水中で
の吸水膨潤を測定したところ樹脂のみで含浸した従来の
気密質カーボン摺動材料は0.01〜0.02%の吸水
膨潤が認められたが、本発明になる気密質カーボン摺動
材料は0.005%以下と極めて小さな吸水膨潤にすぎ
なかつた。
Furthermore, a phenol resin was impregnated in a vacuum and a curing treatment was performed at 160° C. to obtain an airtight carbon sliding material. Next, this carbon sliding material was heat treated at 150° C. for 10 hours, and ΔL was 0.006%. Next, water absorption swelling in high-temperature water of 90 to 95°C was measured for the airtight carbon sliding materials obtained in the above examples and the conventional airtight carbon sliding materials. In the airtight carbon sliding material, swelling of 0.01 to 0.02% by water absorption was observed, but in the airtight carbon sliding material of the present invention, swelling by water absorption was extremely small at 0.005% or less.

このようにして得られた本発明の気密質カーボン摺動材
料の含浸構造を第4図により説明する。
The impregnation structure of the airtight carbon sliding material of the present invention thus obtained will be explained with reference to FIG.

第4図において1はカーボン基材部分であり、3は樹脂
含浸部分を示し、4は細孔部に含浸した無機物質含浸部
分を示す。本発明によればΔLの小さな寸法安定な気密
質カーボン摺動材料を得ることができるとともに、機械
的強度、耐荷重性および耐摩耗性が向上する等の効果が
得られる。
In FIG. 4, 1 is a carbon base material portion, 3 is a resin-impregnated portion, and 4 is an inorganic substance-impregnated portion impregnated into the pores. According to the present invention, a dimensionally stable airtight carbon sliding material with a small ΔL can be obtained, and effects such as improved mechanical strength, load resistance, and wear resistance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカーボン材料の顕微鏡写真、第2図はカーボン
材料の水銀ボロンメータを用いて測定した細孔径分布を
示すグラフ、第3図は樹脂含浸処理後のカーボン材料の
顕微鏡写真、第4図は本発明になる含浸構造を説明する
縦断面図である。
Fig. 1 is a microscopic photograph of the carbon material, Fig. 2 is a graph showing the pore size distribution of the carbon material measured using a mercury boron meter, Fig. 3 is a microscopic photograph of the carbon material after resin impregnation treatment, and Fig. 4 is a graph showing the pore size distribution of the carbon material measured using a mercury boron meter. FIG. 2 is a longitudinal cross-sectional view illustrating an impregnated structure according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 カーボン材料の焼成時にバインダーの蒸発によつて
形成される開気孔の細孔部に、無機物質として燐酸アル
ミニウム、珪酸エチル又は硼酸を含浸処理し、その後、
樹脂含浸を行なうことを特徴とする気密質カーボン摺動
材料の製造方法。
1. The pores of the open pores formed by evaporation of the binder during firing of the carbon material are impregnated with aluminum phosphate, ethyl silicate, or boric acid as an inorganic substance, and then,
A method for producing an airtight carbon sliding material, characterized by impregnating it with a resin.
JP54018587A 1979-02-19 1979-02-19 Method for manufacturing airtight carbon sliding material Expired JPS5940197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54018587A JPS5940197B2 (en) 1979-02-19 1979-02-19 Method for manufacturing airtight carbon sliding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54018587A JPS5940197B2 (en) 1979-02-19 1979-02-19 Method for manufacturing airtight carbon sliding material

Publications (2)

Publication Number Publication Date
JPS55110193A JPS55110193A (en) 1980-08-25
JPS5940197B2 true JPS5940197B2 (en) 1984-09-28

Family

ID=11975752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54018587A Expired JPS5940197B2 (en) 1979-02-19 1979-02-19 Method for manufacturing airtight carbon sliding material

Country Status (1)

Country Link
JP (1) JPS5940197B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192063A (en) * 1989-01-19 1990-07-27 Nec Corp Optical disk device
JP5626715B2 (en) * 2009-02-02 2014-11-19 イーグル工業株式会社 Sliding member and mechanical seal
JP7064987B2 (en) * 2017-07-31 2022-05-11 日本特殊陶業株式会社 Ceramic joint

Also Published As

Publication number Publication date
JPS55110193A (en) 1980-08-25

Similar Documents

Publication Publication Date Title
US4986943A (en) Method for oxidation stabilization of pitch-based matrices for carbon-carbon composites
US3702279A (en) Fibrous thermal insulation and method for preparing same
US3671385A (en) Fibrous carbonaceous composites and method for manufacturing same
US4722817A (en) Method for production of continuous carbon fiber reinforced SiC composite
EP0335736B1 (en) Process for producing carbon/carbon composites
JP2002518285A (en) Graphite foam preform
GB893116A (en) Improvements in or relating to graphite bodies
JPS5940197B2 (en) Method for manufacturing airtight carbon sliding material
Song et al. Seal and wear properties of graphite from MCMBs/pitch-based carbon/phenolic-based carbon composites
Klingner et al. Wood-derived porous ceramics via infiltration of SiO2-sol and carbothermal reduction
JP3520530B2 (en) Carbon fiber reinforced carbon composite and sliding material
US4985316A (en) Corrosion resistant fuel cell substrates
GB1410090A (en) Reinforced carbon structures
US5026402A (en) Method of making a final cell electrode assembly substrate
KR100213315B1 (en) Manufacturing method of carbon-sintered body
JPH03329B2 (en)
CN110483090A (en) A kind of carbon/carbon composite and preparation method thereof
JPS59195514A (en) Molded impermeable carbon body and its manufacture
CN112524889B (en) Drying method of light dimensional ablation aerogel material
JP3186195B2 (en) Method for sealing defects in oxidation-resistant coating of carbon fiber reinforced carbon material
JPH10115396A (en) Manufacture of core material for vacuum insulation structure
KR0143615B1 (en) A method for manufacturing c/c composites of high thermal conductivity
JPS60260469A (en) Manufacture of carbon material
JPH0226818A (en) Carbonaceous material
US3758352A (en) Porous fibrous substrate structure produced in oxidizing atmosphere