JPS5888576A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS5888576A
JPS5888576A JP56188641A JP18864181A JPS5888576A JP S5888576 A JPS5888576 A JP S5888576A JP 56188641 A JP56188641 A JP 56188641A JP 18864181 A JP18864181 A JP 18864181A JP S5888576 A JPS5888576 A JP S5888576A
Authority
JP
Japan
Prior art keywords
heat
absorber
valve
heat exchanger
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56188641A
Other languages
Japanese (ja)
Other versions
JPH0253702B2 (en
Inventor
阿曽 伸一
照丸 原田
実 田頭
功 竹下
若松 伸彦
博由 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56188641A priority Critical patent/JPS5888576A/en
Publication of JPS5888576A publication Critical patent/JPS5888576A/en
Publication of JPH0253702B2 publication Critical patent/JPH0253702B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷暖房装置に関し、太陽熱を熱源として作動す
る吸収式冷凍装置を用いて、暖房給湯を必要とする場合
嵯太陽熱を有効に収集して室内を暖房しようとするもの
である。
[Detailed Description of the Invention] The present invention relates to a heating and cooling system, and uses an absorption refrigeration system that operates using solar heat as a heat source to effectively collect solar heat to heat a room when heating and hot water supply is required. It is.

従来太陽熱を利用する冷暖房装置としては、太陽熱集熱
器に水などの熱媒体を循環させ、顕熱として熱を取出し
、この熱により冷房期にはその熱を吸収式冷凍機のガス
発生器に供給し、この熱により冷媒を蒸発させて冷房を
行ない、一方、暖房期には太陽熱電熱器で集められた熱
により熱媒体を介して暖房を行なうものがあった。
Conventional air-conditioning systems that utilize solar heat circulate a heat medium such as water through a solar collector, extract heat as sensible heat, and use this heat to feed the gas generator of an absorption chiller during the cooling season. This heat is then used to evaporate the refrigerant to provide air conditioning.On the other hand, during the heating season, some systems use heat collected by solar electric heaters to perform heating via a heat medium.

第1図は従来の冷暖房装置の一例を示している。(1)
は太陽熱集熱器、(2)は温水循環ポンプ、(3)は水
臭化リチウム系吸収式冷凍機、(4)は吸収式冷凍機(
3)の加熱温水入口、(5)は加熱温水出口であり、(
6)は吸収式冷凍機(3)で作られた冷水の出口、(7
)は冷水の帰り口である。また(8)は室内熱交換器、
(9)QOQl)(2)叫α4は弁である。
FIG. 1 shows an example of a conventional heating and cooling system. (1)
is a solar heat collector, (2) is a hot water circulation pump, (3) is a lithium hydrobromide absorption refrigerator, and (4) is an absorption refrigerator (
3) is the heated hot water inlet, (5) is the heated hot water outlet, and (
6) is the outlet of the cold water produced by the absorption chiller (3), and (7)
) is the return point for cold water. In addition, (8) is an indoor heat exchanger,
(9) QOQl) (2) Scream α4 is a valve.

冷房に際しては、弁(9)αGを閉じ、弁αu aa 
aa(2)を開けば太陽熱により加熱された温水は吸収
式冷凍機(3)を作動させて、冷水が出口(6)より出
て室内熱交換器(8)に通じ、ここで室内が冷房される
For cooling, close valve (9) αG and close valve αu aa.
When the aa (2) is opened, the hot water heated by solar heat activates the absorption chiller (3), and the cold water comes out from the outlet (6) and passes through the indoor heat exchanger (8), where the room is cooled. be done.

暖房に際しては、弁(ロ)(2)(至)(ロ)を閉じ、
弁ψ)0Gを開けば、太陽熱により加熱された温水は、
室内熱交換器(8)に導かれて室内を暖房し、温度の低
下した水はポンプ(2)により太陽熱集熱器(1)に帰
される。
When heating, close valves (B) (2) (To) (B),
When the valve ψ)0G is opened, the hot water heated by solar heat will be
The water is guided to the indoor heat exchanger (8) to heat the room, and the water whose temperature has decreased is returned to the solar heat collector (1) by the pump (2).

しかしこのような冷暖房装置では、冷房の場合、温水を
介して吸収式冷凍機の発生器を加熱するため、発生器の
要求する温度よりさらに10℃以上高い加熱温水が必要
となり、熱損失も増加するばかりでなく、温水−環ポン
プなど補助動力が余分に必要である。
However, in this type of air-conditioning system, since the generator of the absorption chiller is heated through hot water, heated water that is at least 10 degrees Celsius higher than the temperature required by the generator is required, which also increases heat loss. Not only that, but additional auxiliary power such as a hot water ring pump is required.

この問題を解決する一方法として直接に太陽熱集熱器を
吸収式冷凍機の発生器とすることが考えられている。
One way to solve this problem is to directly use a solar heat collector as a generator for an absorption refrigerator.

第2図はこの原理による吸収式冷凍機を示している。(
ト)は太陽熱集熱器であるが、これは同時に吸収式冷凍
機の発生器である。αQは気液分離器、αηは凝縮器、
(至)は膨張弁、(6)は蒸発器、■は吸収器、(2)
は液循環ポンプ、に)は溶液熱交換器である。
FIG. 2 shows an absorption refrigerator based on this principle. (
g) is a solar heat collector, but it is also a generator for an absorption chiller. αQ is a gas-liquid separator, αη is a condenser,
(to) is an expansion valve, (6) is an evaporator, ■ is an absorber, (2)
is a liquid circulation pump, and ) is a solution heat exchanger.

この作用を説明すると、発生器(至)に、冷媒を多量に
溶かした濃溶液が流入すると、太陽輻射を受けて温度が
上昇し、冷媒ガスを蒸発させ、液は稀溶液となる。気液
分離器(至)で冷媒ガスと稀溶液は分離され、冷媒ガス
は管働を通って凝縮器(ロ)に至り、水または空気で冷
されて液化し、液化冷媒は室内に導かれて、膨張弁(2
)により膨張させられ、冷媒液は蒸発して、その蒸発熱
は蒸発器(6)において室内空気と熱交換し、室内を冷
却する。
To explain this effect, when a concentrated solution containing a large amount of refrigerant flows into the generator, the temperature rises due to solar radiation, evaporates the refrigerant gas, and the liquid becomes a dilute solution. The refrigerant gas and dilute solution are separated in the gas-liquid separator (2), and the refrigerant gas passes through the pipework to the condenser (2), where it is cooled with water or air and liquefied, and the liquefied refrigerant is led indoors. and expand the expansion valve (2
), the refrigerant liquid evaporates, and the heat of evaporation exchanges heat with indoor air in the evaporator (6) to cool the room.

そして蒸発した気体冷媒は吸収器−に導かれる。一方気
液分離器榊において分離された稀溶液は、管(ハ)を通
り溶液熱交換4働に入る。これは発生器(至)に送られ
る冷えた濃溶液と熱い稀溶液を熱交換させるもので、稀
溶液は冷却されて吸収器−に入る。この稀溶液は上記冷
媒ガスを吸収し濃溶液となるが、同時に発熱するので水
または空気により冷却されるため濃溶液の温度は水また
は空気の温度に近い。また吸収器四角は発生器(至)内
に比べて圧力が低いため、この濃溶液を発生器(至)に
送るには、循環ポンプ(2)が必要である。液循環ポン
プ四を出た液は上記溶液熱交換器働において加熱され発
生器(至)に送られて1つのサイクルが完成する。
The evaporated gaseous refrigerant is then led to an absorber. On the other hand, the dilute solution separated in the gas-liquid separator Sakaki passes through the pipe (c) and enters the solution heat exchange system. This exchanges heat between the cold concentrated solution sent to the generator and the hot diluted solution, with the diluted solution being cooled and entering the absorber. This dilute solution absorbs the refrigerant gas and becomes a concentrated solution, but at the same time it generates heat and is cooled by water or air, so the temperature of the concentrated solution is close to that of water or air. Also, since the pressure in the absorber square is lower than in the generator (to), a circulation pump (2) is required to send this concentrated solution to the generator (to). The liquid coming out of the liquid circulation pump 4 is heated by the solution heat exchanger and sent to the generator to complete one cycle.

この吸収式冷凍機は熱の有効利用がはかられ、補助動力
が液循環ポンプのみでよいというすぐれた利点を持って
いるが、冷房システムであって暖房期に暖房を目的とし
て使用することはできない。しかし圧縮式冷房装置の凝
縮器と蒸発器を逆にすることによってヒートポンプとし
て暖房に使用できるように、上記吸収式の装置において
も同様な使い方が不可能ではない。
This absorption chiller has the advantage of making effective use of heat and requiring only a liquid circulation pump as auxiliary power, but it is a cooling system and cannot be used for heating purposes during the heating season. Can not. However, just as a compression type air conditioner can be used for heating as a heat pump by reversing the condenser and evaporator, it is not impossible to use the absorption type device in the same way.

しかし暖房を必要とする季節には太陽熱が弱く気温が低
いため、発生器の温度は十分上らず、一方凝縮器は被暖
房空間に置かれており、凝縮温度は簾に比べて低くはな
いから、満足に動作させることは難しい。
However, in the season when heating is required, the solar heat is weak and the temperature is low, so the temperature of the generator does not rise sufficiently.On the other hand, the condenser is placed in the space to be heated, so the condensation temperature is not as low as that of the blinds. Therefore, it is difficult to operate satisfactorily.

本発明はこの点を改善し、太陽熱集熱器に冷媒溶媒混合
溶液を直接循環させる太陽熱吸収冷房装置において、暖
房期には太陽熱を効率よく室内に輸送し、暖房を行わせ
るように改善したものである。
The present invention improves this point and improves the solar heat absorption cooling device that directly circulates a refrigerant solvent mixture solution to a solar heat collector so that solar heat is efficiently transported indoors during the heating season to perform heating. It is.

以下、本発明をその一実施例を示す第3図を参考に説明
する。(2)は太陽熱を集熱する集熱器兼ガス発生器、
(ホ)は気液分離器、勃は凝縮器、に)は膨張弁、翰は
室内熱交換器、勾は水冷式の吸収器、(2)はその冷却
水入口、に)は同出口である。に)は液送ポンプ、鱒は
熱交換器であり、■は冷媒ガス通路(至)と凝縮器(財
)間に設けた弁、(財)は室外熱交換器四と吸収器−の
間に設けた弁である。弁Gll、2:気液分離器(7)
の区間から、弁(2)と吸収器■の区間を結ぶ配管(至
)は途中にこの通路を開閉する弁■と、流量を調整する
スロットル弁−゛が設けられる。又(転)は圧縮式冷凍
機、−は水冷式の室外熱交換器、轡は室内熱交換器、−
は四方切換弁、−は吸収器■及び室外熱交換器−の冷却
水入口、−は同出口、−は水循環ポンプであり、吸収器
冷却水入口匈は水冷式室外熱 −交換器をへて水循環ポ
ンプ四を介して吸収器冷却水入口(2)に連結されてい
る。又、膨張弁−は室外熱交換器−と室内熱交換!l@
とを結ぶ蕾路に取り付けられている。しかして、冷房時
の動作は、第2図に示したと全く同様で、吸収器(7)
で生じた濃溶液は液送ポンプ(2)により熱交換器−を
通り集熱器兼ガス発生器(2)に入り、冷媒ガスを発生
する。冷媒ガスは気液分離器(ホ)、通路に)を通るが
、冷房時は弁曽を閉じ、弁(至)を開く結果、冷媒ガス
は凝縮器(財)に入り液化し、膨張弁(ハ)より室内熱
交換器四に入る。そして弁(2)を開けば、蒸発した冷
媒ガスは弁に)より吸収器(1)に入る。一方ガスを放
出した稀溶液は、熱交換器(財)を通り吸収器■に入っ
てサイクルが閉じる。
Hereinafter, the present invention will be explained with reference to FIG. 3 showing one embodiment thereof. (2) is a heat collector and gas generator that collects solar heat;
(E) is the gas-liquid separator, B is the condenser, B) is the expansion valve, K is the indoor heat exchanger, G is the water-cooled absorber, (2) is the cooling water inlet, and N) is the same outlet. be. 2) is the liquid feed pump, the trout is the heat exchanger, ■ is the valve installed between the refrigerant gas passage (to) and the condenser (goods), and (goods) is the valve between the outdoor heat exchanger 4 and the absorber. This is a valve installed in the Valve Gll, 2: Gas-liquid separator (7)
The piping (to) connecting the section between the valve (2) and the absorber (2) is provided with a valve (2) that opens and closes this passage, and a throttle valve (2) that adjusts the flow rate. Also, (trans) is a compression refrigerator, - is a water-cooled outdoor heat exchanger, 轡 is an indoor heat exchanger, -
is a four-way switching valve, - is the cooling water inlet of the absorber ■ and the outdoor heat exchanger, - is the same outlet, - is the water circulation pump, and the absorber cooling water inlet is the water-cooled outdoor heat exchanger. It is connected to the absorber cooling water inlet (2) via a water circulation pump 4. Also, the expansion valve is used for indoor heat exchange with the outdoor heat exchanger! l@
It is attached to the bud road that connects the The operation during cooling is exactly the same as shown in Figure 2, and the absorber (7)
The concentrated solution produced in step 1 passes through a heat exchanger and enters a heat collector/gas generator (2) by means of a liquid feed pump (2) to generate refrigerant gas. The refrigerant gas passes through the gas-liquid separator (E) and the passageway. During cooling, the valve is closed and the valve is opened. As a result, the refrigerant gas enters the condenser and is liquefied, passing through the expansion valve ( c) Enter indoor heat exchanger 4. Then, when the valve (2) is opened, the evaporated refrigerant gas enters the absorber (1) via the valve. On the other hand, the dilute solution that has released gas passes through a heat exchanger and enters the absorber ■, closing the cycle.

又、室内熱交換器四に十分な冷房出力が得られない時に
は、圧縮式冷凍機(2)を運転し、室内熱交換器−にて
冷房出力を補助する。
Furthermore, when sufficient cooling output cannot be obtained from the indoor heat exchanger 4, the compression refrigerator (2) is operated to supplement the cooling output with the indoor heat exchanger 4.

暖房あるいは給湯の必要な時には、弁(至)、に)i閉
じ、弁曽を開き、弁−を調整して発生器(2)と吸収器
■の間に、0.5b/at?程度の圧力差を生ぜしめる
と、発生した冷媒ガスは、集熱器兼ガス発生器(2)か
ら気液分離器(ホ)、通路−を経て吸収器(7)に流入
する。一方稀溶液は、集熱器兼ガス発生器(2)と吸収
器−の間の圧力差によって吸収器■に流入し、冷媒ガス
と混合し溶解するため、集熱器兼ガス発生器四で冷媒ガ
スを蒸発せしめるに要した熱量にほぼ等しい熱量を、溶
解の際に放出するが、吸収器■は冷水人口09より冷却
水が流入しているので、この水が、この溶解熱によって
加熱され、温水出口(至)より温水を得ることができる
。ここで、四方切換弁−にて圧縮式冷凍機(2)、室内
熱交換器−1膨張弁−1室外熱交換器−を連ねる管路に
てヒートポンプサイクルを構成し、温水出口に)より得
られた温水を゛水循環ポンプ四にて室外熱交換器−に流
し、圧縮式冷凍機−を運転すると、吸収器(7)の吸収
熱は温水を介してヒートポンプサイクルの冷媒蒸気に汲
み上げられて、室内熱交換器−にてさらに高い温度で凝
縮し、大きな暖房出力、萬温度の温風が得られ、住宅の
暖房に供することができる。この時、温水温度は、直接
暖房に使用する事ができる温度40〜so’bより低く
できるため、太陽熱集熱発生器四は低い温度で運転でき
、集熱効率を大きくでき、少ない太陽日射でも十分大な
る熱入力を得ることができる結果、高効率である。
When space heating or hot water supply is required, close the valve (to), open the valve (to), adjust the valve and apply 0.5b/at? between the generator (2) and the absorber (2). When a certain degree of pressure difference is generated, the generated refrigerant gas flows from the heat collector/gas generator (2), through the gas-liquid separator (e), and into the absorber (7) through the passage. On the other hand, the dilute solution flows into the absorber (■) due to the pressure difference between the heat collector and gas generator (2) and the absorber, mixes with the refrigerant gas, and dissolves in the heat collector and gas generator (4). An amount of heat approximately equal to the amount of heat required to evaporate the refrigerant gas is released during melting, but since cooling water is flowing into the absorber ■ from the cold water population 09, this water is heated by this heat of dissolution. , hot water can be obtained from the hot water outlet. Here, a heat pump cycle is constructed with a conduit that connects a compression refrigerator (2) with a four-way switching valve, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger. When the hot water is passed through the outdoor heat exchanger by the water circulation pump 4 and the compression refrigerator is operated, the absorbed heat of the absorber (7) is pumped up to the refrigerant vapor of the heat pump cycle through the hot water. It is condensed at an even higher temperature in an indoor heat exchanger, producing large heating output and hot air with a temperature of 10,000 yen, which can be used to heat homes. At this time, the hot water temperature can be lower than the temperature 40~so'b that can be used for direct heating, so the solar heat collection generator 4 can be operated at a low temperature, increasing the heat collection efficiency, and even less solar radiation is sufficient. As a result of being able to obtain a large heat input, the efficiency is high.

又、温水温度は、外気温度に比して高いので、室外熱交
換器−で蒸発する冷媒蒸気圧力は高くなり、圧縮式冷凍
機(ロ)の吸入圧力を上昇させるので、わずかの圧力の
加圧でよく、従って圧縮式冷凍機の消費電力はわずかで
すむ。
In addition, since the hot water temperature is higher than the outside air temperature, the refrigerant vapor pressure evaporated in the outdoor heat exchanger increases, increasing the suction pressure of the compression refrigerator (b), so a slight increase in pressure is required. Therefore, compression refrigerators consume only a small amount of power.

又、太陽日射の得られない夜間などは、この温水を蓄熱
槽に貯め、必要に応じて室外熱交換器(転)に流して圧
縮式冷凍機ゆを運転すれば、低い温水温度でも高い温風
温度が得られるので長時間、温水出力を有効に利用でき
る。
In addition, at night when there is no solar radiation, this hot water can be stored in a heat storage tank and flowed to an outdoor heat exchanger (transfer) as needed to operate a compression chiller, allowing even low hot water temperatures to reach high temperatures. Since the wind temperature can be obtained, the hot water output can be used effectively for a long time.

この手段を従来の水の顕熱で熱輸送を行う方法と比べる
と、従来の手段の場合は、風等で冷却され易い屋外で高
温の湯を循環させねばならず、十分な断熱工事を施さな
いかぎり、輸送中の損失が非常に大きなものとなる。こ
れに反し、この新しい手段によれば、熱の輸送は主とし
てガスによって行われ、熱の授受は、冷媒ガスの蒸発と
吸収により行われるもので、少い物質の移動で大きな熱
量が搬ばれるため、輸送中の損失が極めて少い。
Comparing this method with the conventional method of transporting heat using the sensible heat of water, in the case of the conventional method, high-temperature hot water must be circulated outdoors where it is easily cooled by wind, etc., and sufficient insulation work is not required. Otherwise, losses during transportation will be very large. On the other hand, according to this new method, heat is mainly transported by gas, and heat is exchanged by evaporation and absorption of refrigerant gas. , loss during transportation is extremely low.

これを又、比較的類似の手段である純粋な冷媒物質の蒸
発、凝縮−で熱を輸送する手段と比較しても、同一の凝
縮温度又は吸収温度の条件の下で、蒸発凝縮のサイクル
は、蒸発吸収のサイクルよりはるかにガスの圧力が高く
なるため、配管途中に凝縮器の温度より低い温度の部分
が存在すると、そこで凝縮がおこり、熱を放出してしま
う危険があった。しかし本発明の場合は、途中の管壁温
度が吸収器−よりはるかに低い温度にならないかぎり途
中での凝縮は生じないため、あまり厳重な断熱をガス配
管に施こす必要がないので実施がきわめて容易である。
Comparing this with a relatively similar means of transporting heat by evaporation and condensation of pure refrigerant material, under the same condensation or absorption temperature conditions, the evaporation-condensation cycle is Since the pressure of the gas is much higher than in the evaporation-absorption cycle, if there is a part of the pipe with a temperature lower than that of the condenser, there is a risk that condensation will occur there and heat will be released. However, in the case of the present invention, condensation does not occur in the middle unless the pipe wall temperature in the middle becomes much lower than that in the absorber, so there is no need to provide very strict insulation to the gas pipe, making it extremely difficult to implement. It's easy.

以上のように本発明は、太陽熱利用技術の中で最も重要
な熱輸送中の熱損失を極めて少くした直熱型の冷暖房装
置において、さらに熱損失の問題が重要な冬期に、非常
に少い熱損失で熱輪幽でき、高い温風温度の暖房が効率
よく得られ、優れた効果を奏するものである。
As described above, the present invention is a direct heating type air-conditioning system that extremely reduces heat loss during heat transport, which is the most important solar heat utilization technology, and also in winter when the issue of heat loss is extremely important. Heat can be reduced through heat loss, heating with high temperature air can be efficiently achieved, and excellent effects can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷暖房装置の構成図、第2図は従来の直
熱型冷房装置の説明図、第3図は本発明の一実施例を示
す冷暖房装置の構成図である。    ・ (ホ)は集熱器兼ガス発生器、(ホ)は気液分離器、(
財)は凝縮器、(2)は膨張弁、■は冷房用室内熱交換
器(蒸発器)、■は吸収器、に)は液送ポンプ、(2)
は熱交換器、g4に)(至)は弁、−は流量調整弁、り
は圧縮式冷凍機、彎は室外熱交換器、−は室内熱交換器
、−は四方切換弁、(ロ)は循環ポンプ、−は膨張弁で
ある。 特許出願人代理人 〕・1図
FIG. 1 is a configuration diagram of a conventional air conditioning system, FIG. 2 is an explanatory diagram of a conventional direct heating type cooling system, and FIG. 3 is a configuration diagram of a heating and cooling system showing an embodiment of the present invention.・ (E) is a heat collector and gas generator, (E) is a gas-liquid separator, (
Product) is a condenser, (2) is an expansion valve, ■ is an indoor heat exchanger for cooling (evaporator), ■ is an absorber, (2) is a liquid pump, (2)
is the heat exchanger, g4) (to) is the valve, - is the flow rate adjustment valve, ri is the compression refrigerator, curvature is the outdoor heat exchanger, - is the indoor heat exchanger, - is the four-way switching valve, (b) is a circulation pump, - is an expansion valve. Patent applicant agent〕・Figure 1

Claims (1)

【特許請求の範囲】[Claims] 少なくとも発生器、凝縮器、蒸発器、吸収器およびポン
プを連結し、前記発生器と前記吸収器の間に開閉可能な
弁を有する管路を設け、別系統の圧縮式冷凍機のヒート
ポンプサイクルの冷媒と前記吸収器の溶液とを熱交換さ
せる熱交換器を設け、前記管路の弁を開いて冷暖房装置
の一部を短絡させたときに前記室外熱交換器を介して前
記吸収器の吸収熱を前記圧縮冷凍機の冷媒に与えるよう
にした冷暖房装置。
At least a generator, a condenser, an evaporator, an absorber, and a pump are connected, and a pipeline having a valve that can be opened and closed is provided between the generator and the absorber, and a heat pump cycle of a compression refrigerator in a separate system is provided. A heat exchanger is provided to exchange heat between the refrigerant and the solution in the absorber, and when the valve of the pipe line is opened to short-circuit a part of the air conditioning system, the absorption in the absorber is performed via the outdoor heat exchanger. A heating and cooling device that applies heat to the refrigerant of the compression refrigerator.
JP56188641A 1981-11-24 1981-11-24 Air conditioner Granted JPS5888576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56188641A JPS5888576A (en) 1981-11-24 1981-11-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56188641A JPS5888576A (en) 1981-11-24 1981-11-24 Air conditioner

Publications (2)

Publication Number Publication Date
JPS5888576A true JPS5888576A (en) 1983-05-26
JPH0253702B2 JPH0253702B2 (en) 1990-11-19

Family

ID=16227262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56188641A Granted JPS5888576A (en) 1981-11-24 1981-11-24 Air conditioner

Country Status (1)

Country Link
JP (1) JPS5888576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255528A (en) * 1984-05-31 1985-12-17 Mitsubishi Electric Corp Cooler for car

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563364A (en) * 1978-11-08 1980-05-13 Kogyo Gijutsuin High temperature heat pump system
JPS5599565A (en) * 1979-01-25 1980-07-29 Matsushita Electric Ind Co Ltd Solar heat absorption type cooling* heating and hot water supply equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563364A (en) * 1978-11-08 1980-05-13 Kogyo Gijutsuin High temperature heat pump system
JPS5599565A (en) * 1979-01-25 1980-07-29 Matsushita Electric Ind Co Ltd Solar heat absorption type cooling* heating and hot water supply equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255528A (en) * 1984-05-31 1985-12-17 Mitsubishi Electric Corp Cooler for car
JPH0419044B2 (en) * 1984-05-31 1992-03-30 Mitsubishi Electric Corp

Also Published As

Publication number Publication date
JPH0253702B2 (en) 1990-11-19

Similar Documents

Publication Publication Date Title
US4070870A (en) Heat pump assisted solar powered absorption system
CN102705925B (en) A kind of dual-source heat pump air conditioner
CN108759142B (en) Special cascade air source high-temperature heat pump cooling and heating system
CN109357426B (en) Combined air conditioning system for machine room and control method thereof
CN1137359C (en) Lithium bromide absorption type refrigerator suitable for large temp differnece and able to fully utilize energy
CN111750418A (en) Heat pipe type photovoltaic photo-thermal module-heat pump-phase change material coupling system and method
US8726684B2 (en) Reversible system for recovering of heat energy by sampling and transfer of calories from one or more media into one or more other such media
CN105953485A (en) Heat exchange method and system and heat pump system with defrosting function
GB2585672A (en) Heating and cooling system
CN203413743U (en) Heat pipe and heat pump composite system
CN214371045U (en) Double-water-temperature water outlet variable-frequency air source heat pump system
JPS5815701B2 (en) Solar heat absorption type air conditioning and water heater
JPS5888576A (en) Air conditioner
JP2000292082A (en) Underground heat storage system
CN104567073B (en) Air conditioner circulating system
CN205174945U (en) Air conditioning system
CN110207519B (en) Series-parallel loop two-phase thermosiphon
CN216244676U (en) Air conditioner water heater
CN219416731U (en) Enthalpy difference laboratory of air conditioner
CN102589204A (en) Refrigeration circulating system with separated heat pipe loop coupled with evaporator
JPS58108372A (en) Air-conditioning hot-water supply device
JPH0471142B2 (en)
JPS5816110B2 (en) solar heating and cooling equipment
CN205373148U (en) Novel evaporation formula ground can compound unit of heat pump
JPS6358062A (en) Cooling device by circulation of refrigerant