JPH0253702B2 - - Google Patents

Info

Publication number
JPH0253702B2
JPH0253702B2 JP56188641A JP18864181A JPH0253702B2 JP H0253702 B2 JPH0253702 B2 JP H0253702B2 JP 56188641 A JP56188641 A JP 56188641A JP 18864181 A JP18864181 A JP 18864181A JP H0253702 B2 JPH0253702 B2 JP H0253702B2
Authority
JP
Japan
Prior art keywords
heat
absorber
heat exchanger
generator
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56188641A
Other languages
Japanese (ja)
Other versions
JPS5888576A (en
Inventor
Shinichi Aso
Terumaru Harada
Minoru Tagashira
Isao Takeshita
Nobuhiko Wakamatsu
Hiroyoshi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56188641A priority Critical patent/JPS5888576A/en
Publication of JPS5888576A publication Critical patent/JPS5888576A/en
Publication of JPH0253702B2 publication Critical patent/JPH0253702B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

【発明の詳細な説明】 本発明は冷暖房装置に関し、太陽熱を熱源とし
て作動する吸収式冷凍装置を用いて、暖房給湯を
必要とする場合に太陽熱を有効に収集して室内を
暖房しようとするものである。
[Detailed Description of the Invention] The present invention relates to a heating and cooling system, and uses an absorption refrigeration system that operates using solar heat as a heat source to effectively collect solar heat to heat a room when heating and hot water supply is required. It is.

従来太陽熱を利用する冷暖房装置としては、太
陽熱集熱器に水などの熱媒体を循環させ、顕熱と
して熱を取出し、この熱により冷房期にはその熱
を吸収式冷凍機のガス発生器に供給し、この熱に
より冷媒を蒸発させて冷房も行ない、一方、暖房
期には太陽熱集熱器で集められた熱により熱媒体
を介して暖房を行なうものがあつた。
Conventional air-conditioning systems that utilize solar heat circulate a heat medium such as water through a solar collector, extract heat as sensible heat, and use this heat to feed the gas generator of an absorption chiller during the cooling season. This heat is used to evaporate the refrigerant and perform air conditioning. On the other hand, during the heating season, some systems use the heat collected by solar collectors to perform heating via a heat medium.

第1図は従来の冷暖房装置の一例を示してい
る。1は太陽熱集熱器、2は温水循環ポンプ、3
は水臭化リチウム系吸収式冷凍機、4は吸収式冷
凍機3の加熱温水入口、5は加熱温水出口であ
り、6は吸収式冷凍機3で作られた冷水の出口、
7は冷水の帰り口である。また8は室内熱交換
器、9,10,11,12,13,14は弁であ
る。
FIG. 1 shows an example of a conventional heating and cooling system. 1 is a solar heat collector, 2 is a hot water circulation pump, 3
is a lithium hydrobromide-based absorption refrigerator, 4 is a heating hot water inlet of the absorption refrigerator 3, 5 is a heating hot water outlet, 6 is an outlet of cold water produced by the absorption refrigerator 3,
7 is the return point for cold water. Further, 8 is an indoor heat exchanger, and 9, 10, 11, 12, 13, and 14 are valves.

冷房に際しては、弁9,10を閉じ、弁11,
12,13,14を開けば太陽熱により加熱され
た温水は吸収式冷凍機3を作動させて、冷水が出
口6より出て室内熱交換器8に通じ、ここで室内
が冷房される。
When cooling, valves 9 and 10 are closed, and valves 11 and 10 are closed.
12, 13, and 14 are opened, the hot water heated by solar heat operates the absorption refrigerator 3, and the cold water exits from the outlet 6 and passes through the indoor heat exchanger 8, where the room is cooled.

暖房に際しては、弁11,12,13,14を
閉じ、弁9,10を開けば、太陽熱により加熱さ
れた温水は、室内熱交換器8に導かれて室内を暖
房し、温度の低下した水はポンプ2により太陽熱
集熱器1に帰される。
For heating, when valves 11, 12, 13, and 14 are closed and valves 9 and 10 are opened, the hot water heated by solar heat is led to the indoor heat exchanger 8 to heat the room, and the water whose temperature has decreased is is returned to the solar heat collector 1 by the pump 2.

しかしこのような冷暖房装置では、冷房の場
合、温水を介して吸収式冷凍機の発生器を加熱す
るため、発生器の要求する温度よりさらに10℃以
上高い加熱温水が必要となり、熱損失も増加する
ばかりでなく、温水循環ポンプなど補助動力が余
分に必要である。
However, in this type of air conditioning system, since the generator of the absorption chiller is heated via hot water, heated water that is at least 10°C higher than the temperature required by the generator is required, which also increases heat loss. Not only that, but additional auxiliary power such as a hot water circulation pump is required.

この問題を解決する一方法として直接に太陽熱
集熱器を吸収式冷凍機の発生器とすることが考え
られている。
One way to solve this problem is to directly use a solar heat collector as a generator for an absorption refrigerator.

第2図はこの原理による吸収式冷凍機を示して
いる。15は太陽熱集熱器であるが、これは同時
に吸収式冷凍機の発生器である。16は気液分離
器、17は凝縮器、18は膨脹弁、19は蒸発
器、20は吸収器、21は液循環ポンプ、22は
溶液熱交換器である。
FIG. 2 shows an absorption refrigerator based on this principle. 15 is a solar heat collector, which is also a generator for an absorption refrigerator. 16 is a gas-liquid separator, 17 is a condenser, 18 is an expansion valve, 19 is an evaporator, 20 is an absorber, 21 is a liquid circulation pump, and 22 is a solution heat exchanger.

この作用を説明すると、発生器15に、冷媒を
多量に溶かした濃溶液が流入すると、太陽幅射を
受けて温度が上昇し、冷媒ガスを蒸発させ、液は
稀溶液となる。気液分離器16で冷媒ガスと稀溶
液は分離され、冷媒ガスは管23を通つて凝縮器
17に至り、水または空気で冷されて液化し、液
化冷媒は室内に導かれて、膨脹弁18により膨脹
させられ、冷媒液は蒸発して、その蒸発熱は蒸発
器19において室内空気と熱交換し、室内を冷却
する。
To explain this effect, when a concentrated solution in which a large amount of refrigerant is dissolved flows into the generator 15, the temperature rises due to solar radiation, evaporates the refrigerant gas, and the liquid becomes a dilute solution. The refrigerant gas and the dilute solution are separated in the gas-liquid separator 16, and the refrigerant gas passes through the pipe 23 to the condenser 17, where it is cooled with water or air and liquefied.The liquefied refrigerant is led indoors and passes through the expansion valve. 18, the refrigerant liquid evaporates, and the heat of evaporation is exchanged with indoor air in the evaporator 19 to cool the room.

そして蒸発した気体冷媒は吸収器20に導かれ
る。一方気液分離器16において分離された稀溶
液は、管24を通り溶液熱交換器22に入る。こ
れは発生器15に送られる冷えた濃溶液と熱い稀
溶液を熱交換させるもので、稀溶液は冷却されて
吸収器20に入る。この稀溶液は上記冷媒ガスを
吸収し濃溶液となるが、同時に発熱するので水ま
たは空気により冷却されるための濃溶液の温度は
水または空気の温度に近い。または吸収器20内
は発生器15内に比べて圧力が低いため、この濃
溶液を発生器15に送るには、循環ポンプ21が
必要である。液循環ポンプ21を出た液は上記溶
液熱交換器22において加熱され発生器15に送
られて1つのサイクルが完成する。
The evaporated gas refrigerant is then led to the absorber 20. On the other hand, the dilute solution separated in the gas-liquid separator 16 passes through the pipe 24 and enters the solution heat exchanger 22 . This causes a heat exchange between the cold concentrated solution sent to the generator 15 and the hot dilute solution, which is cooled and enters the absorber 20. This dilute solution absorbs the refrigerant gas and becomes a concentrated solution, but at the same time it generates heat, so the temperature of the concentrated solution, which is cooled by water or air, is close to that of water or air. Alternatively, since the pressure inside the absorber 20 is lower than that inside the generator 15, a circulation pump 21 is required to send this concentrated solution to the generator 15. The liquid exiting the liquid circulation pump 21 is heated in the solution heat exchanger 22 and sent to the generator 15, completing one cycle.

この吸収式冷凍機は熱の有効利用がはかられ、
補助動力が液循環ポンプのみでよいというすぐれ
た利点を持つているが、冷房システムであつて暖
房期に暖房を目的として使用することはできな
い。しかし圧縮式冷房装置の凝縮器と蒸発器を逆
にすることによつてヒートポンプとして暖房に使
用できるように、上記吸収式の装置においても同
様な使い方が不可能ではない。しかし暖房を必要
とする季節には太陽熱が弱く気温が低いため、発
生器の温度は十分上らず、一方凝縮器は被暖房空
間に置かれており、凝縮温度は夏に比べて低くは
ないから、満足に動作させることは難しい。
This absorption chiller makes effective use of heat,
Although it has the advantage of requiring only a liquid circulation pump as auxiliary power, it is a cooling system and cannot be used for heating purposes during the heating season. However, just as a compression type air conditioner can be used as a heat pump for heating by reversing the condenser and evaporator, it is not impossible to use the absorption type device in the same way. However, in the season when heating is required, the solar heat is weak and the temperature is low, so the temperature of the generator does not rise sufficiently.On the other hand, the condenser is placed in the space to be heated, so the condensing temperature is not lower than in summer. Therefore, it is difficult to operate satisfactorily.

本発明はこの点を改善し、太陽熱集熱器に冷媒
溶媒混合溶液を直接循環させる太陽熱吸収冷房装
置において、暖房期には太陽熱を効率よく室内に
輸送し、暖房を行わせるように改善したものであ
る。
The present invention improves this point and improves the solar heat absorption cooling device that directly circulates a refrigerant solvent mixture solution to a solar heat collector so that solar heat is efficiently transported indoors during the heating season to perform heating. It is.

以下、本発明をその一実施例を示す第3図を参
考に説明する。25は太陽熱を集熱する集熱器兼
ガス発生器、26は気液分離器、27は凝縮器、
28は膨脹弁、29は室内熱交換器、30は水冷
式の吸収器、31はその冷却水入口、32は同出
口である。33は液送ポンプ、34は熱交換器で
あり、35は冷媒ガス通路36と凝縮器27に設
けた弁、37は室内熱交換器29と吸収器30の
間に設けた弁である。弁35と気液分離器26の
区間から、弁37と吸収器30の区間を結ぶ配管
38は途中にこの通路を開閉する弁39と、流量
を調整するスロツトル弁40が設けられる。又4
1は圧縮式冷凍機、42は水冷式の室外熱交換
器、43は室内熱交換器、44は四方切換弁、4
5は吸収器30及び室外熱交換器42の冷却水入
口、46は同出口、47は水循環ポンプであり、
吸収器冷却水出口32は水冷式室外熱交換器をへ
て水循環ポンプ47を介して吸収器冷却水入口に
連結されている。又、膨脹弁48は室外熱交換器
42と室内熱交換器43とを結ぶ管路に取り付け
られている。しかして、冷房時の動作は、第2図
に示したと全く同様で、吸収器30で生じた濃溶
液は液送ポンプ33により熱交換器34を通り集
熱器兼ガス発生器25に入り、冷媒ガスを発生す
る。冷媒ガスは気液分離器26、通路36を通る
が、冷房時は弁39を閉じ、弁35を開く結果、
冷媒ガスは凝縮器27に入り液化し、膨脹弁28
より室内熱交換器29に入る。そして弁37を開
けば、蒸発した冷媒ガスは弁37より吸収器30
に入る。一方ガスを放出した稀溶液は、熱交換器
34を通り吸収器30に入つてサイクルが閉じ
る。又、室内熱交換器29に十分な冷房出力が得
られない時には、圧縮式冷凍機41を運転し、室
内熱交換器43にて冷房出力を補助する。
Hereinafter, the present invention will be explained with reference to FIG. 3 showing one embodiment thereof. 25 is a heat collector and gas generator that collects solar heat, 26 is a gas-liquid separator, 27 is a condenser,
28 is an expansion valve, 29 is an indoor heat exchanger, 30 is a water-cooled absorber, 31 is a cooling water inlet thereof, and 32 is an outlet thereof. 33 is a liquid feed pump, 34 is a heat exchanger, 35 is a valve provided between the refrigerant gas passage 36 and the condenser 27, and 37 is a valve provided between the indoor heat exchanger 29 and the absorber 30. A pipe 38 connecting a section between the valve 35 and the gas-liquid separator 26 and a section between the valve 37 and the absorber 30 is provided with a valve 39 for opening and closing this passage and a throttle valve 40 for adjusting the flow rate. Also 4
1 is a compression refrigerator, 42 is a water-cooled outdoor heat exchanger, 43 is an indoor heat exchanger, 44 is a four-way switching valve, 4
5 is a cooling water inlet of the absorber 30 and the outdoor heat exchanger 42, 46 is an outlet thereof, 47 is a water circulation pump,
The absorber cooling water outlet 32 is connected to the absorber cooling water inlet via a water circulation pump 47 via a water-cooled outdoor heat exchanger. Further, the expansion valve 48 is attached to a conduit connecting the outdoor heat exchanger 42 and the indoor heat exchanger 43. Therefore, the operation during cooling is exactly the same as shown in FIG. Generates refrigerant gas. Refrigerant gas passes through the gas-liquid separator 26 and the passage 36, but during cooling, the valve 39 is closed and the valve 35 is opened.
The refrigerant gas enters the condenser 27 and is liquefied, and the expansion valve 28
It then enters the indoor heat exchanger 29. Then, when the valve 37 is opened, the evaporated refrigerant gas is transferred from the valve 37 to the absorber 30.
to go into. Meanwhile, the dilute solution that has released gas passes through the heat exchanger 34 and enters the absorber 30 to close the cycle. Furthermore, when sufficient cooling output cannot be obtained from the indoor heat exchanger 29, the compression refrigerator 41 is operated and the indoor heat exchanger 43 assists the cooling output.

暖房あるいは給湯の必要な時には、弁35,3
7を閉じ、弁39を開き、弁40を調整して発生
器25と吸収器30の間に0.5Kg/cm2程度の圧力
差を生ぜじめると、発生した冷媒ガスは、集熱器
兼ガス発生器25から気液分離器26、通路38
を経て吸収器30に流入する。一方稀溶液は、集
熱器兼ガス発生器25と吸収器30の間の圧力差
によつて吸収器30を流入し、冷媒ガスと混合し
溶解するため、集熱器兼ガス発生器25で冷媒ガ
スを蒸発せしめるに要した熱量にほぼ等しい熱量
を、溶解の際に放出するが、吸収器30は冷水入
口31より冷却水が流入しているので、この水
が、この溶解熱によつて加熱され、温水出口32
より温水を得ることができる。ここで、四方切換
弁44にて圧縮式冷凍機41、室内熱交換器4
3、膨脹弁48、室外熱交換器42に連ねる管路
にてヒートポンプサイクルを構成し、温水出口3
2より得られた温水を水循環ポンプ47にて室外
熱交換器42に流し、圧縮式冷凍機41を運転す
ると、吸収器30の吸収熱は温水を介してヒート
ポンプサイクルの冷媒蒸気に汲み上げられて、室
内熱交換器43にてさらに高い温度で凝縮し、大
きな暖房出力、高温度の温風が得られ、住宅の暖
房に供することができる。この時、温水温度は、
直接暖房に使用する事ができる温度40〜50℃より
低くできるため、太陽熱集熱発生器25は低い温
度で運転でき、集熱効率も大きくでき、少ない太
陽日射でも十分大なる熱入力を得ることができる
結果、高効率である。
When heating or hot water supply is required, valves 35, 3
7 is closed, valve 39 is opened, and valve 40 is adjusted to create a pressure difference of about 0.5 Kg/cm 2 between generator 25 and absorber 30, the generated refrigerant gas is transferred to the collector. From the double gas generator 25 to the gas-liquid separator 26 and the passage 38
It flows into the absorber 30 through the. On the other hand, the dilute solution flows into the absorber 30 due to the pressure difference between the collector and gas generator 25 and the absorber 30, mixes with the refrigerant gas, and dissolves in the collector and gas generator 25. An amount of heat approximately equal to the amount of heat required to evaporate the refrigerant gas is released during melting, but since cooling water flows into the absorber 30 from the cold water inlet 31, this water is absorbed by the heat of dissolution. heated, hot water outlet 32
You can get hotter water. Here, the four-way switching valve 44 connects the compression refrigerator 41 and the indoor heat exchanger 4.
3. The expansion valve 48 and the pipe line connected to the outdoor heat exchanger 42 constitute a heat pump cycle, and the hot water outlet 3
When the hot water obtained in step 2 is passed through the outdoor heat exchanger 42 by the water circulation pump 47 and the compression refrigerator 41 is operated, the absorbed heat of the absorber 30 is pumped up to the refrigerant vapor of the heat pump cycle through the hot water. The air is condensed at a higher temperature in the indoor heat exchanger 43, resulting in a large heating output and high temperature hot air, which can be used to heat a house. At this time, the hot water temperature is
Since the temperature can be lower than the 40 to 50°C that can be used for direct heating, the solar heat collection generator 25 can be operated at a low temperature, the heat collection efficiency can be increased, and a sufficiently large heat input can be obtained even with low solar radiation. The result is high efficiency.

又、温水温度は、外気温度に比して高いので、
室外熱交換器42で蒸発する冷媒蒸気圧力は高く
なり、圧縮式冷凍機41の吸入圧力を上昇させる
ので、わずかの圧力の加圧でよく、従つて圧縮式
冷凍機の消費電力はわずかですむ。
Also, since the hot water temperature is higher than the outside air temperature,
The refrigerant vapor pressure evaporated in the outdoor heat exchanger 42 becomes high, which increases the suction pressure of the compression refrigerator 41, so a slight increase in pressure is required, and therefore the power consumption of the compression refrigerator is small. .

又、太陽日射の得られない夜間などは、この温
水を蓄熱槽に貯め、必要に応じて室外熱交換器4
2に流して圧縮式冷凍機41を運転すれば、低い
温水温度でも高い温風温度が得られるので長時
間、温水出力を有効に利用できる。
In addition, at night when solar radiation is not available, this hot water is stored in a heat storage tank and used as needed in the outdoor heat exchanger 4.
2 to operate the compression refrigerator 41, high hot air temperature can be obtained even with low hot water temperature, so hot water output can be effectively utilized for a long time.

この手段を従来の水の顕熱で熱輸送を行う方法
と比べると、従来の手段の場合は、風等で冷却さ
れ易い屋外で高温の湯を循環させねばならず、十
分な断熱工事を施さないかぎり、輸送中の損失が
非常に大きなものとなる。これに反し、この新し
い手段によれば、熱の輸送は主としてガスによつ
て行われ、熱の授受は、冷媒ガスの蒸発と吸収に
より行われるもので、少い物質の移動で大きな熱
量が搬ばれるため、輸送中の損失が極めて少い。
Comparing this method with the conventional method of transporting heat using the sensible heat of water, in the case of the conventional method, high-temperature hot water must be circulated outdoors where it is easily cooled by wind, etc., and sufficient insulation work is not required. Otherwise, losses during transportation will be very large. On the other hand, with this new method, heat is mainly transported by gas, and heat is exchanged by evaporation and absorption of refrigerant gas, so a large amount of heat is transferred with a small amount of material movement. The amount of loss during transportation is extremely low.

これを又、比較的類似の手段である純粋な冷媒
物質の蒸発、凝縮で熱を輸送する手段と比較して
も、同一の凝縮温度又は吸収温度の条件の下で、
蒸発凝縮のサイクルは、蒸発吸収のサイクルより
はるかにガスの圧力が高くなるため、配管途中に
凝縮器の温度より低い温度の部分が存在すると、
そこで凝縮がおこり、熱を放出してしまう危険が
あつた。しかし本発明の場合は、途中の管壁温度
が吸収器30よりはるかに低い温度にならないか
ぎり途中での凝縮は生じないため、あまり厳重な
断熱をガス配管に施こす必要がないので実施がき
わめて容易である。
This can also be compared with a relatively similar means of transporting heat by evaporation or condensation of pure refrigerant material, under the same condensation or absorption temperature conditions.
In the evaporation-condensation cycle, the gas pressure is much higher than in the evaporation-absorption cycle, so if there is a part of the pipe with a temperature lower than the condenser temperature,
There was a danger that condensation would occur and heat would be released. However, in the case of the present invention, condensation does not occur in the middle unless the pipe wall temperature in the middle becomes much lower than that of the absorber 30, so there is no need to provide very strict insulation to the gas pipe, making it extremely difficult to implement. It's easy.

以上のように本発明は、太陽熱利用技術の中で
最も重要な熱輸送中の熱損失を極めて少くした直
熱型の冷暖房装置において、さらに熱損失の問題
が重要な冬期に、非常に少い熱損失で熱輸送で
き、高い温風温度の暖房が効率よく得られ、優れ
た効果を奏するものである。
As described above, the present invention is a direct heating type air-conditioning system that extremely reduces heat loss during heat transport, which is the most important solar heat utilization technology, and also in winter when the issue of heat loss is extremely important. Heat can be transported through heat loss, heating with high hot air temperature can be efficiently achieved, and excellent effects can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷暖房装置の構成図、第2図は
従来の直熱型冷房装置の説明図、第3図は本発明
の一実施例を示す冷暖房装置の構成図である。 25は集熱器兼ガス発生器、26は気液分離
器、27は凝縮器、28は膨脹弁、29は冷房用
室内熱交換器(蒸発器)、30は吸収器、33は
液送ポンプ、34は熱交換器、35,37,39
は弁、40は流量調整弁、41は圧縮式冷凍機、
42は室外熱交換器、43は室内熱交換器、44
は四方切換弁、47は循環ポンプ、48は膨脹弁
である。
FIG. 1 is a configuration diagram of a conventional air conditioning system, FIG. 2 is an explanatory diagram of a conventional direct heating type cooling system, and FIG. 3 is a configuration diagram of a heating and cooling system showing an embodiment of the present invention. 25 is a heat collector/gas generator, 26 is a gas-liquid separator, 27 is a condenser, 28 is an expansion valve, 29 is an indoor heat exchanger for cooling (evaporator), 30 is an absorber, and 33 is a liquid feed pump. , 34 is a heat exchanger, 35, 37, 39
is a valve, 40 is a flow rate adjustment valve, 41 is a compression refrigerator,
42 is an outdoor heat exchanger, 43 is an indoor heat exchanger, 44
4 is a four-way switching valve, 47 is a circulation pump, and 48 is an expansion valve.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも発生器、凝縮器、蒸発器、吸収
器、膨脹弁およびポンプを連結し、前記発生器と
前記吸収器の間に、前記凝縮器、膨脹弁、蒸発器
をバイパスさせるようにした、開閉可能な弁を有
する冷媒管路を設けた吸収式冷凍機の吸収器と、
別系統の圧縮式ヒートポンプの室外熱交換器を水
回路で連結し、冷房時には前記バイパス管路を閉
じ、前記吸収器と前記熱交換器を前記水回路で冷
却して吸収式冷凍機と圧縮式ヒートポンプの冷房
出力を得られるようにし、暖房時には前記冷媒管
路の弁を開いて発生器と吸収器を短絡させて吸収
器の熱を前記水回路より、前記熱交換器に送り圧
縮式ヒートポンプにより暖房するようにした冷暖
房装置。
1 At least a generator, a condenser, an evaporator, an absorber, an expansion valve, and a pump are connected, and the condenser, expansion valve, and evaporator are bypassed between the generator and the absorber. an absorber of an absorption refrigerator with a refrigerant line having a valve capable of
The outdoor heat exchanger of a compression type heat pump in a separate system is connected by a water circuit, and during cooling, the bypass pipe is closed, and the absorber and the heat exchanger are cooled by the water circuit, thereby connecting an absorption chiller and a compression type heat pump. The cooling output of the heat pump is obtained, and during heating, the valve of the refrigerant pipe is opened to short-circuit the generator and absorber, and the heat of the absorber is sent from the water circuit to the heat exchanger by the compression heat pump. A heating and cooling device designed to provide heating.
JP56188641A 1981-11-24 1981-11-24 Air conditioner Granted JPS5888576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56188641A JPS5888576A (en) 1981-11-24 1981-11-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56188641A JPS5888576A (en) 1981-11-24 1981-11-24 Air conditioner

Publications (2)

Publication Number Publication Date
JPS5888576A JPS5888576A (en) 1983-05-26
JPH0253702B2 true JPH0253702B2 (en) 1990-11-19

Family

ID=16227262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56188641A Granted JPS5888576A (en) 1981-11-24 1981-11-24 Air conditioner

Country Status (1)

Country Link
JP (1) JPS5888576A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255528A (en) * 1984-05-31 1985-12-17 Mitsubishi Electric Corp Cooler for car

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563364A (en) * 1978-11-08 1980-05-13 Kogyo Gijutsuin High temperature heat pump system
JPS5599565A (en) * 1979-01-25 1980-07-29 Matsushita Electric Ind Co Ltd Solar heat absorption type cooling* heating and hot water supply equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563364A (en) * 1978-11-08 1980-05-13 Kogyo Gijutsuin High temperature heat pump system
JPS5599565A (en) * 1979-01-25 1980-07-29 Matsushita Electric Ind Co Ltd Solar heat absorption type cooling* heating and hot water supply equipment

Also Published As

Publication number Publication date
JPS5888576A (en) 1983-05-26

Similar Documents

Publication Publication Date Title
US4070870A (en) Heat pump assisted solar powered absorption system
US4178989A (en) Solar heating and cooling system
CN107388620B (en) Composite solar lithium bromide absorption type air conditioning system
CN108759142B (en) Special cascade air source high-temperature heat pump cooling and heating system
CN111750418A (en) Heat pipe type photovoltaic photo-thermal module-heat pump-phase change material coupling system and method
CN214581537U (en) Air conditioner and heat pump integrated machine control system using water as heat-conducting medium to operate
CN111609578B (en) Small-sized multi-mode solar-assisted household air conditioning system
JPS5815701B2 (en) Solar heat absorption type air conditioning and water heater
CN212961846U (en) Heat pipe type photovoltaic photo-thermal module-heat pump-phase change material coupling system
JPS5986846A (en) Hot water supply device of heat pump type
JPH0253702B2 (en)
JP2678211B2 (en) Heat storage type cold / heat generator
CN111750417A (en) Heat pipe type photovoltaic photo-thermal module-heat pump-phase change floor coupling system and method
JPH045904B2 (en)
RU2784256C1 (en) Air-conditioning system based on an absorption refrigerator with connecting a heat pump unit and solar collectors
JPH0471142B2 (en)
JPS5935755A (en) Heat pump type hot-water supply apparatus
CN2230424Y (en) Solar water-heating air conditioner
JP2844124B2 (en) Heat pump type heating equipment using antifreeze
JPS5816110B2 (en) solar heating and cooling equipment
CN105627616A (en) Absorption type heat pump unit special for solar air conditioner
JPH0364787B2 (en)
JPS6028933Y2 (en) Heat pump room air conditioner
JPS6110137Y2 (en)
JPS6024901B2 (en) Waste heat heating and cooling equipment