JPS5887766A - Manufacture of organic electrolyte battery - Google Patents

Manufacture of organic electrolyte battery

Info

Publication number
JPS5887766A
JPS5887766A JP56184612A JP18461281A JPS5887766A JP S5887766 A JPS5887766 A JP S5887766A JP 56184612 A JP56184612 A JP 56184612A JP 18461281 A JP18461281 A JP 18461281A JP S5887766 A JPS5887766 A JP S5887766A
Authority
JP
Japan
Prior art keywords
temperature
heat
fluorine
battery
fluorocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56184612A
Other languages
Japanese (ja)
Other versions
JPH0258738B2 (en
Inventor
Kenichi Morigaki
健一 森垣
Ryoji Okazaki
良二 岡崎
Hisaaki Otsuka
大塚 央陽
Teruyoshi Morita
守田 彰克
Yoshinori Umeo
梅尾 良之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56184612A priority Critical patent/JPS5887766A/en
Publication of JPS5887766A publication Critical patent/JPS5887766A/en
Publication of JPH0258738B2 publication Critical patent/JPH0258738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/5835Comprising fluorine or fluoride salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a battery having good discharge performance and storage performance by using fluorocarbon as a cathode active mass after it is heat- treated at higher temperature than the temperature of formation. CONSTITUTION:By heat-treating fluorocarbon, (C2F)n, at higher temperature of formation or refluorinating it, weak bonding of fluorine such as chemical adsorption is converted to strong covalent bonding. Discharge performance and storage performance of it are improved. Heat-treatment was made under normal pressure and in the air, and refluorination under the atmosphere of a volume ratio of fluorine to nitrogen of 1:9. Heat-treatment was done at below 500 deg.C which is decomposition starting temperature, refluorination at the temperature till up to 550 deg.C. A battery using fluorocarbon (C2F)n obtained by heat-treating or refluorinating as a cathode active mass provides good discharge performance and storage performance in the same manner as a Li/(CF) battery.

Description

【発明の詳細な説明】 本発明は陰極活物質にアルカリ金属、アルカリ土類金属
などの軽金属を、電解質に有機電解質を、陽極活物質に
式(02F )nで表わされるフッ化炭素を用いる有機
電解質電池の製造法に関するもので、式(C2F)nで
表わされる活物質をその生成温度よりも高温で熱処理す
ることにより放電特性、保(r特性の良好な電池を提供
することを目的としている。
Detailed Description of the Invention The present invention uses a light metal such as an alkali metal or an alkaline earth metal as a cathode active material, an organic electrolyte as an electrolyte, and a fluorocarbon represented by the formula (02F)n as an anode active material. This relates to a method for manufacturing an electrolyte battery, and its purpose is to provide a battery with good discharge characteristics and retention characteristics by heat-treating an active material represented by the formula (C2F)n at a higher temperature than its formation temperature. .

炭素をフッ素化することにより生成されるフッ化炭素に
は、 (11po1ycl!Lrbonmonofluori
de(OF)rl(2]  pO17tJtraCar
bOnmOnOfluoride(CaF)1の2種の
ものが知られていたが、最近、新たに式%式% rideが提案されている(特開昭63−102893
 )。
Fluorocarbon produced by fluorinating carbon includes (11polycl!Lrbonmonofluori
de(OF)rl(2] pO17tJtraCar
Two types of fluoride (CaF)1 were known, but recently a new formula % ride has been proposed (Japanese Patent Application Laid-Open No. 102893-1989).
).

このフッ化炭素(02F )nは他の(OF)n 、 
((4F)nと同様に、有機電解質系の陽極活物質とし
て有用であることが知られている(特開昭+55−28
246)。
This fluorocarbon (02F)n is other than (OF)n,
(Similar to (4F)n, it is known to be useful as an anode active material for organic electrolyte systems.
246).

この(02F)nは(CF )n  と比較して、神々
の特性を有しており、例えば(C2F)nは第2次ステ
ージ化合物であり、かつC軸方向の炭素平面間に共有結
合に相当する弓吊い結合力の存在が考えられている点や
層間距離が(CF)n の約6人に対して、約9人と大
きい点などがあり、このため心気化学的々特性も異なり
、(02F )nは(OF)nよりも放電電工が高いと
いう特徴をもつ。
This (02F)n has divine properties compared to (CF)n. For example, (C2F)n is a second-stage compound, and there is a covalent bond between the carbon planes in the C-axis direction. It is thought that there is an equivalent bonding force, and the interlayer distance is larger (CF)n, which is about 9 people compared to about 6 people. Differently, (02F)n has the characteristic that the discharge electrician is higher than (OF)n.

しかしながら、(02F)nは放電電圧は高いが、ヅ坦
性が悪く、放電の進行に伴い電圧が徐々に低下してくる
こと、また、電池を高温保存した際に容;11゛劣化が
犬であることなどの欠点を有する。高温保存による劣化
は、フッ化炭素陽極と陽極集電体との間に、主にフッ化
物による抵抗皮膜層が形成されるためと考えられる。−
上記フッ化物は、主にフッ化炭素中に含まれる化学吸着
などによる弱い結合をしているフッ素が有機電解質中で
遊離しく遊離フッ素)、恐らくはフッ素イオンとなって
陽極集電体界面へ移動し、反応するためと考えられる。
However, although (02F)n has a high discharge voltage, it has poor uniformity, and the voltage gradually decreases as the discharge progresses. It has disadvantages such as being The deterioration caused by high-temperature storage is thought to be due to the formation of a resistive film layer mainly made of fluoride between the fluorocarbon anode and the anode current collector. −
The above-mentioned fluoride is mainly caused by weakly bonded fluorine contained in fluorocarbons due to chemisorption, etc., being liberated in the organic electrolyte (free fluorine), which probably becomes fluorine ions and moves to the anode current collector interface. This is thought to be due to the reaction.

因に、この遊離フッ素をヨードメトリー法で測定すると
、(02F)nは、(CF)nの数十倍以上の値を示す
Incidentally, when this free fluorine is measured by iodometry, (02F)n shows a value several tens of times or more than (CF)n.

本発明者らは、フッ化炭素(c2F)nをその生成温度
以上の温度で熱処理或いは再フッ素化することにより、
化学吸着などと考えられる弱い結合のフッ素を、強固な
共有結合に変えることができ、放電特性・保存特性が改
良されることを見い出した。
The present inventors have discovered that by heat-treating or refluorinating fluorocarbon (c2F)n at a temperature higher than its formation temperature,
It was discovered that the weak bonds of fluorine, which are thought to be caused by chemisorption, can be changed to strong covalent bonds, improving discharge and storage characteristics.

以下本発明をその実施例により説明する。The present invention will be explained below with reference to Examples.

フッ化炭素(02F)ylには、人造黒鉛を400℃で
フッ素化したものを用いた。この(02F )nの空気
中での熱分解開始温度は約500’Cで、ピーク温度は
690’Cであったが、550°C付近より′分解が急
激に進行することが分った。このため、熱処理は分解開
始温度50o’C以下で行ない。[■エフノ素化は、5
eso°c4でで行なった。これは、フッ素雰囲気では
分解温度は空気中より高くなるが、550’C以上では
分解反応がフッ素化反応との競争反応となり、収率が低
下するからである。
As fluorocarbon (02F)yl, artificial graphite fluorinated at 400°C was used. The starting temperature of thermal decomposition of this (02F)n in air was about 500'C, and the peak temperature was 690'C, but it was found that 'decomposition rapidly progressed from around 550°C. For this reason, the heat treatment is performed at a decomposition initiation temperature of 50 o'C or lower. [■Efno-ization is 5
This was done at eso°c4. This is because the decomposition temperature is higher in a fluorine atmosphere than in air, but at 550'C or higher the decomposition reaction becomes a competitive reaction with the fluorination reaction, resulting in a decrease in yield.

熱処理は常圧・空気中で行ない、再フッ素化は、フッ素
対窒素の体積比が1:9の雰囲気で行なった。次表に各
処理条件を示し、また処理後の固定フッ素量、遊離フッ
素量を示した。固定フッ素)11゜は試料を十分な量の
炭酸カリと混合後、溶融1分解させたものを水溶液とし
て、フッ素イオン選択性電極により測定し、遊離フッ素
量は試料をエタノールと0.INの沃化カリとの混合液
で抽出し、下式により遊離した沃素を0.○1Nのチオ
硫酸す2(C6・・F ) + 2KI −C+ 2K
F + X2トリウムで滴定して求めた。
The heat treatment was performed in air at normal pressure, and the refluorination was performed in an atmosphere where the volume ratio of fluorine to nitrogen was 1:9. The following table shows each treatment condition, and also shows the amount of fixed fluorine and amount of free fluorine after treatment. Fixed fluorine) 11° is measured by mixing the sample with a sufficient amount of potassium carbonate and then melting and decomposing it as an aqueous solution using a fluorine ion selective electrode.The amount of free fluorine is measured by mixing the sample with ethanol and 0. Extract with a mixture of IN and potassium iodide, and convert the liberated iodine to 0. ○1N thiosulfate 2 (C6...F) + 2KI -C+ 2K
It was determined by titration with F + X2 thorium.

素 ) ] この表より明らかなように、熱処理及び再フッ素化によ
り、固定フッ素量は余り変化しない力;、遊離フッ素量
は処理前の大体1/1oぐらいに減少する。
] As is clear from this table, the amount of fixed fluorine does not change much by heat treatment and refluorination; however, the amount of free fluorine decreases to about 1/1 of the amount before treatment.

熱処理・再フッ素化したフッ化炭i (02F )nを
用いた電池特性比較のため、第1図に示す構造の扁平型
電池を構成した。
In order to compare the characteristics of a battery using heat-treated and refluorinated fluorinated carbon i (02F )n, a flat battery having the structure shown in FIG. 1 was constructed.

図中、1は封目板、2は金属リチウムからなる陰極、3
はセパレータ、4は樹脂ガスケット、5は陽極であり、
これは活物質のフッ化炭素(02F)nト導電材のアセ
チレンブラックおよびフッ素樹脂結着材とを重量比で1
00:10:5の割合で混合したものをベレットに成型
した。6は陽極集電体、7は電池ケースである。電解液
にはホウフッ化リチウムをプロピレンカーボネイトとジ
メト;\・ンエタンとの1:1の混合溶媒に1モル/β
の割合で溶解させたものを用いた。
In the figure, 1 is a sealing plate, 2 is a cathode made of metallic lithium, and 3
is a separator, 4 is a resin gasket, 5 is an anode,
This consists of fluorocarbon (02F) as an active material, acetylene black as a conductive material, and a fluororesin binder in a weight ratio of 1.
The mixture at a ratio of 00:10:5 was molded into a pellet. 6 is an anode current collector, and 7 is a battery case. For the electrolyte, 1 mol/β of lithium fluoroborate is mixed in a 1:1 mixed solvent of propylene carbonate and dimethaneethane.
A solution dissolved at the following ratio was used.

上記扁平型電池を組立直後に20°Cにおいて、5にΩ
の抵抗を負荷として放電した放電曲線を第2図に示しだ
。図中A〜Fは、前人に示したフッ化炭素(c2y )
nをそれぞれ陽極活物質としたE電池の放電曲線である
。第2図より明らか々ように空気上で熱処理をしたフッ
化炭素(c2y)n A 、 B 。
Immediately after assembling the above flat battery, at 20°C, the resistance was reduced to 5Ω.
Figure 2 shows the discharge curve for discharging with a resistance of . A to F in the figure are fluorocarbons (c2y) shown in the previous person.
It is a discharge curve of an E battery in which n is an anode active material. As is clear from FIG. 2, fluorocarbon (c2y) n A , B was heat-treated in air.

Cの放電特性は、初期電圧では、未処理のFに較べて低
下しているが、電圧の変動は小さく、捷だ容量も大きく
なり、利用率が良くなっていることが分る0また、再フ
ッ素化した(C:2F)n D 、 Kの放電特性も、
放電電圧は低下するが、電圧の17. jll。
Although the discharge characteristics of C are lower than those of untreated F at the initial voltage, the fluctuation in voltage is small, the discharge capacity is large, and the utilization rate is improved. The discharge characteristics of refluorinated (C:2F)nD,K are also
The discharge voltage decreases, but the voltage is 17. jll.

7、− 性が良く々ゆ、容量も犬となることが分る。D。7, - It turns out that the sex is good and the capacity is comparable to that of a dog. D.

Eの放電特性はフッ化炭素(CF)nの特性と似ている
が、放電平坦部の電圧は(CF)nの場合約2.66V
であるのに対して、D、にの電圧は2.72Vと優位に
ある。一方、陽極活物質の利用率は、未処理の(02F
)nFの場合約74俤であるのに対して、本発明による
C及びり、Eでは約84チと大幅に改良され、人、Bの
場合でも76〜80%と改良されている。
The discharge characteristics of E are similar to those of fluorocarbon (CF)n, but the voltage at the discharge plateau is approximately 2.66V for (CF)n.
On the other hand, the voltage of D and is superior at 2.72V. On the other hand, the utilization rate of the anode active material is
) nF, it is about 74 degrees, whereas in the case of C and E according to the present invention, it is significantly improved to about 84 degrees, and even in the case of human and B, it is improved by 76 to 80%.

第3図は、上記扁平型電池をe O℃3ケ月間保存後の
20℃、5にΩの定抵抗放電の放電曲線である。図より
明らかなように、未処理の(C2F)nFは、放電初期
の電圧降下が大きく、また放電容量も保存前に較べて大
きく低下している。一方、本発明による処理を行なった
(02F)nでは、放電電圧・容量ともに、はとんど劣
化がみられない。
FIG. 3 is a discharge curve of a constant resistance discharge of 5 Ω at 20° C. after the flat battery was stored for 3 months at eO°C. As is clear from the figure, untreated (C2F)nF has a large voltage drop at the initial stage of discharge, and its discharge capacity is also greatly reduced compared to before storage. On the other hand, in (02F)n treated according to the present invention, there is almost no deterioration in both discharge voltage and capacity.

高温保存による劣化、特に放電初期の電圧降下は主に陽
極合剤ベレット6と陽極集電体6の接触界面に、陽極活
物質の(02F)nから遊離してきたフッ素イオンがフ
ッ化物層を形成し、これが絶縁抵抗皮膜となるためと考
えられる。本発明の処理により、前人に示したように、
(02F)nのヨードメトリー法によって検出された遊
離フッ素量は1/1゜程度に減少していることと、上記
の保存による劣化の度合とはよく一致している。さらに
、このヨードメトリー法によって検出されるフッ素量は
、(02F)n全体に含まれているカーボン、フッ素の
弱い結合(C・・・F)の存在比を表わすものと考えら
れ、電池の高温保存により、正極中から遊離してくるフ
ッ素量、或いは放電に関与しないフッ素量は、前人の結
果より、未処理の(c2F)nでは、本発明の処理を行
なった(02F)n、或いはフッ化炭素(CF)nに対
して、かなり大きいと推測される。
Deterioration due to high-temperature storage, especially voltage drop at the beginning of discharge, is caused mainly by fluorine ions liberated from (02F)n of the anode active material forming a fluoride layer at the contact interface between the anode mixture pellet 6 and the anode current collector 6. However, this is thought to be because this becomes an insulation resistance film. By the treatment of the present invention, as shown by the predecessor,
The amount of free fluorine detected by the iodometry method of (02F)n is reduced to about 1/1 degree, which is in good agreement with the degree of deterioration due to storage described above. Furthermore, the amount of fluorine detected by this iodometry method is considered to represent the abundance ratio of carbon and fluorine weak bonds (C...F) contained in the entire (02F)n, and From the previous results, the amount of fluorine liberated from the positive electrode during storage or the amount of fluorine that does not participate in discharge is as follows: It is estimated that it is considerably larger than fluorocarbon (CF) n.

従って、第3図のように未処理の(C’2F)n Fで
は、高温保存により放電容量も大きく減少するものと考
えられる。
Therefore, it is considered that in untreated (C'2F)n F as shown in FIG. 3, the discharge capacity also decreases greatly due to high temperature storage.

本発明は、(02F)n中に存在する弱い結合のC・・
・Fを熱処理により安定化させることにより、電池特性
が改良されたと考えられるが、そのだめの下限処理温度
は400℃とする必要がある。なぜ − なら、(C2F)nが単独で生成する温度は400 ℃
以下とされているが、前人Fのように、4oo℃では弱
い結合(C・・・F)が多食に存在していると考えられ
るからである。
The present invention deals with the weak bond C... present in (02F)n.
- It is thought that the battery characteristics were improved by stabilizing F through heat treatment, but the lower limit of the treatment temperature needs to be 400°C. Why - then the temperature at which (C2F)n forms alone is 400 °C
This is because weak bonds (C...F) are considered to be present in polyphages at 40°C, as in former F, although this is considered to be the following.

一方、上限温度は分解を抑え、収率をあげるためには、
フッ素雰囲気中では、550’C以下としなければなら
ない。なぜなら、再フッ素化した本実施例の(C2F)
n D 、 I!:の分解開始温度は550〜570℃
であることから、550℃以上では、((2F)nの分
解が始まり、収率が低下するからである。
On the other hand, the upper limit temperature must be set to suppress decomposition and increase yield.
In a fluorine atmosphere, the temperature must be 550'C or less. This is because the refluorinated (C2F) of this example
nD, I! The decomposition start temperature of : is 550-570℃
Therefore, at temperatures above 550° C., decomposition of ((2F)n) begins and the yield decreases.

以上のように、本発明のフッ化炭素(02F)nを陽極
活物質に用いることにより、既に実用化されているLi
/(OF)n系電池と同様に、放電特性・保存特性の良
好な電池を提供することができ、さらに、放電電圧がL
i/(OF)1系よりも優位にあるという特徴を発揮さ
せることができる。
As described above, by using the fluorocarbon (02F)n of the present invention as an anode active material, Li
Similarly to the /(OF)n-based battery, it is possible to provide a battery with good discharge characteristics and storage characteristics, and furthermore, the discharge voltage is L.
It is possible to exhibit characteristics that are superior to the i/(OF)1 system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の電池の断面図、第2図は各種
(02F)nを用いた電池の組立直後の放電0 特性、第3図は電池の保存後の放電特性を示す。 1・・・・・・封口板、2・山・・陰ffl、 3・川
・・セパレータ、5・・・・・・陽極、7・・・・・・
電池ケース。
FIG. 1 is a cross-sectional view of a battery according to an embodiment of the present invention, FIG. 2 is a diagram showing zero discharge characteristics of batteries immediately after assembly using various types of (02F)n, and FIG. 3 is a diagram showing discharge characteristics of batteries after storage. 1... Sealing plate, 2... Mountain... Yinffl, 3... River... Separator, 5... Anode, 7......
battery case.

Claims (3)

【特許請求の範囲】[Claims] (1)式(C:2F)nで表わされるフッ化炭素をその
生成温度よりも高温で熱処理した後、陽極活物質に用い
ることを特徴とする有機電解質電池の製造法。
(1) A method for producing an organic electrolyte battery, characterized in that fluorocarbon represented by the formula (C:2F)n is heat-treated at a higher temperature than its formation temperature and then used as a positive electrode active material.
(2)前記熱処理がフッ素雰囲気中でなされる特許請求
の範囲第1項記載の有機電解質電池の製造法。
(2) The method for manufacturing an organic electrolyte battery according to claim 1, wherein the heat treatment is performed in a fluorine atmosphere.
(3)前記熱処理の温度が400〜550’Cである特
許請求の範囲第1項記載の有機電解質電池の製造法。
(3) The method for manufacturing an organic electrolyte battery according to claim 1, wherein the temperature of the heat treatment is 400 to 550'C.
JP56184612A 1981-11-17 1981-11-17 Manufacture of organic electrolyte battery Granted JPS5887766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56184612A JPS5887766A (en) 1981-11-17 1981-11-17 Manufacture of organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56184612A JPS5887766A (en) 1981-11-17 1981-11-17 Manufacture of organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS5887766A true JPS5887766A (en) 1983-05-25
JPH0258738B2 JPH0258738B2 (en) 1990-12-10

Family

ID=16156262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56184612A Granted JPS5887766A (en) 1981-11-17 1981-11-17 Manufacture of organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS5887766A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116759A (en) * 1984-11-12 1986-06-04 Nobuatsu Watanabe Active material for battery
JPS6313268A (en) * 1986-07-04 1988-01-20 Daikin Ind Ltd Battery active material
US20120077090A1 (en) * 2010-09-28 2012-03-29 Daikin Industries, Ltd. Positive electrode active material for lithium primary cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102893A (en) * 1977-02-22 1978-09-07 Ouyou Kagaku Kenkiyuushiyo Graphite fluoride having new structure and method of making same
JPS54108220A (en) * 1978-02-10 1979-08-24 Sanyo Electric Co Nonnaqueous electrolyte cell
JPS5528246A (en) * 1978-08-21 1980-02-28 Oyo Kagaku Kenkyusho Active material for battery
JPS55165577A (en) * 1979-06-12 1980-12-24 Sanyo Electric Co Ltd Nonaqueous electrolyte cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102893A (en) * 1977-02-22 1978-09-07 Ouyou Kagaku Kenkiyuushiyo Graphite fluoride having new structure and method of making same
JPS54108220A (en) * 1978-02-10 1979-08-24 Sanyo Electric Co Nonnaqueous electrolyte cell
JPS5528246A (en) * 1978-08-21 1980-02-28 Oyo Kagaku Kenkyusho Active material for battery
JPS55165577A (en) * 1979-06-12 1980-12-24 Sanyo Electric Co Ltd Nonaqueous electrolyte cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116759A (en) * 1984-11-12 1986-06-04 Nobuatsu Watanabe Active material for battery
JPH0677458B2 (en) * 1984-11-12 1994-09-28 信淳 渡辺 Battery active material
JPS6313268A (en) * 1986-07-04 1988-01-20 Daikin Ind Ltd Battery active material
US20120077090A1 (en) * 2010-09-28 2012-03-29 Daikin Industries, Ltd. Positive electrode active material for lithium primary cell
JP2012094504A (en) * 2010-09-28 2012-05-17 Daikin Ind Ltd Positive electrode active material for lithium primary battery

Also Published As

Publication number Publication date
JPH0258738B2 (en) 1990-12-10

Similar Documents

Publication Publication Date Title
US3536532A (en) Primary cell for electric batteries
JP3227080B2 (en) Lithium secondary battery
US20090081545A1 (en) HIGH CAPACITY AND HIGH RATE LITHIUM CELLS WITH CFx-MnO2 HYBRID CATHODE
JP2000067852A (en) Lithium secondary battery
CA2364105A1 (en) Use of heat-treated electrodes containing a polyamic acid-pvdf binder mixture
JPH0487156A (en) Nonaqueous electrolyte battery
JPH01200557A (en) Nonaqueous electrolytic battery
JP2005158695A (en) Polyfluorinated boron cluster anion for lithium electrolyte
JP3244291B2 (en) Battery
JP4561404B2 (en) Non-aqueous electrolyte battery
JP5533110B2 (en) Lithium primary battery
US4057676A (en) Cell containing carbon-fluorine compound cathode, alkali metal anode and solid halo-aluminum alkali metal compound electrolyte
JPS5887766A (en) Manufacture of organic electrolyte battery
US3318734A (en) Thermally regenerative galvanic cell employing the fluorides of arsenic, cerium and uranium
JP2006236891A (en) Nonaqueous electrolyte solution battery
JPH061698B2 (en) Lithium primary battery, anode active material thereof, and method for producing manganese dioxide used in the anode active material
JP4867145B2 (en) Non-aqueous electrolyte battery
JPS5987762A (en) Organic electrolyte battery
JPS6164082A (en) Nonaqueous electrolyte battery
JPS58123663A (en) Nonaqueous electrolyte battery
JPH03122968A (en) Manufacture of manganese dioxide for lithium primary battery
JPS5826457A (en) Manufacture of positive pole active substance for non-acqueous electrolytic cell
JP2664477B2 (en) Non-aqueous electrolyte battery
JP2000200623A (en) Lithium battery having fluorine-containing polymer electrolyte
JPS5832749B2 (en) Manufacturing method for positive electrode active material for organic electrolyte batteries