JPS5884465A - Semiconductor element - Google Patents

Semiconductor element

Info

Publication number
JPS5884465A
JPS5884465A JP56182653A JP18265381A JPS5884465A JP S5884465 A JPS5884465 A JP S5884465A JP 56182653 A JP56182653 A JP 56182653A JP 18265381 A JP18265381 A JP 18265381A JP S5884465 A JPS5884465 A JP S5884465A
Authority
JP
Japan
Prior art keywords
silicon thin
film
polycrystalline silicon
thin film
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56182653A
Other languages
Japanese (ja)
Other versions
JPH021366B2 (en
Inventor
Toshiyuki Komatsu
利行 小松
Yutaka Hirai
裕 平井
Katsumi Nakagawa
克己 中川
Yoshiyuki Osada
芳幸 長田
Tomoji Komata
小俣 智司
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP56182653A priority Critical patent/JPS5884465A/en
Priority to DE19823241959 priority patent/DE3241959A1/en
Publication of JPS5884465A publication Critical patent/JPS5884465A/en
Priority to US07/188,677 priority patent/US4905072A/en
Publication of JPH021366B2 publication Critical patent/JPH021366B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Weting (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain the semiconductor element, the secular change of characteristics thereof is not generated substantially and which has high reliability, by forming the principal section of the element by a polycrystal silicon thin-film semiconductor layer having the characteristics of not more than 20Angstrom /sec etching speed by an etching liquid consisting of fluoric acid, nitric acid and glacial acetic acid. CONSTITUTION:The principal section of the semiconductor element is formed by the polycrystal silicon thin-film semiconductor layer having the characteristics of not more than 20Angstrom /sec etching speed by the etching liquid, which contains not more than 3 atomic % hydrogen atoms and consists of fluoric acid (50vol% aqueous solution), nitric acid (d=1.38, 60vol% aqueous solution) and glacial acetic acid, mixing ratios thereof are 1:3:6 at volume ratios. The diffraction intensity of the X-ray diffraction pattern or electron-ray diffraction pattern 220 of a polycrystal silicon thin-film is made 30% or higher to the whole diffraction intensity or the mean grain size of the polycrystal silicon thin-film is made 200Angstrom or higher.

Description

【発明の詳細な説明】 本発明は電界効果薄膜トランジスタ等O半導体素子に関
し、更に詳JIKは多結晶シリコン薄膜半導体層でその
主要部を構成した半導体素子に関する一〇である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an O semiconductor device such as a field effect thin film transistor, and more specifically JIK relates to a semiconductor device whose main part is composed of a polycrystalline silicon thin film semiconductor layer.

最近、両像読取用としてO1長尺化−次元7オドセンt
や大面積化二次元フォトセンナ等の画像am値置O走査
−路部、或いは液晶(L、Cと略記する)中、エレクト
ロクローζ−材料(!i:Cと略記する)II!いはエ
レクトール建ネツセンス材料(ELと略記する)を利用
した11i*表示デバイスの駆動回路st1これ等の大
面積化に伴って所定の基板上に形成し九シリコン薄膜を
素材として形成することが提案されてvhh 。
Recently, O1 length has been increased for double image reading - dimension 7 odocent
Image am value position O scanning-path section of large-area two-dimensional photosensor, or liquid crystal (abbreviated as L, C), electroclaw ζ-material (!i:abbreviated as C) II! A drive circuit for an 11i* display device using an elector-density material (abbreviated as EL) is proposed to be formed on a predetermined substrate using a silicon thin film as the material as these devices become larger in area. Been vhh.

斯かるシリコン薄膜は、よ〕高速化、よ)高機能化され
丸太証の画像読取装置中m像#I示義置O痰楓から、非
品質であるよi4多錆晶で番ることが望まれている。そ
OJI由01つとして上記O如to高速、高機能の1!
堆装置OS査回路部中画像表示装置の駆動回路部を形成
すみ為の素材となるシリコン薄膜の性能を表わす値とし
て例えばTPTの実効キャリア移動度(effecti
ve carrier mobility ) #ef
fとしては、大きいことが要求されるが、通常の放電分
解法で得られる非晶質シリコン薄膜に於いては精々0、
1 d/ V−sea @度であって、単結晶シリコン
で作成したMO8tj1トランジスタに較べて蕩かに劣
り、所望の要求を満たすもので゛ないことが移1lbI
Ilが小さいことから、非晶質シリコン薄膜は薄膜作成
上の容易さと生産コストの安価を生かし切れないという
不都合さを内在している。
Such a silicon thin film has become faster and more sophisticated, and the image reading device in the image reading device can detect poor quality multi-rust crystals. desired. As one of the reasons for OJI, the above is a high-speed, highly functional one!
For example, the effective carrier mobility (effecti) of TPT is a value representing the performance of the silicon thin film that is the material for forming the drive circuit section of the image display device in the OS scan circuit section of the display device.
ve carrier mobility) #ef
f is required to be large, but in amorphous silicon thin films obtained by ordinary discharge decomposition methods, it is at most 0,
1 d/V-sea @ degree, it is inferior to the MO8tj1 transistor made of single crystal silicon, and does not meet the desired requirements.
Since Il is small, amorphous silicon thin films have the disadvantage that they cannot take advantage of the ease of thin film formation and low production costs.

又、非晶質シリコンは本質的に経時変化が内在していて
単結晶に比べて劣る。
Furthermore, amorphous silicon inherently suffers from changes over time and is inferior to single crystal silicon.

これに対して、多結晶シリコン薄膜は、実−スにしたと
きのその移動度μ・ffが遥かに大きく、理論的には現
在得られている値よ)も、更に大きな値の移動度μef
fを有するものが作成され得る可能性を有している。又
、経時変化に関しても安定であることが期待される。
On the other hand, polycrystalline silicon thin films have a much larger mobility μ ff when used in practice, and even a much larger mobility μ ff than the theoretical value currently available.
It is possible that something with f can be created. It is also expected to be stable with respect to changes over time.

多結晶シリコン薄at所定Oj!板上に大面積に亘って
作成する方法としては、 CV D (Chemical Vapour D@p
osition )法、L P CV p (Low 
Presssure Chanxieal Vapou
rD@position  法、 M B  E  (
Mo1ecular  B@amEplt*x”l )
法、I P (Ion Plating)法、GD(G
low Discharge )法等が知られてiる。
Polycrystalline silicon thin at specified Oj! CV D (Chemical Vapor D@p) is a method for creating a large area on a board.
position ) method, L P CV p (Low
Presssure Chanxial Vapou
rD@position method, M B E (
Mo1ecular B@amEplt*x”l)
method, I P (Ion Plating) method, GD (G
The low discharge method and the like are known.

いずれの方法においても、基板温度はA&るが、大面積
の基板の上に多結晶シリコン薄膜が作製できることが知
られている。
In either method, it is known that a polycrystalline silicon thin film can be produced on a large-area substrate, although the substrate temperature is A.

しかしながら、従来、これらの方法によって作製され九
多結晶シリコン酵膜牛導体層で主要St構成した半導体
素子或いは半導体デバイスが所望され比特性及び信頼性
を充分発揮できないのが現状で6Δ□6 本発明は上記の点に艦み成されたものでToり鋭意検討
の結果多結晶シリコン薄膜半導体層で主要部を構成した
半導体素子又は半導体デバイスの性能及び特性の安定性
Fi、(1)多結晶シリコ基いている。即ち、形成され
喪中導体層中に水素原子がある量範囲でふくまれること
、4Iy&のエツチング液に対するエツチング速度が、
ある値以下であることが、素子特性、μeff及び特性
の経時的な安定性を向上させ、実用上極めて優れ次使用
特性を示し、デバイスとして設計した際にも各素子の特
性上のバラツキを実質的に解消し得、実用性を飛躍的に
高めることを見出し九ものである。
However, conventionally, semiconductor elements or semiconductor devices manufactured by these methods and mainly composed of a 9-polycrystalline silicon conductor layer are desired, but at present they cannot fully exhibit specific characteristics and reliability. Based on the above points, and as a result of intensive study, the stability of the performance and characteristics of a semiconductor element or semiconductor device whose main part is composed of a polycrystalline silicon thin film semiconductor layer, (1) polycrystalline silicon. It is based. That is, the formed conductor layer contains a certain amount of hydrogen atoms, and the etching rate for the etching solution of 4Iy& is as follows.
Being below a certain value improves the stability of the device characteristics, μeff, and characteristics over time, shows extremely excellent next-use characteristics in practical use, and virtually eliminates variations in the characteristics of each device when designing it as a device. Nine things have been discovered that can solve the problem and dramatically improve practicality.

本尭aO目的とするところは、素子特性、μoffが従
来の多結晶シリコン薄膜中導体層で主要部を構成した半
導体素子に較べて飛躍的に向上してお9、素子特性の経
時的変化が実質的になく、極めて優れた使用特性を示す
半導体素子を提供することである。
The purpose of this aO is to dramatically improve device characteristics, μoff, compared to conventional semiconductor devices whose main parts are composed of a conductor layer in a polycrystalline silicon thin film9, and to reduce changes in device characteristics over time. It is an object of the present invention to provide a semiconductor device that exhibits extremely excellent usability characteristics with substantially no oxidation.

本発明の半導体素子は3 atomicχ′以下の水素
原子を含有し、且つ混合比が容量比で1:3:60弗酸
(50vol%水溶*):硝酸(d=1.HI。
The semiconductor device of the present invention contains hydrogen atoms of 3 atomic χ' or less, and the mixing ratio by volume is 1:3:60 hydrofluoric acid (50 vol% water soluble*):nitric acid (d=1.HI).

60vol−水溶液):氷酢酸から成るエツチング液に
よるエツチング速度が20ム/@@C以下04I性を有
する多結晶シリコン薄膜半導体層でその主要部が構成さ
れている事を特徴とする。
60 vol-aqueous solution): The etching rate with an etching solution consisting of glacial acetic acid is 20 μm/@@C or less.The main part thereof is composed of a polycrystalline silicon thin film semiconductor layer having 04I properties.

又、多結晶シリコン薄膜のXii回折パターン又は電子
線回折パターイ(220)の回折強度が、全体ob薪強
度に対して30s以上、或iは又、多結晶シリコン薄膜
の平均結晶粒径(平均ダレインサイズ)が、200A以
上であるとされる事によシ、本git、明の目的がよシ
一層効果的に達成される。
In addition, the diffraction intensity of the Xii diffraction pattern or electron beam diffraction pattern (220) of the polycrystalline silicon thin film is 30 s or more with respect to the overall obstetric strength, or the average crystal grain size (average sag) of the polycrystalline silicon thin film is The purpose of this article can be more effectively achieved by setting the in-size) to 200A or more.

この様な、H含有量及び表面凹凸性を有する多結晶シリ
コン薄膜を素材として作製される半導体素子の一例とし
て011t昇効未薄膜トランジスタ(FE−TFT )
は、トランジスタ41性(lI効キャリアーモビリティ
、スレクユホールト電圧、0N10FFB4,1−等)
が良好となp1連続動作によるトランジスタ特性の経時
変化もなく、かつ素子の歩留9及び特性のパッツ命の低
下も著しく向上させることが出来る丸めにLC,BL或
いはEC等を利用し九表示或いはiii*デバイス等の
走査回路中履Im1回路を安定して提供することが出来
る。
An example of a semiconductor device manufactured using a polycrystalline silicon thin film having such H content and surface roughness is the 011t non-enhanced thin film transistor (FE-TFT).
is the transistor characteristics (I effect carrier mobility, threshold voltage, 0N10FFB4,1-, etc.)
9 display or 9 display using LC, BL, EC, etc. in rounding, which has good p1, no change in transistor characteristics over time due to continuous operation, and can significantly improve the yield of the device and the decrease in the life of the parts of the characteristics. It is possible to stably provide an Im1 circuit in a scanning circuit such as a iii* device.

本発明においては、多結晶シリコン薄膜に含有するH 
t t O,01atl!以上にすることによって、種
々のトランジスタ骨性を向上させること7が出来る。多
結晶シリコン薄Jl[K含有されるHlは、主に多結晶
シリコンのグレインパクダv−’、w存在し、5i−n
o形でsix子と結合している!、Si−鵬、81*I
i、omき結合形態のものや遊離水嵩も含んでいること
が予纏され、これ等不安定な状履で含有されている水素
に起因して、その特性の経時的変化が生じているものと
思われるが本発明者らの多くの実験事実から3at−%
以下OH量においては、トランジスタ特性の劣化%に経
時変化を起させることは、はとんどなく、上述のように
連続的にトランジスタ動作を行った場合、実効キャリア
ーモビリティの減少が見られかつ出力ドレインIIIm
が時間とともに減少し、スレシュホールド電圧が変化す
るという経1at411度とするのが望ましい。
In the present invention, H contained in the polycrystalline silicon thin film
t t O, 01atl! By doing the above, it is possible to improve the stiffness of various transistors. Polycrystalline silicon thin Jl [K-containing Hl mainly exists in polycrystalline silicon grain particles v-', w,
It is combined with six children in an o shape! , Si-Peng, 81*I
It is assumed that hydrogen in the i-, om-bond form or free water bulk is present, and its properties change over time due to hydrogen contained in an unstable state. However, based on the inventors' many experimental facts, 3at-%
For the following OH amounts, it is very unlikely that the deterioration percentage of transistor characteristics will change over time, and when the transistor is operated continuously as described above, a decrease in effective carrier mobility is observed and the output Drain IIIm
It is desirable that the threshold voltage decreases with time and the threshold voltage changes at 411 degrees.

本発明に於いて規定する多結晶シリコン薄膜中に含まれ
ている水素量の測定は、0.1at(atomlc)チ
以上は通常化学分析で用いられている水素分析針(Pe
rkムn−、Elaher社製Model−24011
11元素分析針)により行つ九。いずれも試料は5mj
l を分析針ホルダー中に装置し水嵩重量を測定し、膜
中に含まれる水嵩量を轟tom1cmで算出した。
The amount of hydrogen contained in a polycrystalline silicon thin film specified in the present invention is measured using a hydrogen analysis needle (Pe
rkmu n-, Elaher Model-24011
11 elemental analysis needle). Both samples are 5mj
1 was placed in an analytical needle holder, the bulk weight of water was measured, and the bulk amount of water contained in the membrane was calculated using a 1 cm meter.

0、 l at (atomic)IIG以下の微小量
分析は二次イオン質量分析計−8I NS −(Gam
eea :#に$IModel IMS −3t )に
より行った。この分析法蒸着し、−次イオンビームのイ
オンエネルギーt8KJVとし、ty:fル@@ 5 
X 10−”A、スポットサイズ50JQXl径としエ
ツチング面積紘250 X 250μmとして、8i 
 に対するHイオンO検出強度比を求め水嵩含有量をa
tom1e%で算出し喪。
For analysis of minute quantities below 0, l at (atomic) IIG, a secondary ion mass spectrometer-8I NS-(Gam
eea: # $IModel IMS-3t). This analytical method was used for evaporation, the ion energy of the -order ion beam was t8KJV, and ty:f @@5
x 10-"A, spot size 50JQXl diameter, etching area 250 x 250μm, 8i
Find the H ion O detection intensity ratio to the water volume content a
Mourning calculated by tom1e%.

従来多結晶シリコン薄膜は700℃以下の低温で形成さ
れた場合には、ηりとしてμeff、安定性など所望の
性能が連成されていなかつ喪が前記3項目水嵩量、エツ
チングレートを満足する膜であれば高性能9丁が提供可
能であることが判明し友。
Conventionally, when a polycrystalline silicon thin film is formed at a low temperature of 700°C or less, the desired performance such as η, μeff, stability, etc. is not coupled, and the film satisfies the above three items of water volume and etching rate. It turned out that 9 high-performance guns could be provided.

先のsii*lIl!装置や表示装置の走査回路部中部
lIh回路部及び表示部管構成するTPT素子の半導体
層として多結晶シリコン薄I[を形成する基板材料と、
安価な#科であるガラス、セラミックスが望ましい0本
実@に係る多結晶質シリコン薄膜は、こOX求を満良し
工業的に従来よシ切望されているTPTを提供するもの
である。
sii*lIl ahead! A substrate material for forming a thin polycrystalline silicon layer as a semiconductor layer of a TPT element constituting a central circuit section of a scanning circuit section and a tube of a display section of an apparatus or display device;
The polycrystalline silicon thin film, which is preferably made of inexpensive glasses and ceramics, satisfies this OX requirement and provides TPT, which has been much desired industrially.

本発明におiて、開示されるように、特に水素化シリコ
ン化合物のガスのグロー放電分解法、為雰囲気でのシリ
コンのスパッタリング法、イオンブレーティング法、超
高真空蒸着法にお−ては、基板表面温度が500℃以下
(約350〜500℃の範囲)で本発明の目的に合致し
うる多結晶シリコン薄膜の形成が可能である0この事実
は、大面積のデバイス用の大面積にわ喪る駆IIh回路
中走査回路の作製において、基板の均−加熱中安価な大
面積基板材料という点で有刹であるだけでなく、透過層
の表示素子用の基板中基板貴入射蓋O光電変換受元素子
の場合等iii像デバイスの応用において透光性のガラ
ス基板が多く値まれてお)、とO1!求に答えうるもの
として重要である。
As disclosed in the present invention, in particular, the method of glow discharge decomposition of hydrogenated silicon compound gas, the sputtering method of silicon in an atmosphere, the ion blating method, and the ultra-high vacuum evaporation method are applicable. , it is possible to form a polycrystalline silicon thin film that meets the purpose of the present invention at a substrate surface temperature of 500°C or less (in the range of about 350 to 500°C). In the production of scanning circuits, it is not only useful in terms of inexpensive large-area substrate materials during uniform heating of the substrate; Translucent glass substrates are highly valued in applications of III-image devices such as photoelectric conversion receiving elements), and O1! This is important because it can answer the customer's needs.

従って、本発明によれば従来技術rI2ぺて、低温度領
域をも実施することが出来る為に、従来法で使用されて
いる高融点ガラス、硬ガラス等の耐熱性ガラス、耐熱性
セラミックス、ナ7アイヤ、スピネル、シリコンウェー
ハー等の伽に、一般の低融点ガラス、耐1III性プク
スチックス、等も使用され得る。
Therefore, according to the present invention, since it is possible to implement the conventional method in a low temperature range, it is possible to use heat-resistant glasses such as high melting point glass and hard glass, heat-resistant ceramics, and materials used in the conventional method. In addition to materials such as 7-layer glass, spinel, and silicon wafers, common low-melting glasses, 1III-resistant Puxtix, and the like may also be used.

ガラス基板としては、軟化点温度が630″oO並ガラ
ス、軟化点が780υの普通硬質ガラス、軟化点温度が
820’OO*i[質ガフ−X(JISIM超硬質ガラ
ス)、等が挙げられる。
Examples of the glass substrate include ordinary glass with a softening point of 630''oO, ordinary hard glass with a softening point of 780υ, and Gaff-X (JISIM ultra-hard glass) with a softening point of 820'OO*i.

本発明O実施例に於いては基板ガラスとして軟化点の低
い並ガ2ス(ソーダガラス)のうち主としてコーニング
ナ7059ガ2スを用い友が、軟化点が1500℃の石
英jラス勢を基板としても可能である◎しかし、実用上
からは、並ガ2スを用いることは安価で大面積に亘って
薄膜トランジスターを作製する上で有利である。
In the embodiment of the present invention, Corning glass 7059 glass, which has a low softening point (soda glass), is mainly used as the substrate glass, while quartz glass glass, which has a softening point of 1500°C, is used as the substrate glass. However, from a practical point of view, the use of ordinary gas is advantageous in manufacturing thin film transistors over a large area at low cost.

この橡に形成される多結晶シリコン薄膜半導体層中に含
有される水嵩の量がその作成条件、作成手順、作成法に
よって種々変化するものであるが多結晶シリコン薄膜中
に含まれる水嵩量と半導体素子の一例としてのTF’r
 (t) 4I性の関係を明らかにする為、種々な作成
条件によって形成した多結晶シリ;ン薄膜中に含有され
る水嵩の量を欄定し、かつ水素量の異なるサンプルの各
々を半導体層としたTPTを作成して検討し九緒果薄膜
中の水素量は3at−一〜0.01 st−一が善く好
ましいことが判明し良。
Although the amount of water contained in the polycrystalline silicon thin film semiconductor layer formed in this cell varies depending on the preparation conditions, preparation procedure, and method, the amount of water contained in the polycrystalline silicon thin film and the semiconductor layer vary. TF'r as an example of an element
(t) In order to clarify the relationship between the 4I characteristics, the amount of water contained in polycrystalline silicon thin films formed under various production conditions was determined, and each sample with a different amount of hydrogen was compared to the semiconductor layer. A TPT was prepared and examined, and it was found that the amount of hydrogen in the Kuoguo thin film is preferably 3 at-1 to 0.01 st-1.

本発明の半導体素子の主要imt−構成する多結晶シリ
コン薄膜半導体層OX!1回折又は電子−回折パターン
において面指数(220)面からの回折強度が全ての面
指数からの回折強度(全關折強度)の30チ以上であシ
、又、平均結晶粒径が200A以上とされることにより
、本発明の目的が一層効果的に達成される。
The main imt-constituting polycrystalline silicon thin film semiconductor layer OX of the semiconductor device of the present invention! In one diffraction or electron diffraction pattern, the diffraction intensity from the (220) plane is 30 times or more of the diffraction intensity from all plane indices (total diffraction intensity), and the average crystal grain size is 200A or more. By doing so, the object of the present invention can be achieved more effectively.

本発明者等によれば多結晶質シリコン薄膜中に含有され
る水素の量は膜形成法及び膜作成条件により大幅に変る
ことが確められている。例えばシランのグロー放電によ
って膜を作成する場合には、放電パワー、圧力、基板温
度、ガス流量、Zラン等の原料ガスの稀釈度及び稀釈ガ
ス種などにより膜中に含まれる水素量は種々変化する。
According to the present inventors, it has been confirmed that the amount of hydrogen contained in a polycrystalline silicon thin film varies greatly depending on the film formation method and film formation conditions. For example, when creating a film by glow discharge of silane, the amount of hydrogen contained in the film varies depending on the discharge power, pressure, substrate temperature, gas flow rate, dilution degree of raw material gas such as Z run, and type of diluting gas. do.

次に、多結晶シリコン薄膜のエツチング適度(エツチン
グレート)とnτの特性との相関について詳細にOべる
0 本発明の半導体素子の主要部を構成する多結晶シリコン
部属O評価として膜のエツチング速度は膜質や膜°O緻
書性を現わす重畳な測定量であることが本発明者等によ
って確められ良0本実WAK於けるエツチングレートを
規定するのに用いられたエツチング液としてはシリコン
結晶の代表的エツチング液であるO 弗酸、硝酸、酢酸の温合l1t−用いた。そO混合II
 ハ弗@ (50vo 1%水111E)、硝酸(d=
1−38゜60volチ水溶IK)、氷酢酸から構成さ
れ、それ等の組成比が1:3:6であって、p m 0
.3Ω・1のシリコンウェハーをエツチングし九lIO
エツチングレートを求めると15A/secで6つ九(
但し、エツチング温度は25℃)0上記の酸は、電子工
業用薬品として通常市販されてiるもので容易に入手可
能であるO 多結晶シリコン薄膜のエツチングレートは膜作成条件に
より種々変ることが知られており上記エツチング縄虞淑
では15λ/see〜80ν−・Cに亘って変ることが
本発明者等で確められ九〇そこでエツチングレートの異
る種々な多結晶シリコン薄膜を半導体層としてTPTを
作成し、エツチングレートとの相関を調べたところ、n
り特性として好ましhjmのエツチングレートは20A
/sec以下のものであることが判明し九〇多結晶シリ
コン薄膜の結晶性には、膜作成法、膜作成条件によって
種々のものが得られることが知られている0 本発明に於いては配向性を真べる方法としてはX!I闘
折、鬼子線回折、で行った0作成した各多結晶シリコン
膜Ox纏回折**t R1gaku電機製X線デイフ2
クトメーター(鋼管球35kV 10nxム)によりa
ll定し、比較を行つえ。
Next, we will discuss in detail the correlation between the etching mode (etching rate) of a polycrystalline silicon thin film and the characteristics of nτ. It has been confirmed by the present inventors that is a superimposed measurement quantity that indicates the film quality and film etchability. A typical etching solution for crystals, a warm mixture of hydrofluoric acid, nitric acid, and acetic acid, was used. SOO Mixture II
Ha! (50vo 1% water 111E), nitric acid (d=
It is composed of 1-38°60 vol water-soluble IK) and glacial acetic acid, the composition ratio of which is 1:3:6, and p m 0
.. Etching a 3Ω・1 silicon wafer and producing 91IO
The etching rate is 15A/sec, which is 69 (
However, the etching temperature is 25°C) The above acid is commonly commercially available as a chemical for the electronic industry and is easily available. The etching rate of polycrystalline silicon thin films may vary depending on the film formation conditions. The present inventors have confirmed that the etching rate varies from 15λ/see to 80ν-・C in the above-mentioned etching range. When TPT was created and the correlation with etching rate was investigated, n
The preferred hjm etching rate is 20A.
It is known that various crystallinities of polycrystalline silicon thin films can be obtained depending on the film formation method and film formation conditions. X as a way to check orientation! Ox-wrapped diffraction of each polycrystalline silicon film made by I-Tori, Oniko-ray diffraction, and R1gaku Denki X-ray diffraction 2
a by a ctometer (steel tube bulb 35kV 10nx)
Determine and make comparisons.

―折角20は20°〜65@まで変化させて(111)
 。
- Change the angle of 20 from 20° to 65@ (111)
.

(220) # (311) O回折ピークを検出して
その回折強度よ〉求め比t−職って指標とし友0又、併
行して電子線回折強度を日本電子m願黴蝿(n麗−10
0U )の電子−回折ノ(ターンO回折強度O違いよシ
絖みとり、その−折強IILO比を求めた。
(220) # (311) Detect the O diffraction peak and use its diffraction intensity as an index. 10
The difference in the electron diffraction intensity (O) of the electron diffraction intensity (0U) was removed, and the -refraction intensity IILO ratio was determined.

ASTMカード(A 27−1402 、 JCP戊1
977 )によれば、配向の全くない多結晶シリコン薄
膜0場合回折強度の大きい面(btktj)表示で(1
11) : (!2G) : (311) −100:
 55 : 30で、(220)だけMR夛出してみる
と全回折強度に対する比、すなわち、 (220)の關N強度/(総圓折強度)は約(55/2
5G) X 10G −221テTo h。
ASTM card (A27-1402, JCP 戊1
(977), in the case of a polycrystalline silicon thin film with no orientation at all, (1
11) : (!2G) : (311) -100:
55:30, and when only (220) is extracted from the MR, the ratio to the total diffraction intensity, that is, the ratio of (220) to the total diffraction intensity is approximately (55/2).
5G)

この値を基準にして、この値の大きな配向性のいては、
経時変化が大きくなり好しくない、本発明に於いて最適
には50チ以上が望しい〇又更に、多結鵡シリコン薄膜
OH量及表面凹凸性を満足しかつ平均結晶粒径(平均的
グレインサイズ)が大きくなるにつれてトランジスタ1 特性特に実効中ヤリアそビリティの向上することが認め
られ九〇平均的グレインサイズの値は、上述のx!1回
折パターンの(220)ピークの半値巾から通常の用い
られているSeh@rr@r法によって求めた。平均的
グレインサイズが、200ム以上で特に実効キャリアモ
ビリティが向上する〇特に最適には、300A以上が望
しい。
Based on this value, for large orientation of this value,
In the present invention, the optimum thickness is 50 or more, which is undesirable because it increases the change over time. It is recognized that as the size of the transistor 1 becomes larger, the characteristics of the transistor 1, especially the resistance during operation, improve. It was determined from the half-width of the (220) peak of one diffraction pattern by the commonly used Seh@rr@r method. Effective carrier mobility is particularly improved when the average grain size is 200 μm or more; in particular, 300 A or more is particularly desirable.

本発明では上記し九様に3.0OOA〜lμag。In the present invention, 3.0OOA to 1μag as described above.

膜厚の場合には、この程1ito厚さでの情報が適格に
得られる。X!1回折の回折ビークO牛値巾より上記多
結晶イリコン薄膜のダレインナイズを求め九が、又、同
時に3000A以下O属厚O−〇については透過電子頴
黴鏡によっても調べ友。
In the case of film thickness, information at a thickness of 1 ito can be adequately obtained. X! The dullness of the polycrystalline silicon thin film was determined from the width of the diffraction peak of the first diffraction, and at the same time, the thickness of the polycrystalline silicon film of less than 3000 Å was also investigated using a transmission electron microscope.

次に本発明半導体素子の一カとしてOTn O作1!プ
ロセスについて、jI1図に従ってminする。TFT
は牛導体層101、tIIL層107、オー叱ツクコン
タクト層103 、104 、絶縁層405からなる電
界効果トランジスタで、牛導体層101 K隣接しオー
ミンクなコンタクトが形成されて−lr、、す るソース電極108 、ドレイン電極1011関に電圧
を印加し、そこを流れる電流を絶縁711105を介し
て設けえゲート電極110にかけるバイアス電圧により
変調される(JIllmの工1i−に構造が示される)
ofず基板10G O洗浄を行つ先後、多結晶シリコン
薄膜101をその上に堆積させる〔1楊(−〕0堆積t
io#mについては各実施例の所で述べる。その後オー
ミック層としてn(P−dop@dシリコン)層102
を堆積し、ソース、ドレインをエツチングにより形成し
九(、I @ (gU後絶縁層105t−その上に堆積
させる〔工S(→〕。
Next, as one of the semiconductor elements of the present invention, OTnO production 1! The process is minned according to the jI1 diagram. TFT
1 is a field effect transistor consisting of a conductor layer 101, a tIIL layer 107, optical contact layers 103, 104, and an insulating layer 405, and an ohmic contact is formed adjacent to the conductor layer 101, with a source electrode -lr, . 108, a voltage is applied to the drain electrode 1011, and a current flowing therethrough is provided through the insulator 711105, and is modulated by the bias voltage applied to the gate electrode 110 (the structure is shown in JIllm, Part 1i-).
After cleaning the substrate 10G, a polycrystalline silicon thin film 101 is deposited thereon.
io#m will be described in each embodiment. After that, an n (P-dop@d silicon) layer 102 is used as an ohmic layer.
A source and a drain are formed by etching, and then an insulating layer 105t is deposited on it.

絶縁層は、Gの、LPGVDで形成されるシリコンナイ
ト2イドStO* * u、o、等の材料で構成される
0 次にソース、ドレインの電極用コンタクトホール106
をめけ〔工@ (!+ )て、上部電極ゲート、ソース
、ドレインを配線して〔工@ lfl及び(4)〕完成
する0 本発明の多結晶シリコン薄膜トラ・ンジスターの安定性
を判断する経時変化の測定に関しては次のような方法に
よって行つ九。
The insulating layer is made of materials such as silicon nitride StO** u, o, etc. formed by LPGVD of G. Next, contact holes 106 for source and drain electrodes are formed.
Complete [engineering @(!+)] and wiring the upper electrode gate, source, and drain. The following method is used to measure changes over time.9.

第2図に示す構造のTF′Tを作製しゲート201にゲ
ート電圧、VD=40V、ソース203とドレイ720
2閏にドレイン電圧、VD=40V を印加しソース2
03とドレイン閲に流れるドレイン電RIDをエレクト
はメーター208 (K@1thl@F 610Cエレ
クトロメーター)によpm定しドレイン電#IO時間的
変化を欄定した0経時変化率は、SOO時閣O連続動作
後のドレイン電流の変動量を初期ドレイン電流で割やそ
れを100倍し一表示で表わし丸。
A TF'T having the structure shown in FIG. 2 was fabricated, the gate voltage was applied to the gate 201, VD=40V, the source 203 and the drain 720 were
Apply drain voltage, VD=40V, to source 2
03 and the drain voltage RID flowing to the drain electrode are determined as pm using meter 208 (K@1thl@F 610C electrometer), and the drain voltage #IO time change is determined as 0. The rate of change over time is 0. Divide the amount of variation in drain current after continuous operation by the initial drain current, multiply it by 100, and display it as a circle.

道りの閾値電圧は、MO8Fli’rで通常行われてい
と交差した点によって定義し九〇経時変化前と後OVT
IIの変化も同時にしらべ、変化量をダルトで表示した
0 次に本発明の実施例について述べる。
The threshold voltage of the path is defined by the point where it intersects with the MO8Fli'r, which is normally done in the MO8Fli'r and the OVT before and after the aging change.
The change in II was also examined at the same time, and the amount of change was expressed in dals.Next, an embodiment of the present invention will be described.

実施例1 本実施例は、多結晶シリコン薄膜をグロー放電分解法で
J[J=に形成し、それを用いてTPTを作成し丸もの
で多結晶シリコン薄膜の形成#i第3図に示した装置を
用い友ものである。基板300は:2− = ン/ l
j 9 スryoss(o、sss厚)を用い走。
Example 1 In this example, a polycrystalline silicon thin film was formed to J[J= by glow discharge decomposition method, TPT was created using it, and a polycrystalline silicon thin film was formed using a round tool #i as shown in Fig. 3. It's a good idea to use the same equipment. The substrate 300 is: 2-=n/l
Run using j 9 sryoss (o, sss thickness).

先ず基[3001−洗% Lり伊1−11/HNO,1
0H。
First, base [3001-washing% LRII1-11/HNO,1
0H.

000Hの混合液でその表面を軽くエツチングし、乾燥
した後真空ペルジャー堆積室301内のアノード側にお
い友基板加熱ホルダー価積452m)302に装着した
The surface was lightly etched with a mixed solution of 000H, and after drying, it was mounted on a companion substrate heating holder (volume: 452 m) 302 on the anode side in a vacuum Pelger deposition chamber 301.

ソノ後ヘルジャー301を拡散ポンプ309でバックグ
ランド真空tL2.OX 10−’ Torr以下まで
排気を行表った。仁の時、この真空度が低いと反応性ガ
スが有効に菖析出に働かないばかシか膜中にO,Nが混
入し、著しく膜の抵抗を変化させるので注意を要した。
After sonication, the Herjar 301 is subjected to a background vacuum tL2. using the diffusion pump 309. Evacuation was carried out to OX 10-' Torr or less. At the time of oxidation, care must be taken because if the degree of vacuum is low, the reactive gas will not work effectively for iris precipitation, and O and N will be mixed into the film, significantly changing the resistance of the film.

次にT、を上げて基板300の温度をsoo”cに保持
した、(基板温度は熱電対303で監視する)。次に、
H,ガスをマス70−コントローツー308で制御しな
がらペルジャー301内に導入して基板300表面をク
リーニングした後、反応性気体を導入する様にし九〇基
板温度Tjは350’Cに設定し九〇放電時のペルジャ
ー301内の圧力はTorrJc保持した。
Next, T was increased to maintain the temperature of the substrate 300 at so''c (the substrate temperature is monitored with a thermocouple 303).Next,
After cleaning the surface of the substrate 300 by introducing H gas into the Pelger 301 while controlling it with the mass 70-controller 308, the reactive gas was introduced, and the substrate temperature Tj was set at 350'C. 〇The pressure inside the Pelger 301 during discharge was maintained at TorrJc.

該実施例においては、導入する反応性気体としては取扱
いの容易なH,ガスで3vojllGK11釈した5i
H−ガス(SiH4(3)/H!2−略記する)を用い
喪。ガス流量は5800Mになるようにマ270−コン
トローラー304でコントロールして導入した0ペルジ
ヤー301内の圧力はペルジャー301の排気側の圧力
調整パルプ310を調節し、給体圧力計312を用いて
所望の圧力に設定した0ペルジヤー301内の圧力が安
定し九稜、カソード電極313に13.56MHzO高
周波電界を電源314によって加え、グロー放電を開始
させた。この時の電圧は0.7KV、電流は60mA、
RF放電パワーは20Wであッft。
In this example, the reactive gas to be introduced is H, which is easy to handle, and 5i diluted with 3vojllGK11 gas.
Mourning using H-gas (SiH4(3)/H!2-abbreviated). The gas flow rate is controlled by the master controller 304 so that the gas flow rate is 5800M. After the pressure in the pressure gauge 301 was stabilized, a 13.56 MHzO high frequency electric field was applied to the cathode electrode 313 by the power source 314 to start glow discharge. At this time, the voltage was 0.7KV, the current was 60mA,
RF discharge power is 20W.

この条件で、放電を60分間持続し、多結晶シリコン膜
の形成を終え、放電を中止させて原料ガスの流入も中止
させた。次に基板温度を180℃まで下げて保持して次
のプルセスに備え友。
Under these conditions, the discharge was continued for 60 minutes, and after the formation of the polycrystalline silicon film was completed, the discharge was stopped and the inflow of the source gas was also stopped. Next, lower the board temperature to 180℃ and maintain it in preparation for the next process.

この条件下でのシリコンの膜析出速度は0.9λ/ s
ecであ−)九〇形成された膜の膜厚は3000ムでそ
の均−性祉円形すング型吹き出し口を用い九場合には3
インチ×3インチの基板の大きさに対して±10%内に
取っていた。
The silicon film deposition rate under this condition is 0.9λ/s
The thickness of the film formed was 3,000 μm, and the uniformity of the film was 3,000 mm using a circular spring-shaped outlet.
It was set within ±10% with respect to the size of the board of inches x 3 inches.

又、この多結晶シリコン膜はi型で、抵抗値Fi〜10
Ω・σであつた0次にこの膜を使って、第1図は示す工
11に従・て薄膜トランジスタ(TPT)を作成した。
Moreover, this polycrystalline silicon film is of i-type and has a resistance value Fi~10
A thin film transistor (TPT) was fabricated using this zero-order film of Ω·σ according to step 11 shown in FIG.

TPTのソース・ドレインのオーミックコンタクトを良
好にせしめる丸めに基板温度は1soCに保っ九状瞭で
n+シリ」(100pl)m )/Haと略記する)を
H2でI Q voJ−に稀釈され九S iHa (S
 iH,(10)/Haと略記する)ガスに対して、m
ol比にして5 X 10−”の割合でペルジャー30
1内に流入させ、ペルジャー301内の圧力を0.12
Torrに調整してグロー放電を行ないPのドープされ
た1層102  を500人の厚さに形成した工程(b
)。
To make good ohmic contact between the source and drain of the TPT, the substrate temperature was kept at 1soC, and the n+ series (abbreviated as 100pl)m/Ha) was diluted to IQ voJ- with H2 and 9S. iHa (S
iH, (abbreviated as (10)/Ha) gas, m
Pelger 30 at a ratio of 5 x 10-”
1 and the pressure inside the Pelger 301 is 0.12.
The process (b
).

次にAjを蒸着し、その後、工1!(C)のようにフォ
トエツチングによりht及びn+層102をソース電極
103の領域、ドレイン電極104の領域をのぞいて除
去した0次にゲート絶縁膜を形成すべくペルジャー30
1内に再び上記の様にペルジャー301が排気され、基
板温度T。
Next, Aj is deposited, and then step 1! As shown in (C), the HT and n+ layers 102 are removed by photoetching except for the source electrode 103 region and the drain electrode 104 region.
1, the Pelger 301 is again evacuated as described above, and the substrate temperature T is reached.

を250℃としてNH,ガスを20800M、8ゑH4
(5iHa (10)/Hm )ガスを5800M導入
してグロー放電を生起させて5iNH5j 105を2
50・・Aの厚さに堆積させた0 次にフォトエツチング工程によりソース電極103 ド
レイン電極104用のコンタクトホール106,1,1
06−2をあけ、その後で8iNHMl 05全面KA
jを蒸着して電極II 107を形成し喪後、ホトエツ
チング工程によりM電極1[107を加工してソース電
極用取出し電極108、ドレイン電極用坂出し電極10
9及びゲート電極110を形成した。この後、HR雰囲
気中で250℃の熱処理を行った。以上の条件とプロセ
スに従って形成されたTPT(チャンネル長し=20μ
、チャンネル幅W=650μ)は安定で良好な特性を示
し友。
250℃, NH, gas 20800M, 8゜H4
(5iHa (10)/Hm) 5800M of gas is introduced to generate glow discharge and 5iNH5j 105 is 2
Contact holes 106, 1, 1 for source electrode 103 and drain electrode 104 are deposited to a thickness of 50...A.
Open 06-2, then 8iNHMl 05 full KA
After forming the electrode II 107 by vapor-depositing J, the M electrode 1 [107 is processed by a photo-etching process to form an extraction electrode 108 for the source electrode and a sloped electrode 10 for the drain electrode.
9 and a gate electrode 110 were formed. After that, heat treatment was performed at 250° C. in an HR atmosphere. TPT (channel length = 20μ) formed according to the above conditions and process
, channel width W=650μ) showed stable and good characteristics.

第4図にこの様にして試作したTPTの特性例を示す。FIG. 4 shows an example of the characteristics of the TPT prototyped in this manner.

第4図にはドレイン電流工。とドレイン電圧■。の関係
をゲート電圧VGをパラメータにしたTFTqI性例が
示されである。ゲートのスVy’/yx−ル)’I圧#
i5Vと低くs Vc=20VでのVG=0の電流値の
比は3ケタ以上とれている0TPTの作成に用いた多結
晶シリコン薄膜るエツチング速度を調ぺ九結果を第1表
に示した0基板温度り社皺実施例500℃と450℃4
00℃について基板温度のみ変化させ、他の条件を同じ
Kした場合の結果を示した0これらの多結晶シリコン薄
膜を用いて作成したTPTの実効易動度(μeff )
も同じに表に示した0基板温度が高りTs=500℃の
膜は膜中の水素の量が0.5at%とIへさくてかつエ
ツチング速度が15ム/seeと小さく\、この膜を用
いて作成し九TPTの5effは8 d/v、seeで
経時変化の全くない良好な特性が得られた。
Figure 4 shows the drain current. and drain voltage■. An example of TFTqI characteristics using the gate voltage VG as a parameter is shown. Gate's Vy'/yx-'I pressure#
The ratio of the current value at Vc = 20V and VG = 0 is more than 3 digits.The etching speed of the polycrystalline silicon thin film used to create TPT was investigated and the results are shown in Table 1. Substrate temperature wrinkle example 500℃ and 450℃4
The effective mobilities (μeff) of TPTs made using these polycrystalline silicon thin films are shown below, showing the results when only the substrate temperature was changed with respect to 00°C and other conditions were kept the same.
Similarly, the film shown in the table when the substrate temperature is high and Ts = 500°C has a small amount of hydrogen in the film, 0.5 at%, and a small etching rate of 15 mu/see. The 5eff of the nine TPT was 8 d/v, see, and good characteristics with no change over time were obtained.

本実施例では基板としてコーニング参7059ガラスを
用いたが、熱処理温度や基板温度を高くしても基板とし
て超硬質ガラスや石英ガラスを採用することにより同様
の特性を出すことができ九〇従って、本発明によれば低
温度儒よシ高温度側まで基板温度Tsを広範囲内から基
板材料に従って自由に選択出来るという基板材料の選択
範囲に著しい自由度がある為に特性の優れ九TPT蓄積
回路をよシ安価に、より簡便な装置を用いて容易に作成
することが出来る0第  1  表 放電パワーーーーー・−・−・・・wowSiH,ガス
111度−・−−−3voj ’IG流量(PR)−、
−・−−=−5SCCM圧力(Pr) =−==−==
 (LO5Torr実施例2 実施例1と同様の手INKよって、多結晶シリ;ン膜を
グロー放電分湊の基板温[Tsを400゜450、50
0℃と変化させ、 RF放電パワーS・W、及びシラン
ガス(8iIL (a)/H* )流量をl・8CCM
 、圧力をa05Torrと一定にして形成したilK
、それ係について菖zllに示しえ。
In this example, Corning Glass 7059 glass was used as the substrate, but similar characteristics can be obtained by using ultra-hard glass or quartz glass as the substrate even if the heat treatment temperature and substrate temperature are increased. According to the present invention, the substrate temperature Ts can be freely selected from a wide range according to the substrate material, from low temperature to high temperature, so that a nine-TPT storage circuit with excellent characteristics can be manufactured. It can be easily produced at a lower cost and using a simpler device.0 No. 1 Table Discharge power---wowSiH, gas 111 degrees---3voj 'IG flow rate (PR)- ,
−・−−=−5SCCM pressure (Pr) =−==−==
(LO5 Torr Example 2) Polycrystalline silicon film was heated at the substrate temperature [Ts of 400°, 450°, 50°
The temperature was changed to 0℃, and the RF discharge power S・W and the silane gas (8iIL (a)/H*) flow rate were changed to l・8CCM.
, ilK formed with a constant pressure of a05Torr
, please tell Iris about it.

第2表 放電パワー一−−−−SOW SIH,ガス濃度−m−・3マー− 流量(FR)  −−−−−−−1105cC圧力  
 −−−−−−−−−−a O5Torr実施例3 11!膣例1と同様の手順によシ、多結晶シリコン膜を
グロー放電分解の基板温度T1を400゜4!!6.5
00℃と変化させ、放電パワー 100W及びV 5 
:/ if ス(81L<s)/L )流量を1080
0M、  圧力φ量、エツチング速度、及び配向性0関
係にっいてj1311に示した。
Table 2 Discharge power ----SOW SIH, gas concentration -m・3mer- Flow rate (FR)---1105cC pressure
----------a O5Torr Example 3 11! Following the same procedure as Example 1, the substrate temperature T1 for glow discharge decomposition of the polycrystalline silicon film was set to 400°4! ! 6.5
00℃, discharge power 100W and V 5
:/if s(81L<s)/L) flow rate to 1080
The relationship between 0M, pressure φ amount, etching rate, and orientation 0 is shown in j1311.

第 sl!ll! 上記のトランジスタの4を性は、基板温度がSOO℃の
場合(試料43−s ) s、ff=hsで経時変化の
ない良好な特性てあっ九。
No. sl! ll! Characteristic 4 of the above transistor has good characteristics with no change over time when the substrate temperature is SOO°C (sample 43-s) s, ff = hs.

実施例4 実施例1と同様に準備された同等のコーニングガラス基
@ WOOをペルジャー301内の上部アノード側の基
板加熱ホルダー302に密着して同定し、下部カソード
313の電極板上に基板と対向するように多結晶シリコ
ン板(図示しない:5UNS)を静置し良。ペルジャー
301を拡散ポンプ309で真空状態とし、!X10T
orr まで排気し、基板加熱ホルダーso2を加熱し
て基板謝の表面温度を450℃に保った。続いて高Mf
ltガスをマス70−メーター308 Kよってas8
ccMペルジャー内に導入し、更K Ar/He (容
量比で5ees比)混合ガxを−r x 7 a −7
f −fi −307KよってiosccMの流量でペ
ルジャー301内に導入し、メインパルプ31Gを絞っ
てペルジャー内圧をaO!1Torrに設定し良。
Example 4 An equivalent Corning glass substrate @WOO prepared in the same manner as in Example 1 was identified by closely contacting the substrate heating holder 302 on the upper anode side in the Pelger 301, and placed on the electrode plate of the lower cathode 313 facing the substrate. Place the polycrystalline silicon plate (not shown: 5UNS) as it is. Put the Pelger 301 into a vacuum state with the diffusion pump 309, and! X10T
The temperature of the surface of the substrate was maintained at 450° C. by heating the substrate heating holder SO2. Next, high Mf
lt gas mass 70-meter 308 K therefore as8
Introduced into a ccM Pel jar and added K Ar/He (5ees ratio by volume) mixed gas x -r x 7 a -7
Therefore, f -fi -307K is introduced into the Pel jar 301 at a flow rate of iosccM, and the main pulp 31G is squeezed to reduce the Pel jar internal pressure to aO! It is good to set it to 1 Torr.

ペルジャー内圧が安定してから、下部カソード電極31
3にI L 58 MHzの高周波電源314によによ
って、1.5VK印加してカッー寮ケの結晶シリコン板
とアノード(基板加熱ホルダー)30!間にグ四−放電
を生起させ九。RF放電パワー(°進行波−反射波)は
12Gであった。この条件でシリコン膜の成長速度はa
2λ/w、であ〕、4時間成長させて約α3μ膜を形成
しえ。
After the Pelger internal pressure stabilizes, the lower cathode electrode 31
3, a 58 MHz high frequency power supply 314 is used to apply 1.5 VK to the crystal silicon plate and anode (substrate heating holder) 30! During this time, a discharge is generated. The RF discharge power (° traveling wave−reflected wave) was 12G. Under these conditions, the growth rate of the silicon film is a
2λ/w], and was grown for 4 hours to form an approximately α3μ film.

シリコン層中に含有する。H量はaS、エツチング速度
は19ム/寓であった。
Contained in the silicon layer. The amount of H was aS, and the etching rate was 19 mm/mm.

続いて実施例1と同様の工@(4−〜−)KよってTP
Tを作製した。この素子の実効モビリfioo時間テI
DRa1%以下、Vthは全く不変であ〉、経時のDC
動作特性は良好であった。
Subsequently, the same process as in Example 1 is carried out by TP
I made T. The effective mobility time of this element
DRa is 1% or less, Vth is completely unchanged〉, and DC over time
The operating characteristics were good.

実施例5 実施例1と同様に準備されたコーニング7o59ガラス
基板SOOをZXIOTerrまで減圧される超高真空
槽501内の基板ホルダーs02に装填し真空槽内の圧
力が5X10  Torr以下の圧力にまで減圧した後
、タンタルヒーターSO8Kより基せ、発射する電子ビ
ームをシリコン蒸発体40zKill射させ、シリコン
蒸発体を蒸発させ、つづいてシャッター507を開き、
基板SOOに膜厚aSμ厚になるよう水晶振動子膜厚計
SO6でコントルールし、多結晶シリコン膜を形成しえ
。このときの蒸着中の圧力+61 X 10 Terr
、蒸着達度紘L4人/−であつ九(試料A6s−1)。
Example 5 A Corning 7o59 glass substrate SOO prepared in the same manner as in Example 1 was loaded into the substrate holder s02 in the ultra-high vacuum chamber 501, which was depressurized to ZXIO Terra, and the pressure in the vacuum chamber was depressurized to 5×10 Torr or less. After that, an electron beam is emitted from the tantalum heater SO8K to evaporate the silicon evaporator 40zKill, and then the shutter 507 is opened.
A polycrystalline silicon film is formed on the substrate SOO by controlling it with a crystal resonator film thickness gauge SO6 so that the film thickness is aSμ. Pressure during vapor deposition at this time +61 x 10 Terr
, the vapor deposition level was 4/- and 9 (sample A6s-1).

他方、洗滌し九コーニング7o59ガ2ス基板を再び基
板ホルダー502 K m!定し、真空槽soi内の圧
力が8X10  Terr以下の圧力まで減圧し先後、
高純度水素ガス(etsin*1)  をバリアプルリ
ークバルブ50gにより真空槽内に導入し、曽i5.o
 1内圧力を5X 10 ”Torr K設定しえ。基
板温度リプン薄膜を形成した(試料As−z)。
On the other hand, wash the 9 Corning 7o59 gas board and put it back into the board holder 502 Km! After setting the pressure in the vacuum tank soi to 8×10 Terr or less,
High-purity hydrogen gas (ETSIN*1) was introduced into the vacuum chamber through a 50g barrier pull leak valve, and then the i5. o
The internal pressure was set at 5×10” Torr K. A thin film was formed at a substrate temperature (sample As-z).

試料45−1.45−2 K−’)いて各kO水嵩量。Sample 45-1.45-2 K-') and each kO water volume.

エツチング速度、配向性、及び実施例1と同様のプロセ
スによって作成し九TPTの実効移動変声offを表4
に示した。
Table 4 shows the etching speed, orientation, and effective transfer tone off of nine TPTs prepared by the same process as in Example 1.
It was shown to.

第4表 表4かられかるように試料A$−1,5−2ともにエツ
チング速度、配向性aftff同一値を示し良好で6つ
え。実効移動度(μ*tt’) #i1桁以上試料/%
 5−2は試料m5−1に比べ大きく、TFT用の半導
体層として試料45−2t)薄膜の方がよ)好ましいこ
とが判った。
Table 4 As can be seen from Table 4, both samples A$-1 and A$-5-2 had the same values for etching rate and orientation aftff, which was good. Effective mobility (μ*tt') #i 1 digit or more sample/%
5-2 was larger than sample m5-1, and it was found that sample 45-2t) thin film was more preferable as a semiconductor layer for TFT.

実施例6 本実BA第6図に示すイオンブレーティング堆積装置を
用いて多結晶シリコン薄膜を作製し、腋薄膜を素材とし
て薄膜トランジスターを作製し先例を以下に述べる。
Example 6 A polycrystalline silicon thin film was produced using the ion blasting deposition apparatus shown in FIG. 6 of the present BA, and a thin film transistor was produced using the axillary thin film as a material.The example will be described below.

初めに減圧しうる堆積@ 603内K won−d@P
*多結晶シリコンのシリコン蒸発体606をボード20
7内に置き、コーニングφ70!!9基板を支持体に設
置し、堆積室内をペースプレッシャーが約lXl0 T
orr に表るまで排気し九毅、ガス導入管505を通
じて純度99.999 * OHtガスを水素分圧P8
がIXI(r’TorrKなる様にして堆積室内に導入
し九。使用したガス導入管SOSは内径2■で、先のル
ープ状の部分にガス吹惠出し口が=口間隔てa5mの孔
が開いているものを使用し九。
Deposition that can be depressurized first @ 603 Kwon-d@P
*Silicone evaporator 606 of polycrystalline silicon is connected to board 20
Place it in 7, Corning φ70! ! 9 substrates were placed on the support, and the pace pressure in the deposition chamber was approximately lXl0T.
99.999 * OHt gas with a purity of 99.999 through the gas introduction pipe 505 to a hydrogen partial pressure of P8.
IXI (r'TorrK) was introduced into the deposition chamber.The gas inlet pipe SOS used had an inner diameter of 2 mm, and the loop-shaped part at the end had a gas outlet with holes spaced a5 m apart. Use the one that is open.

次に、高周波コイル610 (直径5−)に11s6M
J1xの高周波を印加して、出力を100Wに設定して
、コイル内部分に高周波ブ2ズ!雰囲気を形成した。
Next, add 11s6M to the high frequency coil 610 (diameter 5-).
Apply J1x high frequency, set the output to 100W, and apply high frequency buzz to the inside of the coil! It created an atmosphere.

他方、支持体611−1 、611−2は回転させなが
ら、加熱装置612を動作状態にして約475℃に加熱
しておいた。
On the other hand, while rotating the supports 611-1 and 611-2, the heating device 612 was turned on and heated to about 475°C.

次に、蒸発体606にエレク)a7ガン608より照射
し、加熱したシリコン粒子を飛翔させた。
Next, the evaporator 606 was irradiated with an electric A7 gun 608 to cause the heated silicon particles to fly.

このときのエレクトロンガンのパワーハ約αSVであっ
た。
The power of the electron gun at this time was approximately αSV.

この様にして50分間で5000ムの多結晶シリコン薄
膜が形成された。
In this manner, a polycrystalline silicon thin film of 5,000 μm was formed in 50 minutes.

この薄膜を用いて前記の実施例と同様なプロセスで薄膜
トランジスターを作製した。下l!に本実施例における
膜中に含まれる水素量及び膜のエツチング速度、薄膜ト
ランジスタの実効移動度を示した。同時に、水素分圧が
4X10 Torrの場合と水素を導入しないで膜を形
成した場合についてのデータも示し丸。
Using this thin film, a thin film transistor was fabricated using the same process as in the previous example. Down! 2 shows the amount of hydrogen contained in the film, the etching rate of the film, and the effective mobility of the thin film transistor in this example. At the same time, data for the case where the hydrogen partial pressure was 4X10 Torr and the case where the film was formed without introducing hydrogen are also shown.

第  5  表 PH,= I X 10 Torrの水素分圧で膜を形
成し九トランジスタでは、ドレイン電圧V。、ゲート電
圧光を40Vで連続印加後の電流変化(経時変化)が全
くなく、移動度もz4と大きく良好なトランジスタ特性
を示した。それに対し水素量の多い場合は経時変化が大
きく、水素の少ない場合は移動度が小さくいという結果
を得た。
Table 5 For nine transistors with a film formed at a hydrogen partial pressure of PH, = I x 10 Torr, the drain voltage V. There was no current change (change over time) after continuous application of gate voltage light of 40 V, and the mobility was z4, showing good transistor characteristics. On the other hand, when the amount of hydrogen is large, the change over time is large, and when the amount of hydrogen is small, the mobility is small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の半導体素子を作製する丸めの工程を
説明する模式的工程図、第2図は本発明の半導体素子の
特性を測定する為の回路を模式的に示し九説明図、第3
因、第5図、第6図紘各々本発明に係わる半導体膜作製
装置の例を説明する為の模式的説明図、第4図は本発明
の半導体、素子のV、−ID特性の一例を示す説明図で
ある。 10G−基板      101−半導体層102・・
・電極層     105−絶縁層出願人 中ヤノン株
式会社 第5置
FIG. 1 is a schematic process diagram illustrating the rounding process for manufacturing the semiconductor device of the present invention, and FIG. 2 is an explanatory diagram schematically showing a circuit for measuring the characteristics of the semiconductor device of the present invention. Third
Incidentally, FIGS. 5 and 6 are schematic explanatory diagrams for explaining an example of the semiconductor film manufacturing apparatus according to the present invention, and FIG. 4 shows an example of the V and -ID characteristics of the semiconductor and element of the present invention. FIG. 10G-substrate 101-semiconductor layer 102...
・Electrode layer 105-Insulating layer Applicant Nakayanon Co., Ltd. No. 5

Claims (2)

【特許請求の範囲】[Claims] (1)  3 atomic−以下O水嵩原子を含有し
、且つ混合比が容量比で1 : s : rso弗駿(
50vol−水$Iり:耐硝酸 d=1.38 、60
voll!水濤筐):氷酢酸から成るエツチングIIK
よるエツチング適度が2OA”/s@e以下の特性を有
する多結晶シリコン薄膜半導体層でその主要部が構成さ
れている事1*黴とする半導体素子。
(1) Contains 3 atomic or less O water atoms, and the mixing ratio is 1 : s : rso 弗Shun (
50vol-water $I: Nitric acid resistance d=1.38, 60
vol! Etching IIK consisting of glacial acetic acid
1. A semiconductor device whose main part is constituted by a polycrystalline silicon thin film semiconductor layer having an etching rate of 2OA"/s@e or less.
(2)  前記半導体層oxmrxtIItパターン又
は電子m回折パターンによ! (,12G) OII折
強*0食回折強度に対する割合が301以上である譬許
請求OSS第1項に記載O半導体素子0 。 (2) 前記半導体層の平均鐘晶flLgIkが200
ム0以上である特許請筆01111Jlx項に記載の半
導体素子。 (優 前記半導体層がガラスa基1IILに形成されで
ある特許−求O@81111.1項にli!載の半導体
素子。
(2) Based on the semiconductor layer oxmrxtIIt pattern or electron m diffraction pattern! (, 12G) O semiconductor element 0 according to claim OSS item 1, in which the ratio of OII diffraction intensity to 0 eclipse diffraction intensity is 301 or more. (2) The average bell crystal flLgIk of the semiconductor layer is 200
The semiconductor device according to patent application no. (Excellent) A semiconductor device as described in [email protected], in which the semiconductor layer is formed on a glass a-based substrate.
JP56182653A 1981-11-13 1981-11-13 Semiconductor element Granted JPS5884465A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56182653A JPS5884465A (en) 1981-11-13 1981-11-13 Semiconductor element
DE19823241959 DE3241959A1 (en) 1981-11-13 1982-11-12 Semiconductor component
US07/188,677 US4905072A (en) 1981-11-13 1988-04-29 Semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56182653A JPS5884465A (en) 1981-11-13 1981-11-13 Semiconductor element

Publications (2)

Publication Number Publication Date
JPS5884465A true JPS5884465A (en) 1983-05-20
JPH021366B2 JPH021366B2 (en) 1990-01-11

Family

ID=16122071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56182653A Granted JPS5884465A (en) 1981-11-13 1981-11-13 Semiconductor element

Country Status (1)

Country Link
JP (1) JPS5884465A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066825A (en) * 1983-09-22 1985-04-17 Toshiba Corp Manufacture of semiconductor device
US7154147B1 (en) 1990-11-26 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US8106867B2 (en) 1990-11-26 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511329A (en) * 1978-07-08 1980-01-26 Shunpei Yamazaki Semiconductor device
JPS5550663A (en) * 1978-10-07 1980-04-12 Shunpei Yamazaki Semiconductor device and method of fabricating the same
JPS55151329A (en) * 1979-05-14 1980-11-25 Shunpei Yamazaki Fabricating method of semiconductor device
JPS55154726A (en) * 1979-05-22 1980-12-02 Shunpei Yamazaki Manufacture of semiconductor device
JPS56138929A (en) * 1980-03-31 1981-10-29 Canon Inc Component solution for etching
JPH021365A (en) * 1988-06-09 1990-01-05 Honshu Paper Co Ltd Thermal recording material
JPH021367A (en) * 1988-06-09 1990-01-05 Fuji Photo Film Co Ltd Thermal recording material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511329A (en) * 1978-07-08 1980-01-26 Shunpei Yamazaki Semiconductor device
JPS5550663A (en) * 1978-10-07 1980-04-12 Shunpei Yamazaki Semiconductor device and method of fabricating the same
JPS55151329A (en) * 1979-05-14 1980-11-25 Shunpei Yamazaki Fabricating method of semiconductor device
JPS55154726A (en) * 1979-05-22 1980-12-02 Shunpei Yamazaki Manufacture of semiconductor device
JPS56138929A (en) * 1980-03-31 1981-10-29 Canon Inc Component solution for etching
JPH021365A (en) * 1988-06-09 1990-01-05 Honshu Paper Co Ltd Thermal recording material
JPH021367A (en) * 1988-06-09 1990-01-05 Fuji Photo Film Co Ltd Thermal recording material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066825A (en) * 1983-09-22 1985-04-17 Toshiba Corp Manufacture of semiconductor device
JPH0324778B2 (en) * 1983-09-22 1991-04-04 Tokyo Shibaura Electric Co
US7154147B1 (en) 1990-11-26 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US7423290B2 (en) 1990-11-26 2008-09-09 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US8026886B2 (en) 1990-11-26 2011-09-27 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US8106867B2 (en) 1990-11-26 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same

Also Published As

Publication number Publication date
JPH021366B2 (en) 1990-01-11

Similar Documents

Publication Publication Date Title
TW505946B (en) Polycrystaline semiconductor material and method of manufacturing the same
US5504019A (en) Method for fabricating a thin film semiconductor
US4814842A (en) Thin film transistor utilizing hydrogenated polycrystalline silicon
US4741964A (en) Structure containing hydrogenated amorphous silicon and process
US5965904A (en) Semiconductor device comprising silicon semiconductor layer
JPS58199564A (en) Semiconductor element
JP4018625B2 (en) Multi-stage CVD method for thin film transistors
US4625224A (en) Thin film transistor having polycrystalline silicon layer with 0.01 to 5 atomic % chlorine
JPH04346419A (en) Deposition film forming method
US5620924A (en) Method of preventing deterioration of film quality of transparent conductive film
JP3491903B2 (en) Method for manufacturing thin film semiconductor device
US5264077A (en) Method for producing a conductive oxide pattern
JP2795736B2 (en) Method of forming deposited film
JPS5884465A (en) Semiconductor element
JPH021367B2 (en)
JPH021365B2 (en)
JPS58123772A (en) Semiconductor element
JPH02259725A (en) Liquid crystal display device
CN110120434A (en) Cell piece and preparation method thereof
JPS58148458A (en) Thin film transistor
JPH04318973A (en) Thin film transistor and manufacture thereof
KR0179035B1 (en) Thin film semiconductor device and method of producing the same
JP2942604B2 (en) Liquid crystal display
KR100617482B1 (en) METHOD FOR PRODUCING FIELD EMISSION DEVICES AND ZnO NANONEEDLES FOR FIELD EMISSION DEVICES AND ELECTRONIC DEVICES USING THE SAME
JP2986933B2 (en) Thin film stacking device