JPS5882117A - Optical encoder - Google Patents

Optical encoder

Info

Publication number
JPS5882117A
JPS5882117A JP17975781A JP17975781A JPS5882117A JP S5882117 A JPS5882117 A JP S5882117A JP 17975781 A JP17975781 A JP 17975781A JP 17975781 A JP17975781 A JP 17975781A JP S5882117 A JPS5882117 A JP S5882117A
Authority
JP
Japan
Prior art keywords
slit
light
light receiving
phase
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17975781A
Other languages
Japanese (ja)
Inventor
Sueo Akashi
赤司 末雄
Yosuke Nagano
洋介 永野
Yoshiki Sekida
関田 芳己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17975781A priority Critical patent/JPS5882117A/en
Publication of JPS5882117A publication Critical patent/JPS5882117A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To improve accuracy in phase deviation and jitter, by arranging a light emitting element on one of slit parts of rotary slit and a fixed slit and two light receiving elements on the other so that a specified arrangement is obtained. CONSTITUTION:The rotary slit 3 is attached to a motor shaft 1. A circuit substrate 5 which is fixed to a base 4, a reinforcing plate 6, and the fixing slit 17 are provided on the upper side of the rotary slit 3. The light receiving elements 8 and 9 are held on the circuit substrate 5, and the light emitting element 10, which is held by the base 4 are provided on the lower side. The light receiving elements 8 and 9 are arranged so that angular relationship of theta7=45 deg. is obtained with respect to the center of the shaft 1. By electrical processing, the phase A is outputted from the light receiving element 8 and the phase B is outputted from the light receiving element 9. The shapes of the rotary slit 3 and the fixed slit 17 are determined in the manner that the outputs have the relationship of theta/4=90 deg. between the phase A and phase B.

Description

【発明の詳細な説明】 本発明は尤ギ式エンコーダに1糸り、特に光学式タコメ
ータ及びロータリ式エンコーダ等に適用すルft=学式
エンコーダに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a linear encoder, and more particularly to a linear encoder that is applied to optical tachometers, rotary encoders, and the like.

従来、光学式エンコーダは、回転運動の速度や位置や回
転方向に対応する元敞を、−亡れら速度や位1aの変化
に比yリシて光敏を時間的に変化せしめるためにスリッ
トの他に固定スリットi設けて、スリットの動く方向を
1個の発光素子と2個の受光素子を設けて受光素子の各
々の出力の位相を違えていた。
Conventionally, optical encoders have been equipped with slits or other means to temporally change the optical sensitivity in relation to changes in speed and position 1a, which correspond to the speed, position, and direction of rotational motion. A fixed slit i was provided in the slit, one light emitting element and two light receiving elements were provided, and the phases of the outputs of the respective light receiving elements were made different in the direction in which the slit moved.

この従来の光学式エンコーダの構造は第1図の断面図に
示すようになっておシ、板ばね2とハブ4によって固定
された回転スリツ′ト3は小4じか圧入等でモードルシ
ャフト1に取付けられている。
The structure of this conventional optical encoder is as shown in the cross-sectional view of Fig. 1.The rotary slit 3 fixed by the leaf spring 2 and the hub 4 is connected to the mold shaft by a small 4-way or press-fit. It is attached to 1.

回転スリット3の上側にベース4に固定された回路基板
5と、回路5とベース4にて固定された補強板6と固定
スリット7があり、回路基板5に保持された受光素子8
と9がある。下側には、ベース4に保持された発光素子
10があり、上記ベース4はねじ等によりエンドプラケ
、ット11に固定される構成から成っている。第1図の
受光素子8と9の配置の・上面図を第2図に示す。受光
素子8と9はシャフト1の中心に対する角度θ。−90
度の関係に配置され°ており、その出力は電気的処理に
より第3図のよう゛に受光素子8によりA相が受光素子
9によりB#が出力されA相とB相の位相はθ、/4=
90度となる出力が得られるように回転スリット3が第
4図に固定スリット7が弔5図の平面図に示す形状にな
っている二 第4図の回転スリット3は、特に光が透過する遮光部1
3と、光を遮断する遮光部14とを強調して示している
。この透光部13と遮光部14との角度ピッチを夫々θ
、とθ、とし、スリットの内径と外径を夫々R1とa、
とする。ここで上記透光部13と遮光部14とは回転ス
リット3の全円周に渡って一定の角度ピッチθ8.θ、
テ配列されている。次に第5図に示す固定スリット7は
、特に光遮光部15と光遮光部16を強調して示してめ
る。この光遮光部15と光遮光部16との角度ピッチ全
夫々01′とθ、lとし、θ、は、角度ピンチ01′十
〇、′の煩数培に(θ、′十θt’)/4ピッチ分全プ
ラスした、すなわち θ4−n(θ、′+θ1勺±(θ、′十θs’)/4こ
こで、n(i正数1.2.3−、・・・である。
There are a circuit board 5 fixed to a base 4 above the rotating slit 3, a reinforcing plate 6 fixed to the circuit 5 and the base 4, and a fixed slit 7, and a light receiving element 8 held on the circuit board 5.
and 9. On the lower side, there is a light emitting element 10 held on a base 4, and the base 4 is fixed to an end plaque 11 with screws or the like. A top view of the arrangement of the light receiving elements 8 and 9 shown in FIG. 1 is shown in FIG. The light receiving elements 8 and 9 are at an angle θ with respect to the center of the shaft 1. -90
Through electrical processing, the outputs are as shown in Figure 3: A phase is output from the light receiving element 8, B# is output from the light receiving element 9, and the phases of the A and B phases are θ, /4=
The rotating slit 3 has the shape shown in Fig. 4 and the fixed slit 7 has the shape shown in the plan view of Fig. 5 so that an output of 90 degrees can be obtained.The rotating slit 3 shown in Fig. 4 is particularly transparent to light. Light shielding part 1
3 and the light shielding part 14 that blocks light are highlighted. The angular pitch between the light-transmitting part 13 and the light-blocking part 14 is set to θ.
, and θ, and the inner and outer diameters of the slit are R1 and a, respectively.
shall be. Here, the light transmitting portion 13 and the light shielding portion 14 have a constant angular pitch θ8 over the entire circumference of the rotating slit 3. θ,
It is arranged in a row. Next, in the fixed slit 7 shown in FIG. 5, the light shielding part 15 and the light shielding part 16 are particularly emphasized. The total angular pitch of the light shielding part 15 and the light shielding part 16 is 01' and θ, l, respectively, and θ is the multiplication of the angle pinch 01'10,' (θ, '10θt')/ 4 pitches are all plus, that is, θ4-n(θ,'+θ1±(θ,'10θs')/4, where n(i positive number 1.2.3-, . . . ).

なる角度ヒリチとし、スリットの内径と外径を夫夫R1
′°とB 、/とする。ここで上記光遮光部15と光遮
光部16とは一定の角度ピッチθ1/とθ2/とで複数
個、角度ピッチθ3だけ離れて左右対称に配列されると
共にt上記回転スリット周波数度ピッチθ1.θ、に対
し、灰の関係 θ、工θ11       θ、工θ、lが与えられる
。次に上記回転スリット3の内径R8及びR2と、固定
スリット7の内径RI′及び外径R+!’との関係は、 R1中h′ もしくは しくa1’ R1中B 、 /  もしくは Rt > Rt’によ
り、光の漏れを防ぐ様に与えられている。
The inner diameter and outer diameter of the slit are set to R1.
′° and B, /. Here, the light shielding parts 15 and the light shielding parts 16 are arranged symmetrically at a constant angular pitch θ1/ and θ2/, separated by an angular pitch θ3, and the rotation slit frequency pitch θ1. For θ, the relationship θ of ash, θ11 θ, θ, l are given. Next, the inner diameters R8 and R2 of the rotating slit 3, and the inner diameter RI' and outer diameter R+ of the fixed slit 7! The relationship with ' is given to prevent light leakage by h' in R1 or a1' B in R1, / or Rt >Rt'.

以上の第1図、第2図、第4図、第5図に示された従来
の光学式1ンコーダの動作は、次の様になる。のめに、
発光素子10t−通′成した状態でモードルシャフト1
を回転させると、その回転に従い回転スリット3も回転
する。回転スリット3が回転している状態で回転スリッ
ト3の透光部13と、固定スリット7の透光部15が一
致する時は、上記発光素子10の光が受光素子8と9に
照射されるため、電気的出力が発生する。一方回転スリ
ット3の遮光部14と固定スリット7の遮光部とが一致
する時は、光は受光素子8と9に照射されないため、電
気的出力は発生しない。ここで受光素子8は第5図の左
側スリット部に、受光素子9は右側のスリット部に対応
して配置されているので、各々の電気的出力は、上記角
度ピッチ分(01′十〇、’)/4だけ位相がずれる、
これt−a気的処理により第3図のごとく、受光素子8
によりA相が、受光素子9によりB相が出力され、その
位相はθ/4=90度で、モードルの回転数に比例した
スリット周波数の信号が得られ、モードルの回転数や、
回転位置及び回転方向を検出して機器の制御やモードル
の#I#に使用される。
The operation of the conventional optical encoder shown in FIGS. 1, 2, 4, and 5 is as follows. For me,
The light emitting element 10t is connected to the mold shaft 1.
When rotated, the rotating slit 3 also rotates in accordance with the rotation. When the light transmitting portion 13 of the rotary slit 3 and the light transmitting portion 15 of the fixed slit 7 coincide with each other while the rotary slit 3 is rotating, the light from the light emitting element 10 is irradiated onto the light receiving elements 8 and 9. Therefore, an electrical output is generated. On the other hand, when the light shielding part 14 of the rotating slit 3 and the light shielding part of the fixed slit 7 match, the light receiving elements 8 and 9 are not irradiated with light, so that no electrical output is generated. Here, the light receiving element 8 is arranged corresponding to the left slit part in FIG. 5, and the light receiving element 9 is arranged corresponding to the right slit part, so that each electrical output is equal to the above angular pitch (01'10, ')/4 out of phase,
Through this t-a gas treatment, the light receiving element 8 is
The A phase is output by the light receiving element 9, and the B phase is output by the light receiving element 9. The phase is θ/4 = 90 degrees, and a signal with a slit frequency proportional to the rotation speed of the moder is obtained, and the rotation speed of the moder,
It detects the rotational position and rotational direction and is used to control equipment and mode #I#.

ここで従来品の問題点として、 1)最近、市場で第3図の人相、8相の位相ずれ及びジ
ッターの高精度の要求が増している。
Here, the problems with the conventional products are as follows: 1) Recently, there has been an increasing demand in the market for high accuracy of the phase shift and jitter of the human phase and the 8 phases shown in Fig. 3.

2)上記1を満足させるには、2個の受光素子に等量の
光量が入るよう発光素子の光軸を調整して、2個の受光
素子の受光軸を等しい方向にする必要があり、組立調整
が困難である。
2) In order to satisfy the above 1, it is necessary to adjust the optical axis of the light emitting element so that the same amount of light enters the two light receiving elements, so that the light receiving axes of the two light receiving elements are in the same direction, Difficult to assemble and adjust.

3)スリットはエツチングで行われるが、面に垂直でな
く曲が9がらり、円周上の各スリットにバラツキがあり
、光全斜めに通すとジッター大となる。
3) The slits are made by etching, but the curves are not perpendicular to the surface and there are variations in each slit on the circumference, resulting in large jitters if the light is passed diagonally.

4)受光素子2115に対し2個の発光素子全対応させ
れば良いが、コスト高、消費成力の増大、小形化が困難
である。
4) All two light-emitting elements should correspond to the light-receiving element 2115, but this increases cost, increases power consumption, and makes downsizing difficult.

等の問題があった。There were other problems.

本発明の目的は、位相ずれ、ジッターの積度向上と、組
立rA整作業性向上による低コス、ト化も計扛る光学式
エンコーダを提供するところにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical encoder that can reduce the cost and cost by improving the amount of phase shift and jitter, and improving the assembly rA alignment workability.

上記従来品の問題点が1個の発光素子で2個の受光素子
に投光するところにちゃ、その位置関係は第6図に示す
ように発光素子10の″に、軸が受光面に04の角度が
あり、受光素子8と9の受−ffi=41と各々θ、と
06の角度がある、発光素子、受光素子ともに第7図の
ような一般的な指向特性あること、スリットは、第7図
のごとく厚み方向に曲 。
The problem with the conventional product mentioned above is that one light emitting element emits light onto two light receiving elements, but their positional relationship is as shown in Figure 6, with the axis at 04'' of the light emitting element 10 and the light receiving surface. The light-emitting element and the light-receiving element both have general directional characteristics as shown in Fig. 7, and the slit has the following angle: Bend in the thickness direction as shown in Figure 7.

がりがあり各スリットでばらつきがあることより′、θ
1.θ6.θ6は小さい方が汀利であることに  。
′, θ due to the unevenness in each slit
1. θ6. The smaller θ6 is, the better.

層目した。It was layered.

以上、本発明の一実施例を第9図と第10図と第11図
で説明する。従来と同一部分は第1図による。
An embodiment of the present invention will be described above with reference to FIGS. 9, 10, and 11. The same parts as the conventional one are shown in FIG.

本発明に係る光学式エンコーダは、板ばね2とハブ4に
よって固定された回転スリン)、3Vi、小ねじか圧入
等でモードルシャフト1に収付けられて □いる。回転
スリット3の上側にベース4に固定された回路基板5と
、回路基板5とベース4にて固定された補強板6ど第1
0図に示す固定スリット17があり、回路基板5に保持
さ′nた受光素子8と9がある。下側には、ベース4に
保持された発光素子IOがるり、上記ベース4ばねじ等
によりエンドブラケット11に固定される構成から成っ
ており、受光索子8と9の配置の上面図を第8図に示す
。受光索子8と9は、シャフト1の中心に対して角度θ
7:45°の関係に配置されており、その出力は心気的
処理により第3図のように受光索子8によジA相が、受
光素子9により8相が出力されA相とB相は、θ/4=
90iとなる出力が得られるように回転スリット3が第
3図に、固−岨スリット17が第10図の平面図に示す
形状になっている。
The optical encoder according to the present invention is housed in a rotary shaft 1 fixed by a leaf spring 2 and a hub 4, 3Vi, and a mold shaft 1 using machine screws or press fitting. A first circuit board 5 is fixed to the base 4 above the rotating slit 3, and a reinforcing plate 6 is fixed to the circuit board 5 and the base 4.
There is a fixed slit 17 shown in FIG. 0, and there are light receiving elements 8 and 9 held on the circuit board 5. On the lower side, the light emitting element IO held by the base 4 is fixed to the end bracket 11 by the base 4 spring screw etc. Shown in Figure 8. The light receiving cables 8 and 9 are arranged at an angle θ with respect to the center of the shaft 1.
They are arranged in a 7:45° relationship, and their outputs are as shown in Figure 3 through hypochondriacal processing: the light receiving element 8 outputs the A phase, the light receiving element 9 outputs the 8 phases, and the A phase and B phase are output. The phase is θ/4=
In order to obtain an output of 90i, the rotating slit 3 is shaped as shown in FIG. 3, and the rigid slit 17 is shaped as shown in the plan view of FIG. 10.

第4図の回転スリット3は、特に光が透過する透光部1
3と、−ffi全遮断する遮光部14と全強調して示し
ている。この透光部13と透光部14との角度ピッチ全
天々θ1とθ、とし、スリットの −内径と外径を夫々
R1とR,とする。ここで上記透光部13と遮光部14
とは回転スリット3の全円周に渡って一定の角度、ピッ
チθ1 、θ2で配列されている。
The rotating slit 3 in FIG. 4 is a transparent part 1 through which light passes.
3 and the light shielding part 14 that completely blocks -ffi are shown in full emphasis. Let θ1 and θ be the angular pitches of the transparent portion 13 and the transparent portion 14, and let R1 and R be the inner and outer diameters of the slit, respectively. Here, the light transmitting part 13 and the light shielding part 14
are arranged at constant angles and pitches θ1 and θ2 over the entire circumference of the rotating slit 3.

次に第10図に示す固定スリット17は、特に元透部1
8と元遮元部19金強調して示しである。
Next, the fixed slit 17 shown in FIG.
8 and the original shielding part is highlighted in 19K gold.

この光透元部18と光遮光部19との角度ピッチを夫々
θ、〃と、θ、′とし、θ、′は、角度ピッチ(θ、′
十θ2” ) / 4の一係すなわちθ、′−(θ、〃
+θ2〃)/4 なる角度ピッチとし、スリットの内径と外i2受光素子
8に相対する右側部分を夫々R8とR2とし受光索子9
に相対する左側部分を夫々R13’とFL4’とする。
Let the angular pitch between the light transmitting part 18 and the light shielding part 19 be θ, 〃 and θ,′, respectively, and θ,′ is the angular pitch (θ,′
10θ2”) / 4, i.e. θ,′−(θ,〃
The angular pitch is +θ2〃)/4, and the inner diameter of the slit and the right side facing the outer i2 light receiving element 8 are R8 and R2, respectively, and the light receiving string 9 is
The left side portions opposite to are R13' and FL4', respectively.

ここで上記透$、18と遮光部19とは一定の角度ピッ
チθ、′と02“とで煩数個で角度ピッチ04′だけ識
れて配列され、左右の中央側の1スリツトは、斤いに干
渉しないよう右側は内面を大きく、左側は外洋金小さく
して、−h記回転スリット3の角度ピッチθ1.θ2に
対し、次の関係 θ 二θ′    θ 二02′ 2 が与えらnる。次に上記回転スリット3の内径R及びR
2と固定スリット7の内径B、/と外径R4との関係は
、 R1キ比、′ もしくは l(、<FL3’FhキFL
4  もしくは R2>R。
Here, the transparent parts 18 and the light shielding parts 19 are arranged in a number of pieces with a fixed angular pitch θ,' and 02", with an angular pitch of 04', and one slit on the left and right center side The inner surface on the right side is made larger, and the inner surface on the left side is made smaller so as not to interfere with other objects. Next, the inner diameter R and R of the rotating slit 3 are
The relationship between 2 and the inner diameter B of the fixed slit 7, / and the outer diameter R4 is as follows:
4 or R2>R.

によす、元の漏れ忙防ぐ憬に与えられている。Yes, it is given to the original leakage prevention mechanism.

以上のように構成された本4案の光学式エンコーダの6
作は、第1図、43図、第4図でポベた従来のものと同
様であるが、受光素子8と9紫第8区の嫌に配置してお
り、断面図の第11図で説明すると、従来の第6図と比
較して、次の関・系となっている。
6 of the optical encoder of the present 4 proposals configured as above.
The structure is the same as the conventional one shown in Figures 1, 43, and 4, but the light receiving elements 8 and 9 are placed at the opposite side of the 8th section, which is explained in Figure 11, which is a cross-sectional view. Then, compared to the conventional figure 6, the following relationships and systems are obtained.

θ4〉θ4/ θ、〉θ、/  θ6〉06′となって
P!l11従来より約1 / 1.4になり、発光素子
と受光索子の指向特性の゛良い組合わせとなる。
θ4〉θ4/ θ,〉θ, / θ6〉06' and P! 111 is approximately 1/1.4 compared to the conventional one, resulting in a good combination of directivity characteristics of the light emitting element and the light receiving element.

をらに、第12図のごとく受光素子8と9をシャフト中
心と角度0度の位置が考えられ、固定スリット200角
度θ、全次のように θ、=(θ、+01゜)/4 t′こすると、θ1.θ5 、θ、全θ度とすれば効果
大と考えられるが回転スリットの長さ’k[来の約2倍
にする必要があり、透光部のエンチング処理時、寸法精
度を保つことが困難である。本発明の場合はスリット長
さが約1.4@であり寸法精度を十分保てる範囲にある
Furthermore, as shown in Fig. 12, consider the position of the light receiving elements 8 and 9 at an angle of 0 degrees with respect to the center of the shaft, and the fixed slit has a 200 angle θ, and the total angle is θ, = (θ, +01°)/4 t. 'When rubbed, θ1. θ5, θ, and the total θ degree would be considered to have a great effect, but the length of the rotating slit 'k [needs to be approximately twice as long as before, making it difficult to maintain dimensional accuracy when etching the transparent part. It is. In the case of the present invention, the slit length is about 1.4@, which is within a range where dimensional accuracy can be maintained sufficiently.

但し、回転スリット3全ガラス板への印加処理等により
製作する場曾はコスト的に若干高くなるが第12図の場
合も十分実用性はめる。
However, if the rotary slit 3 is manufactured by applying an electric current to the entire glass plate, the cost will be slightly higher, but the case shown in FIG. 12 is also sufficiently practical.

本発明によれば・、発光素子と受光素子の光軸及び受光
軸との角度を従来の1/1.4にできるので、1)2相
の位相ずれ、及びジッター會従来の少なくとも1 / 
1.4にできる。
According to the present invention, since the angle between the optical axis and the light receiving axis of the light emitting element and the light receiving element can be reduced to 1/1.4 of the conventional one, 1) the phase shift between the two phases and the jitter can be reduced to at least 1/1 of the conventional one;
It can be made 1.4.

2)m11立調整が6易になり、低コスト化が可能とな
る。
2) It becomes easier to adjust the m11 position, making it possible to reduce costs.

等の効果がある。There are other effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光学式エンコーダの断面図、第2図は第
1図の一部−ヒ面図、第3図はエンコーダ出力電圧形を
示す図、第4図は回転スリットの平面図、第5図は従来
の固定スリットの平面図、第6図は従来の亀学式エンコ
ーダの断面図、第7図は発光素子、受九素子の一般的指
向特注図、第8図は回転スリットの断面拡大図、弔9図
は本発明に係る一実施例の上面図、第10図は本発明に
旅る固定スリットの上面図、第11図は本発明に糸る一
美施yllの断面図、第12図は本発明に係る他の実施
例の上囲図、第13図に第12図に用いられる固定スリ
ットの平面図である。 3・・・回転スリンi、7,17,20・・・固硫スリ
ツ)、8.9・・・愛元素子、10・・・発光素子、1
3゜t5;、ts、2t・・・透光部、14,16,1
9゜22・・・側元部。 め1 口 82図 84図    第9区 躬ム口 890 8q口 第10図 め11図 第12の      め130 2ρ
Fig. 1 is a sectional view of a conventional optical encoder, Fig. 2 is a partial cross-sectional view of Fig. 1, Fig. 3 is a diagram showing the encoder output voltage type, and Fig. 4 is a plan view of the rotating slit. Figure 5 is a plan view of a conventional fixed slit, Figure 6 is a cross-sectional view of a conventional mechanical encoder, Figure 7 is a general orientation custom diagram of a light emitting element and receiver element, and Figure 8 is a diagram of a rotating slit. An enlarged cross-sectional view, Figure 9 is a top view of an embodiment according to the present invention, Figure 10 is a top view of the fixed slit that leads to the present invention, and Figure 11 is a cross-sectional view of the Kazumi installation yll that leads to the present invention. , FIG. 12 is a top view of another embodiment of the present invention, and FIG. 13 is a plan view of a fixed slit used in FIG. 12. 3... Rotating sulfur i, 7, 17, 20... Solid sulfur sulfur), 8.9... Love element element, 10... Light emitting element, 1
3゜t5;, ts, 2t...transparent part, 14, 16, 1
9゜22... Side part. Me 1 mouth 82 Figure 84 Figure 9 Kumu mouth 890 8q mouth Figure 10 Figure 11 Figure 12 Me 130 2ρ

Claims (1)

【特許請求の範囲】[Claims] 1、元を透過させる透光部と元金透過させない一元部と
を備えた固定スリットと、回転スリットを回転駆動する
手段と、11固や発光素子と21固の受光素千金1賄え
、該回転スリットと該固定スリットのスリット部の一方
に発光素子を、自刃に回転中心と発光素子中心+r直る
線上より角変θ7が、0≦θ7く90°の′IIIへ曲
内の直線上に受光素子の一方fj!:配置さす、且つm
l方の受光素子ヶ前記受元素子より略180°の角、建
紫なす位置に配litきせることを特徴とする光学式エ
ンコーダ。
1. A fixed slit having a transparent part that transmits the element and a unit part that does not transmit the element, a means for rotationally driving the rotating slit, a light-emitting element 11 and a light-receiving element 21; A light emitting element is placed in one of the slit parts of the rotating slit and the fixed slit, and the light is received on the straight line in the curve to 'III' where the angle change θ7 is 0≦θ7 and 90° from the line that is perpendicular to the rotation center and the light emitting element center + r. One of the elements fj! : place, and m
An optical encoder characterized in that one light-receiving element is arranged at a position approximately 180 degrees from the other light-receiving element.
JP17975781A 1981-11-11 1981-11-11 Optical encoder Pending JPS5882117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17975781A JPS5882117A (en) 1981-11-11 1981-11-11 Optical encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17975781A JPS5882117A (en) 1981-11-11 1981-11-11 Optical encoder

Publications (1)

Publication Number Publication Date
JPS5882117A true JPS5882117A (en) 1983-05-17

Family

ID=16071342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17975781A Pending JPS5882117A (en) 1981-11-11 1981-11-11 Optical encoder

Country Status (1)

Country Link
JP (1) JPS5882117A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135726A (en) * 1985-12-10 1987-06-18 Derufuai:Kk Optical fiber type encoder
JP2021023540A (en) * 2019-08-05 2021-02-22 トーソー株式会社 Electrically-driven switchgear
RU2757776C1 (en) * 2021-05-27 2021-10-21 Общество с ограниченной ответственностью Управляющая компания "Алтайский завод прецизионных изделий" Lather turning method for precision parts of small diameter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135726A (en) * 1985-12-10 1987-06-18 Derufuai:Kk Optical fiber type encoder
JP2021023540A (en) * 2019-08-05 2021-02-22 トーソー株式会社 Electrically-driven switchgear
RU2757776C1 (en) * 2021-05-27 2021-10-21 Общество с ограниченной ответственностью Управляющая компания "Алтайский завод прецизионных изделий" Lather turning method for precision parts of small diameter

Similar Documents

Publication Publication Date Title
EP1018466B1 (en) Rotation sensor
WO2013065739A1 (en) Optical sensor, method for producing optical sensors, optical encoder, torque detection device, and electric power steering device
CN103119402A (en) Position measuring device
JPS5882117A (en) Optical encoder
EP0968903B1 (en) Rotation detector for multi-rotation body
JPS59226806A (en) Absolute position detector
JP2738067B2 (en) Rotary encoder
JPH0810146B2 (en) Multi-turn absolute encoder
CN113541406A (en) High-precision galvanometer motor feedback system and design method thereof
JP3518980B2 (en) Multi-rotational body rotation detection device
JPS59164913A (en) Rotary encoder
JPH0342774B2 (en)
JPS60129614A (en) Potentiometer
JPH0425616Y2 (en)
JPS5845510A (en) Rotary encoder
JPH10185623A (en) Multiple rotation type absolute value encoder device
JP2776657B2 (en) Optical rotary encoder
JPS627174A (en) Rotating angle detector
JPH02218389A (en) Needle position detector
JPH03252013A (en) Adjustable rotation type encoder
JPH04130216A (en) Two-phase magnetic type angle sensor
JP2003212129A (en) Steering device
JPH0422262Y2 (en)
JPH10232144A (en) Rotary encoder
JPS5829849B2 (en) rotary encoder